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General NonlinearGeneral Nonlinear Initial Value Initial Value 
P bl f S t fP bl f S t f ODEODEProblem for System of Problem for System of ODEsODEs::

Difficult to solve numerically when it is stiff!Difficult to solve numerically when it is stiff!



What is Stiffness? And Where Do We What is Stiffness? And Where Do We 
E t It?E t It?Encounter It?Encounter It?
 There are many definitions of stiffness e g There are many definitions of stiffness, e.g.

Lambert’91: A problem is stiff on a particular interval 
if a numerical method is forced to use an excessivelyif a numerical method is forced to use an excessively 
small step size in relation to the smoothness of the 
solution.

 Stiff problems are encountered in many fields, e.g.

Pl h iPlasma physics

Combustion   

Fluid Mechanics



General Nonlinear Problem:General Nonlinear Problem:

 stiff, where stiffness can come from 
either linear OR nonlinear part of  

ffi i t diti il bl f


 no efficient preconditioner available for 
implicit methods.



Elementary Example:Elementary Example:
1D Heat Equation

Discretized in spacep

Explicit scheme Implicit schemep Implicit scheme

But there is also exact solution!



Numerical Difficulties with Stiffness:Numerical Difficulties with Stiffness:
Eigenvalues of A place stability restriction on the time step 
for the explicit scheme 

Explicit scheme

Stability requirement

Implicit scheme  VS.   Exponential integrator

Both A-stable 
but…but…



Implicit vs. Exponential schemes:Implicit vs. Exponential schemes:
Si A i l d iSince A is large we need to approximate

or

Approximation method of choice for large nonsymmetric
matrices is Krylov subspace projectionmatrices is Krylov subspace projection

( i h i GMRES FOM)(e.g. to invert the matrix we can use GMRES or FOM)

Convergence of Krylov iteration to estimate f(A)bConvergence of Krylov iteration to estimate f(A)b
depends on ||b||, eigenvalues of A and function f(x)!



Test problem Test problem –– 1D 1D BrusselatorBrusselator::

Jacobian matrix:



KrylovKrylov iteration convergence comparison:iteration convergence comparison:
l 1

Problem 
size, 2N

GMRES FOM

Tolerance = 1E-5

200 92 85 35 27 19

400 187 174 70 55 38

800 382 359 140 112 78

Similar result also holds for Jacobian calculated at 
different times and for other examples.



Integrators for Nonlinear Problems:Integrators for Nonlinear Problems:gg

 Building an integrator while minimizing the 
number of Krylov projections

 Order conditions derivation - Butcher’s work

 Performance and adaptivity
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Building Exponential Building Exponential Integrators for Integrators for 
N li P blN li P blNonlinear Problems:Nonlinear Problems:

Denote the Jacobian matrix

Use the integrating factor              to compute the integral 
form of the solution:



Building Exponential Integrators:Building Exponential Integrators:

To construct an exponential method approximate              
with a polynomial.

This results in a expression for an approximate solution which 
involves functions

or their linear combinations, e.g.



Examples of Examples of EIsEIs –– EPIRK3 (EPIRK3 (Tokman’06Tokman’06):):

Third-order scheme EPIRK3 – 2 Krylov projections 



Computational Complexity of EI:Computational Complexity of EI:
NOTE: Krylov projections account for the 
majority of computational time!j y f p

Th f t t t ffi i t EI

b f K l

Therefore to construct an efficient EI

 minimize number of Krylov projections
needed each time step

 minimize the number of iterations needed
f h K l j tifor each Krylov projection



Computational Complexity of EI:Computational Complexity of EI:
NOTE: Krylov projections account for the 
majority of computational time! j y f p

Th f t t t ffi i t EI

b f K l

Therefore to construct an efficient EI

 minimize number of Krylov projections
needed each time step

 minimize the number of iterations needed
f h K l j tifor each Krylov projection



Examples of EIs Examples of EIs –– Lawson scheme:Lawson scheme:

Fourth-order scheme LWS4 – 4 Krylov projectionsFourth-order scheme LWS4 – 4 Krylov projections 



Examples of EIs Examples of EIs –– HochbruckHochbruck--Osterman:Osterman:

Fourth order scheme EROW4 4 Krylov projectionsFourth-order scheme EROW4 – 4 Krylov projections 



Examples of EIs Examples of EIs –– HochbruckHochbruck--Lubich:Lubich:

Fourth-order scheme EXP4 – 3 Krylov projections 



Examples of EIs Examples of EIs –– Tokman:Tokman:

Fourth-order scheme EPIRK4 – 3 Krylov projections 



Computational Complexity of EI:Computational Complexity of EI:
NOTE: Krylov projections account for the 
majority of computational time! j y f p

Th f t t t ffi i t EI

b f K l

Therefore to construct an efficient EI

 minimize number of Krylov projections
needed each time step

 minimize the number of iterations needed
f h K l j ti ( k hfor each Krylov projection (work very much
in progress…)



What functions should we project?What functions should we project?

Numerical experiments show that Arnoldi iteration 
convergence is correlated with Taylor series convergence.convergence is correlated with Taylor series convergence.

Consider a linear combination of functionConsider a linear combination of function

with Taylor coefficientswith Taylor coefficients



What functions should we project?What functions should we project?

1 1.2812e-01   2.2956e-01

2   5.8218e-03   3.9212e-03

3  2.2079e-04   3.3878e-05

4 7.0092e-06   2.0108e-08

5 2.0214e-07   3.0619e-09

6 5.1313e-09   4.9313e-10

7 1 2053e-10 5 4611e-117 1.2053e 10   5.4611e 11

8 2.5530e-12   3.2960e-12

9 4 9000 14 1 4000 139 4.9000e-14   1.4000e-13

10 1.0000e-15   2.0000e-14



Ideas for New Integrators:Ideas for New Integrators:gg



Integrators for Nonlinear Problems:Integrators for Nonlinear Problems:gg

 Building an integrator while minimizing the 
number of Krylov projections

 Order conditions derivation - Butcher’s work

 Performance and adaptivity



Performance:Performance:

2D Brusselator 2D Gray-Scott Equation

2D Allen-Cahn Equation



2D Allen2D Allen--Cahn Equation:Cahn Equation:



2D 2D BrusselatorBrusselator System:System:



2D Gray2D Gray--Scott System:Scott System:



AdaptivityAdaptivity::

Two level time stepping adaptivityTwo level time stepping adaptivity

 Error estimator using embedded methodsg

 Optimization of the Krylov subspace size

Effi i i d b ff i l liEfficiency is ensured by effectively coupling
the two stages of adaptivity.



Current and Future Current and Future Work:Work:
 Thorough comparisons of EIs and standard 
integrators performance on both sample problems 
and real applications

 Butcher’s results will be used to develop new Butcher s results will be used to develop new 
integrators and automate derivation of order 
conditionsconditions

 Publicly available serial and parallel 
implementations of EIs is under development

 Applications: nonlinear optics plasma physics Applications: nonlinear optics, plasma physics, 
biomodeling, etc. 




