
Some Practical Issues in Evaluating and
Comparing Methods on Parallel Computers

Patrick H. Worley
Oak Ridge National Laboratory

Frontiers of Geophysical Simulation
August 20, 2009

National Center for Atmospheric Research
Boulder, CO

•  The work described in this presentation was sponsored by the Climate and
Environmental Sciences Division of the Office of Biological and
Environmental Research and by the Office of Advanced Scientific
Computing Research, both in the Office of Science, U.S. Department of
Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

•  These slides have been authored by a contractor of the U.S. Government
under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Accordingly, the U.S. Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.

•  This work used resources of the National Center for Computational
Sciences at Oak Ridge National Laboratory, which is supported by the
Office of Science of the Department of Energy under Contract DE-
AC05-00OR22725.

 Acknowledgements

 A spectrum of approaches have been proposed, ranging from
–  Fully explicit methods, to minimize the need for

nonscalable (in process count) nonlocal communications,
 to
–  Fully implicit methods, to minimize nonscalable (in

problem size) decrease in timestep
 with a many hybrids and technology “enhancements” for each
of these, e.g.,
–  Mixed explicit/implicit (over operator, over domain)
–  Parallel-in-time, Waveform relaxation, asynchronous, and

other time relaxation or blocking methods
–  HW accelerators (minimizing the required process count)
–  many different implicit system solvers

Paths to Peta/Exa/…-Scale

1.  No algorithm scales on traditional parallel computers, given a
reasonable definition of scalability, for most (all?) geophysical
problems.

2.  Some algorithms scale worse than others. Good choices will
depend on specifics of problem and target platform.

3.  For a range of problem sizes and processor counts, a particular
algorithm may scale well enough on a particular parallel
architecture that statement #1 is a theoretical rather than a
practical issue.

4.  For the current generation of massively parallel computers,
statement #1 is often a practical issue.

Scalability Digression

“Blast from the Past”
 Simple performance models (ala 1980s) with current (or
anticipated future) system performance constants can be
used to establish regimes of performance competitiveness
and limits to scalability.
–  While useful, this analysis is far from sufficient as it

ignores numerical advantages/disadvantages of different
methods.

–  Rest of talk is a hand-waving discussion of example
simple models, to demonstrate the process.

–  My goal is to remind people that a lot can be done with
simple models/arguments to understand promise (or
problems) before developing a full implementation.

Basic Explicit Method Models I
 For methods with local bases: finite difference/element, spectral
element, …

(T/dt)*(local computation + halo update)
 where T is final time and dt is the timestep, or

 (T/dt)*(max(local computation, halo update))
 if can overlap communication and computation, or

 (T/dt2)*(LocalComp(n)+ HaloComm(n))
 where dt2 = n*dt and communicate a large enough halo to allow
local computation to proceed for n steps without further
communication (trading off fewer communications with
redundant computation and larger communication volume), or

Basic Explicit Method Models II
 (T/dt1)*(LocalComp1 + HaloComm1) +
(T/dt2)*(LocalComp2 + HaloComm2)

 for a simple 2 level subcycling algorithm, where usually
dt1 = n*dt2 for some integer n, or …

 There is typically some global communication as well (e.g., CFL
estimator). Even when using an asynchronous algorithm with
locally determined timestep size, some global coordination is
required. (Some) explicit methods are relatively simple to model
(e.g., Chris Kerr’s experience with cubed sphere FV on the XT4),
but there can still be significant complexities at scale or when
computation is inhomogeneous:

Basic Explicit Method Models III
 sum_i (max_p(LocalComp(i,p) + HaloComm(i,p))

 as an “upper” bound on cost when the local communication and
computation costs are not uniform in time or space. Here i is the
timestep index and p is the process id. As the Halo
communication is a function of the assignment of processes to
processors (and the underlying network topology and cluster
architecture) and is affected by the load assigned to the neighbors
that it is communicating with, this is not an easy function to
estimate accurately. However, effective rates can be measured,
and system specifications can be used to determine lower bounds
on performance.

Basic Implicit Method Models I
 Solver (and solver implementation) specific:

–  (simple) CG
 (T/dt)*(local computation +
 N*(local solver computation + halo update + global sum))
 where T is final time, dt is the timestep, N is the number of
iterations (estimated), halo update is for the residual calculation,
and global sum is for the inner product calculations. Can also
overlap (some) communication with computation.

Basic Implicit Method Models II
–  Operator split with (simple) CG for fast modes?
(T/dt1)*(LocalComp1 + HaloComm1) +
(T/dt2)*(LocalComp2 +

 N*(SolverComp + HaloComm2 + global sum))
 where dt1 is the timestep for the “slow” mode, and dt2 is the
timestep for the “fast” modes.

Basic Implicit Method Models III
–  CG with non-local preconditioner …
–  Multigrid solver (V cycle: series of halo updates of different

sizes and process separations? Equivalent to a specially
constructed reduction + broadcast?)

–  Domain decomposition methods: Schur complement,
Schwarz, …

 Check the literature, and/or roll your own. While much has
changed in the past 20 years, models were generated for most
of the basic algorithm classes.

Establishing Costs: Kernel Benchmarks
1.  HALO

 Alan Wallcraft’s benchmark for measuring halo
communication performance, motivated by one of his ocean
codes, and used to also evaluate a number of different
implementations of the operator.

2.  ALLREDUCE
 My benchmark for evaluating both MPI_Allreduce and
point-to-point implementation of the allreduce collective.

 It is important to devise kernels that accurately reflect algorithm
to be modeled. As such, these kernels have limited applicability,
and are only suitable to identify issues.

HALO on Cray XT5

 Average cost of halo update measured over approximately 3 seconds worth of
iterations. Would need to run additional experiments to determine sensitivity to
different node assignments. Should also examine impact of different process-to-
processor assignments. Factor of 3X advantage from not using all processes in
node. Some mild growth in cost with process count for larger haloes.

HALO on Cray XT5

 Some experiments with smaller haloes show signs of performance variability or
perturbation. These may also impact large halo updates, but are relatively less
important. Difficult to quantify nature of variability as MPI_Barrier is also
subject to performance variability.

ALLREDUCE on Cray XT5

 Measured performance of single MPI_Allreduce (global sum of 2 real*8
values), single MPI_Allreduce after cache invalidation, and average
performance of 10 MPI_Allreduces, all using all processor cores in a node.
Performance graphed as inverse runtime, for easier display, for best, average,
and worst case performance over 120 experiments. Note that best performance
scales very well, but is not typical for larger process counts (in these
experiments). Data for different node counts collected on different partitions.

ALLREDUCE on Cray XT5

 Measured performance of single MPI_Allreduce (global sum of 2 real*8 values)
for 8 processes per node, 2 processes per node, and 1 process per node. Optimal
performance is similar, but average performance is somewhat better when
assigning fewer processes per node (fewer total number of processes for a fixed
node count).

ALLREDUCE on Cray XT5

 Best and average performance of single MPI_Allreduce (global sum of 2 real*8
values) for 8 processes per node, 2 processes per node, and 1 process per node.
Optimal allreduce performance better than average halo update performance.
Average alreduce performance is worse than halo update to small haloes when
using 8 processes per node. Less obvious for other experiments.

POP on Cray XT5

 Performance of CCSM4 version of POP for a 0.1 degree tripole grid with space-
filling-curve decomposition. POP run concurrently with other CCSM
components. Results reported for 5 simulated days for Baroclinic, Barotropic,
and 3D Update phases of main timestepping loop (Step).

POP Barotropic on Cray XT5

 Performance of Barotropic phase of POP, which is dominated by a conjugate
gradient (Chronopoulos-Gear variant) solve. Performance of C-G solve is
dominated by a halo update (part of residual calculation) and global sum (inner
product). > 250,000 CG iterations reflected in these timings.

POP Barotropic Halo Update on Cray XT5
 There is a structural load imbalance in the halo update in the
Barotropic C-G solve:
•  2048 processes (8 processes per node):

108 idle processes; non-idle process timings: 12 to 128 seconds
•  4028 processes (8 processes per node):

no idle processes; non-idle process timings: 9 to 109 seconds
•  7600 processes (8 processes per node):

593 idle processes; non-idle process timings: 5 to 109 seconds
•  7600 processes (2 processes per node):

 593 idle processes; non-idle process timings: 18 to 50 seconds

POP Barotropic Global Sum on Cray XT5

 Average performance of global sum per simulation day. A timing barrier was
inserted before the global sum, to isolate it from load imbalance in immediately
preceding halo update. Performance is improved if run with fewer processes per
node (for the same total process count). Performance is not inconsistent with
ALLREDUCE data.

POP Comments
1.  Need kernel code to more accurately reflect POP halo

update. Should look into further optimizing grid
decomposition to minimize existing load imbalance.

2.  Global sum performance is limiter at scale. Talking to
Cray/NCCS staff to see if can be improved. (Scaling has
been better in past, with simpler nodes and simpler
operating systems.) Strong argument for OpenMP
parallelism, and/or for looking for faster converging solver
or one not so global sum sensitive.

3.  Analysis very machine specific, but process is not. Also
have (some) kernel data for BG/P, and am in process of
repeating exercise on the BG/P system.

Summary of Suggestions
1.  Consider performance portability and performance

variability tolerance in design of algorithms to be used “at
scale”.

2.  Sketch out simple performance models and define
representative kernels for evaluating costs associated with
a given target architecture.

3.  Determine under what conditions “your” approach is
likely to perform poorly, and determine the likelihood of
this (and whether you need to do something different).

