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 A spectrum of approaches have been proposed, ranging from 
–  Fully explicit methods, to minimize the need for 

nonscalable (in process count) nonlocal communications, 
  to 
–  Fully implicit methods, to minimize nonscalable (in 

problem size) decrease in timestep 
 with a many hybrids and technology “enhancements” for each 
of these, e.g., 
–  Mixed explicit/implicit (over operator, over domain) 
–  Parallel-in-time, Waveform relaxation, asynchronous, and 

other time relaxation or blocking methods 
–  HW accelerators (minimizing the required process count) 
–  many different implicit system solvers 

Paths to Peta/Exa/…-Scale 



1.  No algorithm scales on traditional parallel computers, given a 
reasonable definition of scalability, for most (all?) geophysical 
problems. 

2.  Some algorithms scale worse than others. Good choices will 
depend on specifics of problem and target platform. 

3.  For a range of problem sizes and processor counts, a particular 
algorithm may scale well enough on a particular parallel 
architecture that statement #1 is a theoretical rather than a 
practical issue. 

4.  For the current generation of massively parallel computers, 
statement #1 is often a practical issue.  

Scalability Digression 



“Blast from the Past” 
 Simple performance models (ala 1980s) with current (or 
anticipated future) system performance constants can be 
used to establish regimes of performance competitiveness 
and limits to scalability. 
–  While useful, this analysis is far from sufficient as it 

ignores numerical advantages/disadvantages of different 
methods. 

–  Rest of talk is a hand-waving discussion of example 
simple models, to demonstrate the process. 

–  My goal is to remind people that a lot can be done with 
simple models/arguments to understand promise (or 
problems) before developing a full implementation. 



Basic Explicit Method Models I 
 For methods with local bases: finite difference/element, spectral 
element, …   

(T/dt)*(local computation + halo update) 
 where T is final time and dt is the timestep, or 

  (T/dt)*(max(local computation, halo update)) 
 if can overlap communication and computation, or 

 (T/dt2)*(LocalComp(n)+ HaloComm(n)) 
 where dt2 = n*dt  and communicate a large enough halo to allow 
local computation to proceed for n steps without further 
communication (trading off fewer communications with 
redundant computation and larger communication volume), or 



Basic Explicit Method Models II 
 (T/dt1)*(LocalComp1 + HaloComm1) + 
(T/dt2)*(LocalComp2 + HaloComm2) 

 for a simple 2 level subcycling algorithm, where usually           
dt1 = n*dt2 for some integer n, or … 

 There is typically some global communication as well (e.g., CFL 
estimator). Even when using an asynchronous algorithm with 
locally determined timestep size, some global coordination is 
required. (Some) explicit methods are relatively simple to model 
(e.g., Chris Kerr’s experience with cubed sphere FV on the XT4), 
but there can still be significant complexities at scale or when 
computation is inhomogeneous: 



Basic Explicit Method Models III 
  sum_i (max_p(LocalComp(i,p) + HaloComm(i,p)) 

 as an “upper” bound on cost when the local communication and 
computation costs are not uniform in time or space. Here i is the 
timestep index and p is the process id. As the Halo 
communication is a function of the assignment of processes to 
processors (and the underlying network topology and cluster 
architecture) and is affected by the load assigned to the neighbors 
that it is communicating with, this is not an easy function to 
estimate accurately. However, effective rates can be measured, 
and system specifications can be used to determine lower bounds 
on performance. 



Basic Implicit Method Models I 
 Solver (and solver implementation) specific: 

–  (simple) CG 
  (T/dt)*(local computation + 
   N*(local solver computation + halo update + global sum)) 
 where T is final time, dt is the timestep, N is the number of 
iterations (estimated), halo update is for the residual calculation, 
and global sum is for the inner product calculations. Can also 
overlap (some) communication with computation.  



Basic Implicit Method Models II 
–  Operator split with (simple) CG for fast modes? 
(T/dt1)*(LocalComp1 + HaloComm1) + 
(T/dt2)*(LocalComp2 + 

   N*(SolverComp + HaloComm2 + global sum)) 
 where dt1 is the timestep for the “slow” mode, and dt2 is the 
timestep for the “fast” modes. 



Basic Implicit Method Models III 
–  CG with non-local preconditioner … 
–  Multigrid solver (V cycle: series of halo updates of different 

sizes and process separations? Equivalent to a specially 
constructed reduction + broadcast?) 

–  Domain decomposition methods: Schur complement, 
Schwarz, … 

 Check the literature, and/or roll your own. While much has 
changed in the past 20 years, models were generated for most 
of the basic algorithm classes. 



Establishing Costs: Kernel Benchmarks 
1.  HALO 

 Alan Wallcraft’s benchmark for measuring halo 
communication performance, motivated by one of his ocean 
codes, and used to also evaluate a number of different 
implementations of the operator. 

2.  ALLREDUCE 
 My benchmark for evaluating both MPI_Allreduce and 
point-to-point implementation of the allreduce collective. 

 It is important to devise kernels that accurately reflect algorithm 
to be modeled. As such, these kernels have limited applicability, 
and are only suitable to identify issues. 



HALO on Cray XT5 

 Average cost of halo update measured over approximately 3 seconds worth of 
iterations. Would need to run additional experiments to determine sensitivity to 
different node assignments. Should also examine impact of different process-to-
processor assignments. Factor of 3X advantage from not using all processes in 
node. Some mild growth in cost with process count for larger haloes. 



HALO on Cray XT5 

 Some experiments with smaller haloes show signs of performance variability or 
perturbation. These may also impact large halo updates, but are relatively less 
important. Difficult to quantify nature of variability as MPI_Barrier is also 
subject to performance variability. 



ALLREDUCE on Cray XT5 

 Measured performance of single MPI_Allreduce (global sum of 2 real*8 
values), single MPI_Allreduce after cache invalidation, and average 
performance of 10 MPI_Allreduces, all using all processor cores in a node. 
Performance graphed as inverse runtime, for easier display, for best, average, 
and worst case performance over 120 experiments. Note that best performance 
scales very well, but is not typical for larger process counts (in these 
experiments). Data for different node counts collected on different partitions. 



ALLREDUCE on Cray XT5 

 Measured performance of single MPI_Allreduce (global sum of 2 real*8 values) 
for 8 processes per node, 2 processes per node, and 1 process per node. Optimal 
performance is similar, but average performance is somewhat better when 
assigning fewer processes per node (fewer total number of processes for a fixed 
node count). 



ALLREDUCE on Cray XT5 

 Best and average performance of single MPI_Allreduce (global sum of 2 real*8 
values) for 8 processes per node, 2 processes per node, and 1 process per node. 
Optimal allreduce performance better than average halo update performance. 
Average alreduce performance is worse than halo update to small haloes when 
using 8 processes per node. Less obvious for other experiments. 



POP on Cray XT5 

 Performance of CCSM4 version of POP for a 0.1 degree tripole grid with space-
filling-curve decomposition. POP run concurrently with other CCSM 
components. Results reported for 5 simulated days for Baroclinic, Barotropic, 
and 3D Update phases of main timestepping loop (Step). 



POP Barotropic on Cray XT5 

 Performance of Barotropic phase of POP, which is dominated by a conjugate 
gradient (Chronopoulos-Gear variant) solve. Performance of C-G solve is 
dominated by a halo update (part of residual calculation) and global sum (inner 
product). > 250,000 CG iterations reflected in these timings. 



POP Barotropic Halo Update on Cray XT5 
 There is a structural load imbalance in the halo update in the 
Barotropic C-G solve: 
•  2048 processes (8 processes per node): 

108 idle processes; non-idle process timings: 12 to 128 seconds 
•  4028 processes (8 processes per node): 

no idle processes; non-idle process timings: 9 to 109 seconds 
•  7600 processes (8 processes per node): 

593 idle processes; non-idle process timings: 5 to 109 seconds 
•  7600 processes (2 processes per node): 

 593 idle processes; non-idle process timings: 18 to 50 seconds 



POP Barotropic Global Sum on Cray XT5 

 Average performance of global sum per simulation day. A timing barrier was 
inserted before the global sum, to isolate it from load imbalance in immediately 
preceding halo update. Performance is improved if run with fewer processes per 
node (for the same total process count). Performance is not inconsistent with 
ALLREDUCE data. 



POP Comments 
1.  Need kernel code to more accurately reflect POP halo 

update. Should look into further optimizing grid 
decomposition to minimize existing load imbalance. 

2.  Global sum performance is limiter at scale. Talking to 
Cray/NCCS staff to see if can be improved. (Scaling has 
been better in past, with simpler nodes and simpler 
operating systems.) Strong argument for OpenMP 
parallelism, and/or for looking for faster converging solver 
or one not so global sum sensitive. 

3.  Analysis very machine specific, but process is not. Also 
have (some) kernel data for BG/P, and am in process of 
repeating exercise on the BG/P system. 



Summary of Suggestions 
1.  Consider performance portability and performance 

variability tolerance in design of algorithms to be used “at 
scale”. 

2.  Sketch out simple performance models and define 
representative kernels for evaluating costs associated with 
a given target architecture. 

3.  Determine under what conditions “your” approach is 
likely to perform poorly, and determine the likelihood of 
this (and whether you need to do something different). 


