How Republican is the Ocean?
Some Challenges of non-Conservative Ocean Dynamics in Applied Mathematics

William K. Dewar, FSU

collaborators:
R.J. Bingham, R. Iverson, L. St. Laurent, D. Nowacek, P. Wiebe, P. Berloff, A. Hogg, JC McWilliams, MJ Molemaker
Consider ‘Mixing’.

Munk and Wunsch, 1998
Mixing energy (2.4TW) supplied by external sources.

St Laurent and Simmons (2006)
How much energy are we talking about anyway?

How large of a column of the ocean would a typical kitchen mixer mix?

\[
\frac{2.4 \times 10^{12} W}{3.5 \times 10^{14} m^2} = \frac{.007 W}{m^2} \quad \frac{200 W m^2}{.007 W} : (200 m)^2
\]
Point: The Ocean is ‘extremely’ conservative in its properties, but the ‘weak’ non-conservative effects are essential to its dynamics.

Key problem: How to model? Enormous scale disparity, probably requiring parameterization.

Objective: Discuss two examples and outline open questions.
Numerical problems associated with capturing this weak level of mixing have prompted novel model constructions. Ex: MICOM – isopycnals
HYCOM, GOLD – Hybrid MICOM
ROMS – Terrain following

Because of the EOS, what is a good isentropic surface? Can we numerically close ocean energy budgets?
Physeter Macrocephalus (aka sperm whale)
Architeuthis dux (aka giant squid)

Our Hypothesis:
Swimmers by kinetic activities mix the ocean
Marine Biosphere impacts ocean mixing as effectively as the winds and tides.
Diel Migrators

Wiebe, 1979
Recent Efforts – work in progress

Tongue of the Ocean

Principles: Nowacek St. Laurent
This is a poorly studied problem in turbulence
There are at least three length scales in this problem
1. individual
2. inter-cloud separation
3. cloud scale (actually two of these)

Catton, Webster and Yen (OS, 2008), in tank experiments, conclude krill aggregations define the effective length scale of their mixing.

Can the cloud mixing ‘efficiency’ be computed?
Can we apply to schools of fish?
What about direct fluid transport ala Dabiri/Katija?
But, beware: its not all zooplankton!
Q: How many giant squid are there?

A: 1 Billion

\[10^9 \text{ A. dux} / 3.5 \times 10^8 \text{km}^2 = 3 \text{ per square km}\]
Run of the Mill TMR is easily 1W/kg
Swimming inefficiency of 10%
~30W/sqkm

Can we develop a swimming theory for cephalopods like that for thunniforms?
Mesonychoteuthis
Part II: Balanced Energetics

Turn on a global ocean model and what do you see?

http://www7320.nrlssc.navy.mil/GLBhycom1-12/navo/globalsss_nowcast_anim30d.gif
Many definitions exist, but all have diagnostic momentum equations.

\[u_t + uu_x + vu_y + wu_z + fv = -p_x \]
\[v_t + uv_x + vv_y + wv_z - fu = -p_y \]

The simplest example is geostrophy:

\[fv = p_x \]
\[fu = -p_y \]

Tend to large scales and subinertial frequencies.
More formally, balanced flows have a ‘potential vorticity’ that is diagnostically linked to the dynamical fields:

$$\nabla^2 p = q$$

A consequence: difficult for these flows to dissipate. Energetics budgets in models?
FIGURE 8. Comparison of the full (top), balanced (middle) and unbalanced (bottom) components of the displacement field (in a $y = 0$ cross section) at 20 QG time units for $c = 10$ and for the effective Rossby numbers indicated. The contour intervals for the full and balanced fields are $\Delta = 0.008$. The unbalanced contour intervals are $1/50$th of the balanced contour intervals.
Comparable pv question:

$$\frac{\partial}{\partial t} q = -\nabla g F; \ F = uq - Xx \nabla \rho - \omega H$$
What about external effects, eg topography
Temperature at western wall
A Theory of Wall Interaction

\begin{align*}
 u_t + uu_x + vu_y - fv &= -M_x \\
 v_t + uv_x + vv_y + fu &= -M_y \\
 M &= p + \rho g z \\
 q_t + uq_x + vq_y &= 0; \quad q = (f + v_x - u_y) / z \rho
\end{align*}

EOMs in density coordinates
At the wall, normal flow vanishes

\[
\begin{align*}
y_t + u y_x + v y_y - f v &= -M_x \\
v_t + u v_x + v v_y + f u &= -M_y
\end{align*}
\]

\[
M_\rho = g z
\]

\[
M = p + \rho g z
\]

\[
q_t + u q_x + v q_y = 0; \quad q = (f + v_x - y_y) / z_\rho
\]

At the wall, normal flow vanishes
\[f(v_g + v') = M_{gx} + M'_x \]
\[v'_t + \left(\frac{v'^2}{2} \right)_y + (v_g v')_y + M'_y = -v_{gt} - v_g v_y - M_{gy} \]

Exact pv solution

\[\frac{(f - v_x)}{z_{\rho}} = q(x, y, \rho, t) = q(0, y_0, \rho, 0) = \frac{fg}{M_{\rho\rho}} \]

\[M'_{xx} = \frac{f^2}{M_{\rho\rho}} M'_{\rho\rho} \]

The only assumption: hydrostatics!
Solutions:

Total Velocity, Northward Moving Anticyclone

Day 0

Day 4

Total Velocity, Southward Moving Cyclone

Day 0

Day 4

MITgcm
When linearized, above set has yielded much useful information about quasi-1d cases:

\[
\begin{align*}
\nu_t' + \left(\frac{\nu'^2}{2} \right)_y + (\nu_g \nu')_y + M'_y &= -v_{gt} - v_g \nu_{gy} - M_{gy} \\
M'_{xx} &= \frac{f^2}{M_{\rho\rho}} M'_{\rho\rho}
\end{align*}
\]

and the interesting nonlinear eigenvalue problem

\[
M'_{\rho\rho} + \lambda^2 \frac{1}{\sqrt{1 - \frac{2M'}{c^2}}} = \lambda^2 \\
M'_{\rho} = g z'(x, y, \rho, t) = 0 \text{ at } \rho = \rho_b, \rho_s
\]
\[v'_t + \left(\frac{v'^2}{2} \right)_y + (v_g v'_y)_y + M'_y = -v_{gt} - v_g v_{gy} - M_{gy} \]

\[M'_{xx} = \frac{f^2}{M_{\rho\rho}} M'_{\rho\rho} \]

Also shows need for non-hydrostatic parameterization
Generalization to ‘realistic’ topography?
There is no theory for this case.
Connections to models

An ultra-fine embedded solution for Monterey Bay
Summary: The ocean is extremely conservative, but:

- non-conservative processes cannot be ignored for climate modeling purposes
 - set water mass distributions and the energy levels of the balanced flows
- are extremely subtle to capture correctly
- certainly involve processes that are poorly understood AND parameterized in suspect forms in all current climate models

Two examples:
Mixing by clouds of smallish migrants and large unusually shaped organisms
Topography - Candidate equation gives hopes for parameterization of pv fluxes
- Generalization to more complex topographies and turbulent settings?