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Outline 
•  Background 

–  Role of sea ice in the climate system 
–  Changes in observed sea ice 

•  Sea ice models used for climate simulations 
–  Relevant equations 
–  Parameterizations 

•  Using climate models to assess influence of 
sea ice on climate 
–  Feedback analysis, Tipping points 
–  Using lower order systems to elucidate sea ice 

response 



Why do we care 
about sea ice? 
Surface energy 
(heat) budget 

< 0.1 

> 0.8 
Surface albedo 

• High albedo of sea ice 
modifies radiative fluxes 

• Sea ice insulates ocean 
from atmosphere 
influencing turbulent 
heat & momentum 
exchange 



Ice-Ocean Freshwater Exchange 

Why do we care 
about sea ice? 

Hydrological Cycle 

• Salt rejection during ice 
formation leaves sea ice 
relatively fresh (salt flux to 
ocean) 

• Ice melt releases freshwater 
back to the ocean 

• Can modify ocean circulation 



Arctic Sept Ice Extent 
1979-2008 

2007: 23% less than 
previous minimum 

Source: Cryosphere 
Today, U. Illinois 

Source: NSIDC 

Arctic September 
sea ice 

1980 2007 

Winter ice shows 
significant but 
smaller trends 



(courtesy of Harry Stern, U. Washington) 

Loss of the summer ice 
cover in context 

From 1980 to 2005:  ice loss equal to 
24 states; most of the US east of 

the Mississippi 

To 2007: 5 additional states 

(courtesy of Dr. Don Perovich, CRREL) 



Change in Arctic Ice Thickness 

Rothrock et al., 1999 
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In stark contrast! 

Antarctic sea ice 

Both winter and annual 
average have small 

increasing trend in both 
area and extent 

JAS Extent 

JFM Extent 

Ann Avg Ice Concentration Trend  
from 1979-2004 



Projected Surface Temperature Change 
Models show 
reduced warming 
~40-60S 

Little SH polar 
amplification 

Ocn heat uptake 
the culprit 

Reduced Antarctic 
surface change is 
broadly consistent 
with model results 

Zonally Avg Surface Temperature (2080-2099 minus 1980-1999) 
Normalized by Global Mean Change 

Arctic 
Amplification 

Reduced Warming 

IPCC-AR4 
Models 

SRES-A1B 



Observations show indications that Arctic 
Amplification is emerging 

Sept-Nov 2003-2007 
Air Temperature 

Anomalies Relative to 
1979-2007  

Sept Sea Ice Anomalies 

(Serreze et al., 2008) 



Numerical Modeling!

• To help understand sea ice functioning 
and its role in the climate system, we 
build and use models. !

• Provides a virtual laboratory.!
• Allows for controlled experiments. 
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• Systems of 
differential 
equations that 
describe fluid 
motion, radiative 
transfer, etc. !

• Planet divided into 
3-dimensional grid 
and equations 
solved on that grid!

• Sub-gridscale, 
unresolved 
processes are 
parameterized!

Coupled climate model!

(NOAA) 



• Includes 
atmosphere, ocean, 
land, sea ice 
components!

• Conservative 
exchange of heat, 
water, momentum 
across components !

• Can apply changes 
in external forcing 
- solar input, GHG 
concentrations, 
volcanic eruptions!

Coupled Climate Models!



• Includes 
atmosphere, ocean, 
land, sea ice 
components!

• Conservative 
exchange of heat, 
water, momentum 
across components !

• Can apply changes 
in external forcing 
- solar input, GHG 
concentrations, 
volcanic eruptions!

Coupled Climate Models!



Sea Ice Model 
•  Three primary components 

–  Dynamics 
•  Ice motion 

–  Ice Thickness Distribution 
•  Subgridscale parameterization 
•  Accounts for high spatial heterogeneity 
•  Redistribution resulting from ridging/rafting 

–  Thermodynamics 
•  Solves for vertical ice temperature profile,  
•  Vertical/lateral melt and growth rates 



Sea Ice Model - Dynamics!
•  Ice treated as a continuum with an effective 

large-scale rheology describing the relationship 
between stress and flow!

•  Force balance between wind stress, water stress, 
internal ice stress, coriolis and stress associated 
with sea surface slope!

•  Ice freely diverges (no tensile strength)!
•  Ice resists convergence and shear!
•  Multiple ice categories advected with same velocity 

field!

€ 

m ∂u
∂t

= −mfk × u + τ a + τ o −mg∇H +∇ •σ

Coriolis Air 
stress 

Ocean 
stress 

Sea  
Slope 

Internal 
Ice Stress 



Ice Thickness Distribution 

Evolution depends on: Ice growth, lateral melt, ice divergence, 
and mechanical redistribution (riding/rafting) 

(Thorndike et al., 1975) 

  

€ 

∂g
∂t

= −
∂
∂h
( fg) + L(g) −∇ • ( v g) + Ψ(h,g,  v )



Thermodynamics 
Vertical heat transfer 

(from Light, Maykut, Grenfell, 2003) 
(Maykut and Untersteiner, 1971; Bitz and Lipscomb, 1999; others) 

•  Assume brine pockets are in 
thermal equilibrium with ice 

• Heat capacity and conductivity 
are functions of T/S of ice 

•  Assume constant salinity profile 

•  Assume non-varying density 

•  Assume pockets/channels are 
brine filled 

•    

€ 

ρc ∂T
∂t

=
∂
∂z
k ∂T
∂z

+QSW

€ 

QSW = −
d
dz
ISWe

−κz
where 

€ 

ISW = i0(1−α)FSW



Sea ice thermodynamics 

Vertical heat transfer 
(conduction, SW absorption) 

Focn 

Fsw 

αFsw FLW 
FSH FLH 

hi 

hs 

T1 
T2 
T3 
T4 -k dT/dz 

-ks dT/dz 

€ 

(1−α)FSW + FLW −σT
4 + FSH + FLH

+k ∂T
∂z

= −q dh
dt

€ 

Focn − k
∂T
∂z

= −q dh
dt

Balance of fluxes at surface 

Balance of fluxes at ice base 



Albedo 

Parameterized sea ice albedo depends 
on characteristics of surface state 

(snow, temp, ponding, hi).  

(Perovich et al., 2002) 

Surface albedo accounts for fraction 
of gridcell covered by ice vs open ocean 



Sea ice change modifies 
the climate response to 

perturbed forcing 

Direct response 

Feedbacks that accelerate 
or damp the direct response 



Assessing climate 
feedbacks 

Ts is surface temperature, Q is 
external forcing, F is TOA balance,   
is the feedback parameter.  

€ 

€ 

ΔF = ΔQ+ λΔTS

x = water vapor, clouds, surface albedo, etc. 
Interaction among feedbacks 

€ 

λ =
∂F
∂Ts

=
∂F
∂xx

∑ ∂x
∂Ts

+
∂ 2F
∂x∂yy

∑
x
∑ ∂x∂y

∂Ts
2 + ...

Studies generally ignore the feedback-interaction term 

Individual feedbacks 

Dominant feedback negative due to outgoing LW-Ts relationship 

€ 

ΔF

€ 

ΔTs

€ 

ΔQ

€ 

λx

€ 

λy

€ 

λx



Surface Albedo Feedback Analysis 
Starting with the classic definition of climate sensitivity: 

We can quantify the radiative forcing feedbacks: 

We isolate the albedo feedback component: 

And focus on changes in surface albedo per temperature change: 

(the term) 

€ 

ΔTS = ΔF /λ

€ 

λ =
dFLW
dT

−
dFSW
dT

€ 

∂FSW
∂T

 

 
 

 

 
 
SAF

=
∂FSW
∂α

dα
dT

€ 

dα
dT

where 

€ 

α = (1− aice )αocn + aiceα ice



Model parameterizations influence feedback strength 
Enhanced albedo feedback in ITD run 

Larger albedo change for thinner initial ice  
With ITD have larger a change for ice with same initial thickness 
Suggests surface albedo feedback enhanced in ITD run 

ITD (5 cat) 
1 cat. 

1cat tuned 

Holland et al., 2006 



Ice Growth Rate – Ice Thickness Relationship 
Analogous to climate sensitivity, we can define an ice 

thickness sensitivity: 

We quantify the ice thickness feedbacks  
(neglecting ice dynamics): 

And isolate the ice growth rate-ice thickness feedback 
by focusing on the change in growth rate per change in 
thickness: 

(the term)

€ 

Δheq = ΔF /λh

€ 

λh =
∂F
∂G

∂G
∂h

+
∂F
∂M

∂M
∂h

€ 

∂G
∂h Bitz and Roe, 2004 

G=Growth 
M=Melt 



Ice Growth Rate –Ice 
Thickness Relationship 

15 SEPTEMBER 2004 3627B I T Z A N D R O E

FIG. 4. Plot of G and M vs h at 80! and 68!N for the control and
perturbed cases of the analytic model.

increase the annual growth and reestablish an equilib-
rium. In contrast, where the slope is shallow, the ice
must thin comparably more to increase the annual
growth. In other words, "heq depends on the reciprocal
of #G/#h evaluated at the equilibrium thickness for the
control climate ho. Thorndike (1992) recognized that
the response time for sea ice to adjust to equilibrium
after a sudden change in thickness is equal to the re-
ciprocal of #G/#h evaluated at heq. Hence "heq and the
response time depend on h in a similar way.
The curves in Fig. 4 approximately agree with esti-

mates for G and M for ice with heq $ 3 m given by
Untersteiner (1961) and Maykut (1986) based on field
data and modeling.1 However, following Thorndike
(1992), we have assumed that M is independent, of h,
while Untersteiner (1961) and Maykut (1986) argue that
M should increase if the ice becomes thin, for example,

1 We plot G and M as functions of the annual mean thickness, while
Untersteiner (1961) and Maykut (1986) plot them against the thick-
ness at the beginning of the season.

below 1 m, to account for the thickness dependence of
the ice albedo. Fixing the length of the growth and melt
seasons is another assumption that deserves further scru-
tiny. In reality the season length depends on both ice
thickness and the climate conditions. Owing to the sim-
plifying assumptions made for this analysis, the quan-
titative predictions should not be taken too seriously,
especially below 1 m.
The simplicity of Eqs. (1)–(3) allows an analytical

solution for "heq as a function of ho. This calculation
yields a theoretical curve for comparison with the re-
duction in ice draft from the submarine data shown in
Fig. 1 and the thickness change in the CMIP models
(none of which are strictly in equilibrium, but can be
considered to be in quasi-equilibrium because the re-
sponse time for sea ice thickness change is short com-
pared to the time scale of change of the forcing). When
subject to a change in radiative forcing, sea ice reaches
a new equilibrium by adjusting h such that "G $ "M.
An expansion in the dependent variables h and A that
is linear in the change in thickness and the radiative
perturbation gives

#G #G #M
% "h & "A $ "A, (5)eq! ! !#h #A #A

h h ho o o

where "heq is taken as positive for a reduction in ice
thickness. Thus

%1#G #G #M
"h $ % "A. (6)eq " # " ##h #A #A

h ho o

Substitution from Eqs. (1)–(3) gives

2(kn & Bh )w o"h $ %eq
Bn k(%A /n & D/2)w w

1 1 h B /no w' % % & "A. (7)" #n n kn & Bhw s w o

In spite of the number of terms in this equation, the
solution, shown as a solid line in Fig. 5, has a simple
form. The term in brackets [in either Eq. (6) or Eq. (7)]
is only a weak function of thickness; therefore, our sim-
ple analytic model indicates that "heq approximately
increases with the reciprocal of #G/#h (i.e., the response
time). Indeed the dashed curve in Fig. 5 shows the thick-
ness dependence of "heq from (#G/#h)%1 alone by letting
ho $ 3 m for the term within the brackets. With this
approximation, "heq is quadratic in ho.
In Fig. 4, we distinguished latitudes by only varying

FSW and hence neglected the spatial dependence of D.
Continuing with this approximation, we can apply Eq.
(7) to relate the spatial distribution of thinning to the
initial thickness, as we did for the observed submarine
data and CMIP model output. The magnitude of our
estimate in Fig. 5 is not meant to be directly comparable
to the CMIP models in Fig. 2 because the prescribed
longwave forcing perturbation does not include feed-

Fundamental sea ice 
thermodynamics causes 

the ice growth rate (G) to 
vary as 1/h 

€ 

G∝ k ΔT
hi

Bitz and Roe, 2004 

This acts as a negative feedback 
on ice thickness change 

€ 

Δheq ∝ h
2



Model parameterizations modify ice growth rate 
feedback 

For ice of the same mean thickness, 

•  The ITD has fewer locations with increased ice growth.  

•  This suggests a reduced negative feedback on ice thickness 

5 category
1 category
1cat tuned



Climate models 
explicitly 

include these 
(and other) 

feedbacks and 
can be used to 
explore climate 
system response 

Range in model 2007 
extent from natural 
variability  
~ 4.8 to 7 million km2 
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Models and Model Mean
(averaged model data and s.d. in black)

Observations
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CNRM CM3

IPSL CM4

MIUB ECHO*

MRI CGCM2.3.2*
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Ensemble Mean

BCCR BCM2.0

CCCMA CGCM3.1(T63)

GISS AOM*

MIROC3.2 MEDRES*

MPI ECHAM3*

NCAR CCSM3*

UKMO HadCM

Ensemble + std. dev.

Sept Ice Extent IPCC-AR4 Models 

Sept Ice 
Extent CCSM3 



Rapid loss of the September sea ice cover 

“Abrupt” 
transition 

Holland et al., 2006 
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SSMI observed 

CCSM3 

CCSM3 – smoothed 

September sea ice extent 

9 events 
across 8-
member 

CCSM3 A1B 
ensemble 

Gradual forcing results in rapid loss of 
September Arctic ice cover 



Factors contributing to rapid ice loss 
• Increased efficiency of OW 

production for a given ice melt 
with a thinning ice pack  

%
 O

W
 fo

rm
at
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n 

pe
r c

m
 ic

e 
m

el
t 

March Ice Thickness (m) 

Ocean Heat Transport to 
Arctic 

(5 Year Running Mean) 
SW Absorbed in OML 

5 Year Running Mean 

• Increased ocean heat transport 
preceding and over the event 
(trigger?) 

• Albedo feedback leading to 
increased solar absorption and 
enhanced ice melt 



Is this rapid loss indicative of a “tipping point” 

Using coupled models to explore possible bifurcation 

Where, Tipping Point = 
an intrinsic threshold 

such that sea ice 
decline will become 

rapid and irreversible 
once the threshold is 

crossed 



September Ice Extent 

Does a bifurcation exist? 
If forcing (GHGs) remains fixed, does ice continue to retreat?  

CO2 remains at 
year=2020 values 

CO2 held at 
2030 values 

With no continued increase in forcing, sea ice stabilizes with 
a reduced but still perennial ice cover. No “tipping point”. 

CO2 continues 
to increase 

2100 2000 

(Bitz et al., in prep) 
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Mass Budget b30.040b.ES01bcom
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Is ice loss irreversible?!
Performed highly idealized 
experiments with reductions 

in GHG concentrations!
Experiments
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A1B!
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CO2 Timeseries 

• Lagged recovery due to thermal 
inertia of the system 

• Little indication of hysteresis from 
(approaching) equilibrium values 



Is ice loss irreversible?!
Performed highly idealized 
experiments with reductions 

in GHG concentrations!
Experiments
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A1B!
Scenario!

20C Obs!

CO2 Timeseries 

• Assessing ice extent as a function 
of global temperature shows little 
difference between ice loss and ice 
recovery simulations 
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Using “toy models” to investigate sea ice 
stability 

Merryfield et al., 2008 

“The objective is to illuminate the essential processes and 
not to embellish them or mix them up with others which are 
less important.”  Thorndike, 1992 

€ 

Tn+1 =max[F − wHn − wb(Amax − An ),0]

€ 

An = Amax[1−
T*

Tn
Mn ]

€ 

Mn =min[M0
s + M0

b + wHn (1+ An Amax ) /2,Tn /T
*]

Winter ice thickness depends on heat transport (Hn), SW absorption 

Sept ice area related to OW formation 
efficiency (T*/Tn) and net summer melt (Mn) 

Summer melting related to ocean heat transport (Hn) 

Equations/processes based on CCSM3 results 



MERRYFIELD ET AL. 161

Because (9a) is quadratic in T
e
, there are potentially three 

physically realizable (i.e., real valued and nonnegative) so-

lutions to (9) and (10). Expressions for these solutions and 

for various critical values of the parameters are obtained in 

Appendix A. 

Equilibrium solutions for the CCSM3 parameter values 

listed in Table 2 are illustrated in Figure 9, where the solid 

curves indicate stable (attracting) solutions and the dashed 

curves indicate unstable solutions, as determined in Appen-

dix A. It is seen that, for values of H smaller than a critical 

value H 
–

c
, there is a single equilibrium, described by one of 

the solutions to (9) and denoted A+

e
 in Figure 9a, for which A

e
 

and T
e
 decrease smoothly with increasing H. For values of H 

larger than a second critical value H +
c
, there is again a single 

equilibrium, described by (10) and denoted A
e

0, having A
e
 = 0  

and T
e
 declining gradually with increasing H until T

e
 = 0  

is attained for H ³ F/w – bA
max

. In the intermediate regime 

H 
–

c
 £ H £ H +

c
, these two stable equilibria coexist and are con-

nected by an unstable equilibrium branch A–

e
 arising from the 

second solution of (9). 

At least three aspects of this result bear upon abrupt transi-

tions like those in Figures 1 and 7: 

1. If H increases gradually from relatively small values 

to values exceeding H +
c
, A will track A+

e
 and hence decrease 

smoothly until H = H +
c
. At this point, any further increase 

in H will cause A to undergo an abrupt, hysteretic transition 

from finite A+

e
 to A0

e
 = 0, as indicated by the downward arrow 

in Figure 9b.

Figure 8. Schematic illustration of the web of feedbacks repre-

sented by equations (6) – (8), indicating how the system responds to 

an increase in ocean heat transport (OHT). The thick arrow repre-

sents the key nonlinearity, an inverse dependence of summer open 
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Appendix A. 
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listed in Table 2 are illustrated in Figure 9, where the solid 

curves indicate stable (attracting) solutions and the dashed 

curves indicate unstable solutions, as determined in Appen-
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in coupled model 
more likely due 

to large H 
fluctuations 



Cautions with “toy model” approach 
Simplifications affect model behavior 
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enon resembles the small ice cap instability found in other 

simplified representations of sea ice described in section 2. 

What is the source of these differences? The answer lies 

in the parameterized ocean shortwave absorption. As long 

as A
n
 > 0, parameterizations (5) and (15) behave similarly 

(solid and dashed curves in Figure 18) because of their 

close relation through (17). In particular, the forms of the 

two equilibrium solution branches connected by the sad-

dle-node bifurcation remain much the same. However, once 

September ice cover is lost (A
n
 = 0), (5) implies a satura-

tion of shortwave absorption, whereas under (15) Q
n
 can 

continue to increase as ice cover in the other sunlit months 

declines. The additional shortwave absorption becomes suf-

ficient to prevent freezing in winter, and Q
n
 saturates at its 

value for perennial absence of ice. In actuality, the impor-

tance of this effect is likely to be diminished by processes 

not represented explicitly in our simple model, namely, 

the strong sensible, latent, and longwave heat losses that 

will occur from open water in winter. The loss of a much 

larger fraction of the absorbed shortwave energy from the 

sea surface under ice-free winter conditions than when 

ice is present should tend to mitigate the large differences 

Figure 17. (a) OHT time series used to illustrate differences under parameterizations of sections 3 and 4; (b) time series 

of September ice area under section 3 parameterizations (solid curve) versus section 4 parameterizations (dashed curve); 

(c) time series of March ice thickness, curves similarly labeled. 

OHT 

Sept Ice Extent 

Ice Thickness 

If albedo feedback is instead 
proportional to annual mean open 
water fraction then: 
• Analytical solution not possible 
• Numerical solution suggests 

• a perennial loss of ice 
• extreme hysteresis with no 
recovery of ice cover 
• similar to small-ice-cap 
instability found in other 
studies 



Results from other simplified systems 

Eisenman and Wettlaufer, 2009 

radiation during the period of annual maximum as at annual
minimum. The light-gray shaded regions in Fig. 1 illustrate the
key transition periods in the state of the Arctic Ocean during the
transition from perennial ice cover to seasonally ice-free con-
ditions (light gray region to right) and from seasonally ice-free
conditions to perennially ice-free conditions (light gray region to
left). Both of these periods experience approximately equivalent
amounts of incident solar radiation (Fig. 1B), with somewhat
more solar radiation occurring during the period associated with
the loss of winter ice (light gray region to left). Hence the
ice–albedo feedback should be expected to be similarly strong
during a transition to perennially ice-free conditions in a very
warm climate (i.e., loss of winter ice) as during a more imminent
possible warming to seasonally ice-free conditions (i.e., loss of
summer ice).

Bifurcation Thresholds. We begin the bifurcation analysis using the
partially linearized version of the model (Eqs. 2, 4, and 5) to
focus on the effect of albedo in the absence of other nonlin-
earities. In this representation, the Arctic Ocean is viewed as a
simple radiating thermal reservoir with a temperature-
dependent albedo, and the model exhibits a linear relaxation to
a stable solution in each albedo regime. As would be expected
by analogy with the discussion above of an annual mean Arctic
Ocean with a variable sea ice edge, Fig. 2 illustrates that when
!F0 becomes sufficiently large for the ocean to remain peren-
nially ice free with ! " !ml, an unstable seasonally ice-free
solution (red dashed curves) appears in a saddle-node bifurca-
tion of cycles [for a discussion of the theory of bifurcations in
periodic systems, see, e.g., Strogatz (18)].

The unstable solution separates stable solutions with peren-
nial ice (blue curves) or perennially ice-free conditions (gray
curves). The perennial ice regime collides with the unstable
seasonally ice-free state and disappears in a second saddle-node

bifurcation of cycles at the point where !F0 becomes sufficiently
large that the ice completely melts at the time of annual
maximum E in the cold stable state. Because there is significant
incident solar radiation during both the maximum and minimum
periods of the seasonal cycle of E (Fig. 1), the ice–albedo
feedback ensures that all seasonally ice-free solutions will be
unstable (Fig. 2).

When nonlinear sea-ice thermodynamic effects are included
(Eqs. 2–4), basal ice formation is controlled by a diffusive vertical
heat flux of ki!T/hi, where !T is the difference between surface
and basal temperatures and the base is assumed to be at the
freezing point. This causes thin ice to grow significantly faster
than thick ice (13). It would also cause thin ice to experience
greater basal ablation during the summer melt season, but the
surface temperature only warms until it reaches the freezing
point (!T " 0) and surface melt begins, making the rate of melt
less sensitive to thickness. These 2 effects, both nonlinear in E,
are expressed in Eq. 3 by the #ki/h " kiLi/E term in the
denominator and the ramp function R(x), respectively. The
result is an increase in the rate of growth for thin ice that is more
stabilizing for thinner ice, as pointed out (19) and applied (20)
in previous studies. This is in contrast to the state-independent
linear mixed-layer stabilizing term, #FT(t)E/cmlHml, which ap-
plies when E $ 0 (Eqs. 2 and 3).

These nonlinearities allow for the existence of a stable sea-
sonally ice-free solution (Fig. 3). When a sufficiently large value
of !F0 is chosen such that the cold solution becomes ice free
during a small part of the year, a slight increase in temperature
would lead to a longer open-water period and a thinner seasonal
ice cover. Although the increased period of open water promotes
warming through the ice–albedo feedback, the thinner ice grows
significantly faster because of the sea-ice thermodynamic effects
that are nonlinear in E. During the ice-covered portion of the
year, the stability of the solution is controlled by this strong
nonlinear stabilizing effect, but during the ice-free portion of the
year, it is replaced by the weaker linear mixed-layer stabilizing
term. This causes the stabilizing sea-ice thermodynamic effects
to dominate the destabilizing ice–albedo feedback and allow a
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Fig. 2. Bifurcation diagram for the partially linearized model, where non-
linear sea-ice thermodynamic effects have been excluded but the ice–albedo
feedback has been retained (Eqs. 2, 4, and 5). For each value of the surface
heating !F0, the model is integrated until it converges on a steady-state
seasonal cycle, and the annual maximum (upper curve) and annual minimum
(lower curve) values of E are plotted. Solutions with perennial sea-ice cover are
indicated in blue, seasonally ice-free solutions in red, and perennially ice-free
solutions in gray. Dashed lines indicate unstable solutions, which have been
determined by constructing an annual Poincaré map and finding the fixed
points (i.e., numerically integrating the model for 1 year starting from an array
of initial conditions and identifying the solutions with the same value of E at
the end of the year as the initial condition). The curves have been smoothed
with a boxcar filter to suppress a small level of noise associated with numerical
integration. Note that the lines are slightly curved at the 2 bifurcation points
because of the smooth albedo transition associated with h! $ 0. The vertical
axis is labeled as in Fig. 1A.
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Fig. 3. Bifurcation diagram for the full nonlinear model (Eqs. 2–4). Axes and
colors are as described in the Fig. 2 legend. The inclusion of nonlinear sea-ice
thermodynamic effects stabilizes the model when sea ice is present during a
sufficiently large fraction of the year, allowing stable seasonally ice-free
solutions (red solid curves). Under a moderate warming (!F0 " 15 Wm#2),
modeled sea-ice thickness varies seasonally between 0.9 and 2.2 m. Further
warming (!F0 " 20 Wm#2) causes the September ice cover to disappear, and the
systemundergoesasmoothtransitiontoseasonally ice-freeconditions.Whenthe
model is further warmed (!F0 " 23 Wm#2), a saddle-node bifurcation occurs, and
the wintertime sea ice cover abruptly disappears in an irreversible process. Al-
though the specific values of !F0 at which the transitions occur are sensitive to
parameter choices, the qualitative features of Fig. 3 are highly robust to changes
in model parameter values (Fig. S4 in SI Appendix).
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radiation during the period of annual maximum as at annual
minimum. The light-gray shaded regions in Fig. 1 illustrate the
key transition periods in the state of the Arctic Ocean during the
transition from perennial ice cover to seasonally ice-free con-
ditions (light gray region to right) and from seasonally ice-free
conditions to perennially ice-free conditions (light gray region to
left). Both of these periods experience approximately equivalent
amounts of incident solar radiation (Fig. 1B), with somewhat
more solar radiation occurring during the period associated with
the loss of winter ice (light gray region to left). Hence the
ice–albedo feedback should be expected to be similarly strong
during a transition to perennially ice-free conditions in a very
warm climate (i.e., loss of winter ice) as during a more imminent
possible warming to seasonally ice-free conditions (i.e., loss of
summer ice).

Bifurcation Thresholds. We begin the bifurcation analysis using the
partially linearized version of the model (Eqs. 2, 4, and 5) to
focus on the effect of albedo in the absence of other nonlin-
earities. In this representation, the Arctic Ocean is viewed as a
simple radiating thermal reservoir with a temperature-
dependent albedo, and the model exhibits a linear relaxation to
a stable solution in each albedo regime. As would be expected
by analogy with the discussion above of an annual mean Arctic
Ocean with a variable sea ice edge, Fig. 2 illustrates that when
!F0 becomes sufficiently large for the ocean to remain peren-
nially ice free with ! " !ml, an unstable seasonally ice-free
solution (red dashed curves) appears in a saddle-node bifurca-
tion of cycles [for a discussion of the theory of bifurcations in
periodic systems, see, e.g., Strogatz (18)].

The unstable solution separates stable solutions with peren-
nial ice (blue curves) or perennially ice-free conditions (gray
curves). The perennial ice regime collides with the unstable
seasonally ice-free state and disappears in a second saddle-node

bifurcation of cycles at the point where !F0 becomes sufficiently
large that the ice completely melts at the time of annual
maximum E in the cold stable state. Because there is significant
incident solar radiation during both the maximum and minimum
periods of the seasonal cycle of E (Fig. 1), the ice–albedo
feedback ensures that all seasonally ice-free solutions will be
unstable (Fig. 2).

When nonlinear sea-ice thermodynamic effects are included
(Eqs. 2–4), basal ice formation is controlled by a diffusive vertical
heat flux of ki!T/hi, where !T is the difference between surface
and basal temperatures and the base is assumed to be at the
freezing point. This causes thin ice to grow significantly faster
than thick ice (13). It would also cause thin ice to experience
greater basal ablation during the summer melt season, but the
surface temperature only warms until it reaches the freezing
point (!T " 0) and surface melt begins, making the rate of melt
less sensitive to thickness. These 2 effects, both nonlinear in E,
are expressed in Eq. 3 by the #ki/h " kiLi/E term in the
denominator and the ramp function R(x), respectively. The
result is an increase in the rate of growth for thin ice that is more
stabilizing for thinner ice, as pointed out (19) and applied (20)
in previous studies. This is in contrast to the state-independent
linear mixed-layer stabilizing term, #FT(t)E/cmlHml, which ap-
plies when E $ 0 (Eqs. 2 and 3).

These nonlinearities allow for the existence of a stable sea-
sonally ice-free solution (Fig. 3). When a sufficiently large value
of !F0 is chosen such that the cold solution becomes ice free
during a small part of the year, a slight increase in temperature
would lead to a longer open-water period and a thinner seasonal
ice cover. Although the increased period of open water promotes
warming through the ice–albedo feedback, the thinner ice grows
significantly faster because of the sea-ice thermodynamic effects
that are nonlinear in E. During the ice-covered portion of the
year, the stability of the solution is controlled by this strong
nonlinear stabilizing effect, but during the ice-free portion of the
year, it is replaced by the weaker linear mixed-layer stabilizing
term. This causes the stabilizing sea-ice thermodynamic effects
to dominate the destabilizing ice–albedo feedback and allow a
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Fig. 2. Bifurcation diagram for the partially linearized model, where non-
linear sea-ice thermodynamic effects have been excluded but the ice–albedo
feedback has been retained (Eqs. 2, 4, and 5). For each value of the surface
heating !F0, the model is integrated until it converges on a steady-state
seasonal cycle, and the annual maximum (upper curve) and annual minimum
(lower curve) values of E are plotted. Solutions with perennial sea-ice cover are
indicated in blue, seasonally ice-free solutions in red, and perennially ice-free
solutions in gray. Dashed lines indicate unstable solutions, which have been
determined by constructing an annual Poincaré map and finding the fixed
points (i.e., numerically integrating the model for 1 year starting from an array
of initial conditions and identifying the solutions with the same value of E at
the end of the year as the initial condition). The curves have been smoothed
with a boxcar filter to suppress a small level of noise associated with numerical
integration. Note that the lines are slightly curved at the 2 bifurcation points
because of the smooth albedo transition associated with h! $ 0. The vertical
axis is labeled as in Fig. 1A.
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Fig. 3. Bifurcation diagram for the full nonlinear model (Eqs. 2–4). Axes and
colors are as described in the Fig. 2 legend. The inclusion of nonlinear sea-ice
thermodynamic effects stabilizes the model when sea ice is present during a
sufficiently large fraction of the year, allowing stable seasonally ice-free
solutions (red solid curves). Under a moderate warming (!F0 " 15 Wm#2),
modeled sea-ice thickness varies seasonally between 0.9 and 2.2 m. Further
warming (!F0 " 20 Wm#2) causes the September ice cover to disappear, and the
systemundergoesasmoothtransitiontoseasonally ice-freeconditions.Whenthe
model is further warmed (!F0 " 23 Wm#2), a saddle-node bifurcation occurs, and
the wintertime sea ice cover abruptly disappears in an irreversible process. Al-
though the specific values of !F0 at which the transitions occur are sensitive to
parameter choices, the qualitative features of Fig. 3 are highly robust to changes
in model parameter values (Fig. S4 in SI Appendix).
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Albedo feedback and ice-
growth feedback 

• Some stable seasonally ice-
free solutions exist 

• If system warms enough, 
abrupt transition to ice-
free conditions results 



Some final thoughts 



Challenges in modeling sea ice 
Many aspects of sea ice modeling are well established, based 
on fundamental physical principals and validated against 
laboratory and field observations. 

However, numerous challenges remain: 
A number of processes are only crudely represented: snow-
ice formation, snow cover properties, fluid flow through 
porous brine microstructure, etc. 

Some capabilities are not present: 
Role in biogeochemical cycles, etc. 

Additionally, as fully coupled climate models move to 
increasingly higher resolutions, questions arise on the 
appropriateness of some current approximations 



Challenges in understanding sea ice 
response in coupled systems 

Other climate model biases (e.g. cloud simulations) 
strongly influence sea ice response 

Models are often so complex, that cause-and-
effect are difficult to disentangle. 

Simpler systems can aid in this, but caution must 
be used in the generalizing of results 


