The Art of Doing the Problem Wrong:

(as opposed to doing the wrong problem)

Underdeterminacy in the Carbon Cycle
Andy Jacobson, CIRES & NOAA

Outline
1. Atmospheric CO, gradients
2. Inversions find a large sink!

3. Novel measurements
4. Comparing forward & inverse models

Topics
What conclusions are robust?
Use of biased models & MIPs
Rich, interesting dataset!
Footprint of an observation — scale of analysis
How best to reconcile models and data




the Mauna Loa record




the Mauna Loa record
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Data: Scripps CO, program




the Mauna Loa record

e classic time series
 seasonal cycle amplitude
* wiggles

« acceleration?
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Data: Scripps CO, program




Fossil fuel emissions and observed atmospheric growth rate

— FF emissions
—— Atmospheric growth rate
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Fossil fuel emissions and observed atmospheric growth rate
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Spatial Gradients of
Atmospheric CO,

CO, concentrations at selected NOAA CMDL Globalview stations

—e— 82.5°N: Alert, Canada
—eo— 19.5°N: Mauna Loa, Hawaii
—e— 64.9°S: Palmer Station, Antarctica
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Spatial Gradients of
Atmospheric CO,

CO, concentrations at selected NOAA CMDL Globalview stations

82.5°N: Alert, Canada

19.5°N: Mauna Loa, Hawaii
64.9°S: Palmer Station, Antarctica
35.4°N: WITN, North Carolina
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Spatial Gradients of
Atmospheric CO,

CO, concentrations at selected NOAA CMDL Globalview stations

19.5°N: Mauna Loa, Hawaii
L7.8°N: Virgin Islands
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Atmospheric Carbon Dioxide (ppm) a

Data courtesy of the GLOBALVIEW-CO; project e
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Inversion Goal

Find regional fluxes ¢ that agree best with observed
concentrations c.

P1

) 6= 72

OM

Observations of [CO,] Fluxes from M regions

at N locations M = 22
N=76




TransComa3 Flux Regions

1o I o
. Eurasian Temperate (8)

North Pacific
Temperate (12)

East Pacific Tropics (14)

............. L -

Atlantic Tropics.(18)

Southern ™ A2
Africa (6) {

South Atlantic
Temperate (19)

DI I I I

South Pacific
Temperate (15)

11 land, 11 ocean




Transport is Estimated by Models

Footprint matrix A gives concentrations of
unit fluxes from each region at each station.

Regions —

ai1 ai12 ... aipg \ Observations

l




“Synthesis” Inversion: Forward Model

Ao =c

Transport acting on fluxes yields concentrations

22 columns
(regions)

Land
fluxes

76 rows
(stations)

Jacobian
(footprints)

mass
balance e i offset

This is multiple linear regression.

Observations
(76)

mass balance
(atm. growth rate)




“Synthesis” Inversion: Inverse Model

Ap=c| mm)

This is multiple linear regression of
data c onto basis set A.




Sample Atmospheric Footprints with TransCom Network

Eurasian
NPP

North
American
NPP

GCTM integrations
courtesy of Songmiao
Fan, GFDL




A Large Terrestrial Carbon Sink
Implied by
Atmospheric and Oceanic Carbon
Dioxide Data and Models

S. Fan, M. Gloor, J. Mahlman, S. Pacala, ). Sarmiento,
T. Takahashi, P. Tans

16 OCTOBER 1998 VOL 282 SCIENCE www.sciencemag.org
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Fig. 2. Inversion uncertainties for North Amer-
ican terrestrial uptake versus Eurasia—North Af-
rican terrestrial uptake. Ellipses of 1, 2, and 3
SDs are shown.




A Large Terrestrial Carbon Sink
in North America Implied by
Atmospheric and Oceanic Carbon
Dioxide Data and Models

S. Fan, M. Gloor, J. Mahlman, S. Pacala, ). Sarmiento,
T. Takahashi, P. Tans

16 OCTOBER 1998 VOL 282 SCIENCE www.sciencemag.org
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Fig. 2. Inversion uncertainties for North Amer-
ican terrestrial uptake versus Eurasia—North Af-
rican terrestrial uptake. Ellipses of 1, 2, and 3
SDs are shown.
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ESRL Global Monitoring Division - CarbonTracker
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» Home
® Project Goals What is CarbonTracker?
el A system to keep track of carbon dioxide
@ Collaborators tak d rel t the Earth' f
@ What's New uptake and reiease a e cartnh's surrace over
@ Version History time. [read more]
® Overview Who needs CarbonTracker?
® FAQ Policy makers, industry, scientists, and the ‘
m_ public need CarbonTracker information to
@ Executive Summary make informed decisions to limit greenhouse
® View gas levels in the atmosphere. [read more]
@® Flux Maps
@ Flux Time Series What does CarbonTracker tell us?
® CO, Weather North America is a source of CO, to the
@® CO, Time Series
@ Product Evaluation atmosphere. The natural uptake of CO, that
@ Additional Products occurs mostly East of the Rocky Mountains CarbonTracker CO, weather for June-July, 2008.
@® CO, Weather Movies Warm colors show high atmospheric CO;
@ NOAA Observations removes Or_]ly ~30% of the CO; released by the concentrations, and cool colors show low
e use of fossil fuels. [read more] concentrations. As the summer growing season
@ 3-D Mole Fractions What' . hi I f takes hold, photosynthesis by forests and crops
® Fi ! at's new In this release o draws concentrations CO; down, opposing the
° Pri);:cessed Obs CarbonTracker? NEW! general increase from fossil fuel burning. The
, , resulting high- and low-CO; air masses are then
: iougse Code The 2009 release of CarbonTracker ("CT2009") moved around by weather systems to form the .
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e Uy includes observations and flux estimates patterns shown here. [More on CO; weather] v
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CarbonTracker
structure

Fossil Fuel emissions: John Miller,
from EDGAR, BP, CDIAC




CarbonTracker
structure
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Transport: offline model (TM5) driven
by ECMWEF analyses, postprocessed to
conserve mass.

Mauna Loa, Hawaii

—— Fossil Fuels
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CarbonTracker
structure
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Terrestrial biosphere: satellite fire counts
acting on NDVI-driven “CASA” model (from
GFED?Z2 of van der Werf et al.)

Mauna Loa, Hawalii

— Fossil Fuels
Land prior
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CarbonTracker
structure

Air-sea fluxes: ocean interior
inversions of Jacobson et al. (2007)

Mauna Loa, Hawaii

— Fossil Fuels
Land prior
—— Ocean prior
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CarbonTracker
structure

Mauna Loa

— Fossil Fuels
Land prior
— Ocean prior.
Prior total (first guess)
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CarbonTracker
structure

Observations: GMD, EC, NCAR,
CSIRO, ...

Mauna Loa, Hawalii

— Fossil Fuels

Land prior
— Ocean prior.

Prior total (first guess)
=== QObservations
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CarbonTracker
structure

Optimization: EnSRF of Whitaker and
Hamill (2002)

Mauna Loa, Hawaii

Fossil Fuels

Land prior

Ocean prior

Prior total (first guess)
Observations
Optimized land
Optimized ocean _
Optimized total (final fit)
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CarbonTracker free troposphere CO,
2008-Jan-01

“:‘:—:' t— [CO.,] umol mol’
375 380 385 390

NOAA Earth System Research Laboratory @
CarbonTracker CT2009 release

carbontracker.noaa.gov
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CT2009 Residuals (excludes aircraft obs, assimilated data only)
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Inversion core research

large L . much |
deviations given too significance

Mace Head, Ireland Park Falls, Wisc. (WLEF)

— sd=2.50 ppm m — sd=3.00 ppm -

I [
4 2 0

Predicted—observed CO,, umol mol™ Predicted—observed CO,, umol mol™

leptokurtic residuals - sharp peak and long tails
modeled with an overly large Gaussian variance
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Continuous observations
CarbonTracker 2007B
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Sep-08 Sep-15 Sep-22 Sep-29

Aug-18 Aug-25 Sep-01

Jul-28 Aug-04 Aug-11

Jul-21

Jul-14

Data: NOAA tall towers program
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Sep-08 Sep-15 Sep-22 Sep-29

Data: NOAA tall towers program

Aug-18 Aug-25 Sep-01

Continuous observations
CarbonTracker 2007B
Jul-28 Aug-04 Aug-11
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STILT footprints for WLEF 396m afternoon averages

2004x07x15x18x45.95Nx090.27Wx00396 2004x07x16x18x45.95Nx090.27Wx00396 2004x07x17x18x45.95Nx090.27Wx00396 2004x07x18x18x45.95Nx090.27Wx00396

Relatively
good
agreement

15-18 July

2004x07x25x18x45.95Nx090.27Wx00396 2004x07x26x18x45.95Nx090.27Wx00396 2004x07x27x18x45.95Nx090.27Wx00396 2004x07x28x18x45.95Nx090.27Wx00396

Model too
high

25-28 July

Flgures courtesy of Arlyn Andrews, NOAA




Orbiting Carbon Observatory




WLEF television tower, northern Wisconsin

477m tall, observations begun in 1994
Sampling at 11, 30, 76, 122, 244, 396 m AGL

Photo: NOAA tall towers program




July 28, 2004 at WLEF
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Data: NOAA tall towers program




July 2004 at WLEF

— 11 m 30m 76 m 122 m 244 m — 396 m
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Data: NOAA tall towers program




. NOAA AirCore : 150m, 74" OD stainless steel tubing L

C e—

J— open on one end during deployment

Photo: Colm Sweeney and Anna Karion, NOAA

RMS diffusive length scale 3.2m/day for CO,
yields ~47 independent obs in 150m caoil
weight about 15 Ibs
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Data: Anna Karion, NOAA
(submitted manuscript 2009)
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AirCore test on aircraft flight of May 7, 2009

n.b. Some variability of in-situ data due to lateral sampling



Summary stats for NEE over North America
North American Carbon Program Interim Synthesis

Inversions

Uptake
AV peak-peak
AV (sd)

Forward
models

Uptake
|AV peak-peak
AV (sd)

Central

1.1
1.1
0.3

Central

0.3
0.6
0.2
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Annual NEE (PgCl/year)

Annual NEE (PgCl/year)

boreal North America

—

NACP interim synthesis inversioﬁ modéls
annual NEE
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f NEE (PgClyear)

IAV of NEE (PgClyear)
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Northern Hemisphere Vertical CO, Gradients

Figure courtesy of Britt Stephens
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Summer Winter

models underpredict gradient (too

models overpredict gradient
much diffusion).

(too little diffusion).

Inversion requires

Inversion requires
greater uptake.

less of a source.




Jul-Aug-Sep Annual means Jan-Feb-Mar
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Figure courtesy of Britt Stephens




Jul-Aug-Sep Annual means Jan-Feb-Mar
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no C* separation

P a=0

variability in
regional fluxes

full C* separation

o=1
.

magnitude of residuals




less regularization

a=0

variability in
regional fluxes

increasing A

N\

more regularization

o=1

magnitude of residuals




variability in
regional fluxes

’

less regularization

a=0

\:ncreasing o

The “L”-Curve

more regularization

o=1

magnitude of residuals




variability in
regional fluxes
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o LL @ LL BIOTIC
@ HH HH_BIOTIC
@ LHS LHS_BIOTIC
® PSS @ PSS BIOTIC
RDS @ RDS _BIOTIC
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Perspectives for the future
Treaty verification — societal need is at small scales
Remote sensing
Direct assimilation into carbon models
Joint meteo-carbon analysis
Online models, non-Gaussianity, ...

Topics
What conclusions are robust?
Use of biased models & MIPs
Rich, interesting dataset!

Footprint of an observation — scale of analysis
How best to reconcile models and data




