The Art of Doing the Problem Wrong: (as opposed to doing the wrong problem) Underdeterminacy in the Carbon Cycle Andy Jacobson, CIRES & NOAA

Outline

- 1. Atmospheric CO_2 gradients
- 2. Inversions find a large sink!
- 3. Novel measurements
- 4. Comparing forward & inverse models

Topics

- 1. What conclusions are robust?
- 2. Use of biased models & MIPs
- 3. Rich, interesting dataset!
- 4. Footprint of an observation scale of analysis
- 5. How best to reconcile models and data

the Mauna Loa record

the Mauna Loa record

Data: Scripps CO₂ program

the Mauna Loa record

Data: Scripps CO₂ program

Fossil fuel emissions and observed atmospheric growth rate

Fossil fuel emissions and observed atmospheric growth rate

Spatial Gradients of Atmospheric CO₂

CO₂ concentrations at selected NOAA CMDL Globalview stations

Year

Spatial Gradients of Atmospheric CO₂

CO₂ concentrations at selected NOAA CMDL Globalview stations

Year

Spatial Gradients of Atmospheric CO₂

CO₂ concentrations at selected NOAA CMDL Globalview stations

Year

background vs. local stations most data in northern extratropics network expanding into continents

Inversion Goal

Find regional fluxes ϕ that agree best with observed concentrations *c*.

at *N* locations N = 76

Fluxes from *M* regions

TransCom3 Flux Regions

11 land, 11 ocean

Transport is Estimated by Models

Footprint matrix *A* gives concentrations of **unit** fluxes from each region at each station.

"Synthesis" Inversion: Forward Model

$$A\phi = c$$

Transport acting on fluxes yields concentrations

This is multiple linear regression.

"Synthesis" Inversion: Inverse Model

This is multiple linear regression of data *c* onto basis set *A*.

GCTM integrations courtesy of Songmiao Fan, GFDL

A Large Terrestrial Carbon Sink Implied by Atmospheric and Oceanic Carbon Dioxide Data and Models

S. Fan, M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, P. Tans

16 OCTOBER 1998 VOL 282 SCIENCE www.sciencemag.org

Fig. 2. Inversion uncertainties for North American terrestrial uptake versus Eurasia–North African terrestrial uptake. Ellipses of 1, 2, and 3 SDs are shown.

A Large Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic Carbon Dioxide Data and Models

S. Fan, M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, P. Tans

16 OCTOBER 1998 VOL 282 SCIENCE www.sciencemag.org

Fig. 2. Inversion uncertainties for North American terrestrial uptake versus Eurasia–North African terrestrial uptake. Ellipses of 1, 2, and 3 SDs are shown.

▶• C X ♠	http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/	🗟 😭 🔻 - 🚷 🔨 noaa tall tower program
wifi Charon Cal Docs - Work	→ News → Tech → Weather → Libraries → Mac → Science → Spa	aß → Web → NC Scratch →
SRL Global Monitoring Division	+	
Global Monitoring Division	em Research Laboratory itoring Division About - Research - Products - Outreach - Inform	Search ESRL: Search Calendar I People I Publications mation - Intranet
Information Home	CarbonTrack	ker
 Project Goals Documentation Collaborators What's New Version History Overview FAQ 	 What is CarbonTracker? A system to keep track of carbon dioxide uptake and release at the Earth's surface over time. [read more] Who needs CarbonTracker? Policy makers, industry, scientists, and the public need CarbonTracker information to 	
 Executive Summary View Flux Maps Flux Time Series CO₂ Weather CO₂ Time Series Product Evaluation 	make informed decisions to limit greenhouse gas levels in the atmosphere. [read more] What does CarbonTracker tell us? North America is a source of CO ₂ to the atmosphere. The natural uptake of CO ₂ that	
 Additional Products CO₂ Weather Movies NOAA Observations Download 3-D Mole Fractions 	occurs mostly East of the Rocky Mountains removes only ~30% of the CO ₂ released by the use of fossil fuels. [read more] What's new in this release of	CarbonTracker CO2 weather for June-July, 2008. Warm colors show high atmospheric CO2 concentrations, and cool colors show low concentrations. As the summer growing season takes hold, photosynthesis by forests and crops draws concentrations CO2 down opposing the
 Fluxes Preprocessed Obs Source Code Archives FSRL Observations 	CarbonTracker? NEW! The 2009 release of CarbonTracker ("CT2009") includes observations and flux estimates	general increase from fossil fuel burning. The resulting high- and low-CO ₂ air masses are then moved around by weather systems to form the patterns shown here. [More on CO ₂ weather]

structure

Fossil Fuel emissions: John Miller, from EDGAR, BP, CDIAC

structure

Transport: offline model (TM5) driven by ECMWF analyses, postprocessed to conserve mass.

Mauna Loa, Hawaii

structure

Terrestrial biosphere: satellite fire counts acting on NDVI-driven "CASA" model (from GFED2 of van der Werf et al.)

structure

Air-sea fluxes: ocean interior inversions of Jacobson et al. (2007)

structure

structure

Observations: GMD, EC, NCAR, CSIRO, ...

Mauna Loa, Hawaii

structure

Optimization: EnSRF of Whitaker and Hamill (2002)

Mauna Loa, Hawaii

Residuals, (simulated–observed), μmol mol⁻¹

Inversion core research

leptokurtic residuals - sharp peak and long tails modeled with an overly large Gaussian variance

Park Falls, Wisconsin: 396m continuous tower data for June-Sept. 2004

Data: NOAA tall towers program

STILT footprints for WLEF 396m afternoon averages

Figures courtesy of Arlyn Andrews, NOAA

Orbiting Carbon Observatory

477m tall, observations begun in 1994 Sampling at 11, 30, 76, 122, 244, 396 m AGL

Photo: NOAA tall towers program

July 28, 2004 at WLEF

Data: NOAA tall towers program

NOAA AirCore : 150m, ¹/₄" OD stainless steel tubing open on one end during deployment

RMS diffusive length scale 3.2m/day for CO₂ yields ~47 independent obs in 150m coil weight about 15 lbs

AirCore test on aircraft flight of May 7, 2009

n.b. Some variability of in-situ data due to lateral sampling

Summary stats for NEE over North America North American Carbon Program Interim Synthesis

Inversions	25 th percentile	Central	75 th percentile
Uptake	0.6	1.1	1.4
IAV peak-peak	0.7	1.1	1.5
IAV (sd)	0.2	0.3	0.4

Forward models	25 th percentile	Central	75 th percentile
Uptake	0.1	0.3	0.8
IAV peak-peak	0.3	0.6	0.8
IAV (sd)	0.1	0.2	0.3

Northern Hemisphere Vertical CO₂ Gradients

Summer

models underpredict gradient (too much diffusion).

Inversion requires greater uptake.

Figure courtesy of Britt Stephens

Winter

models overpredict gradient (too little diffusion).

Inversion requires less of a source.

Figure courtesy of Britt Stephens

Figure courtesy of Britt Stephens

magnitude of residuals

magnitude of residuals

Perspectives for the future

- 1. Treaty verification societal need is at small scales
- 2. Remote sensing
- 3. Direct assimilation into carbon models
- 4. Joint meteo-carbon analysis
- 5. Online models, non-Gaussianity, ...

Topics

- 1. What conclusions are robust?
- 2. Use of biased models & MIPs
- 3. Rich, interesting dataset!
- 4. Footprint of an observation scale of analysis
- 5. How best to reconcile models and data