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Earth’s climate system displays variability on many scales

space:10−6m - 107 m

time: seconds -106 years (and beyond)

Loosely, slower variability called “climate” and faster called “weather”

Dynamical nonlinearities⇒ coupling across space/time scales

⇒ modelling climate, weather must be parameterised, not ignored

Classical deterministic parameterisations assume very large scale separation

Following Mitchell (1966), Hasselmann (1976) suggestedstochastic

parameterisations more appropriate when separation finite

This talk will consider:

stochastic averagingas a tool for obtaining stochastic climate models

from coupled weather/climate system

two examples: coupled atmosphere/ocean boundary layers,

extratropical atmospheric low-frequency variability
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Consider a box at temperatureT containingN ideal gas molecules

Kinetic energy of individual molecules randomly distributed with

Maxwell-Boltzmann distributionp(E)

AsN → ∞ mean energy approaches sharp value

E =
1

N

N
∑

i=1

Ei

−→
N → ∞ E =

∫

E p(E) dE

ForN large (but finite),E is random

E = E +
1√
N
ζ

such that (by central limit theorem)ζ is Gaussian

Very large scale separation⇒ deterministic dynamics

Smaller (but still large) separation⇒ stochastic corrections needed
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Hasselmann’s ansatz: a stochastic climate model

Observation: spectra of sea surface temperature (SST) variability are

generically red

Observations from North Atlantic weathership “INDIA”

From Frankignoul & HasselmannTellus1977
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Hasselmann’s ansatz: a stochastic climate model

Simple model of Frankignoul & Hasselmann (1977) assumed:

local dynamics of small perturbationsT ′ linearised around

climatological mean state

“fast” atmospheric fluxes represented as white noise

⇒ simple Ornstein-Uhlenbeck process

dT ′

dt
= −1

τ
T ′ + γẆ

with spectrum
E{T ′(ω)2} =

γ2τ2

2π(1 + ω2τ2)

Linear stochastic model

⇒ simple null hypothesis for observed variability

We’ll be coming back to this again later on ....
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Coupled fast-slow systems

Starting point for stochastic averaging is assumption thatstate

variablez can be written

z = (x,y)

where
x ∼ “slow variable” (climate)

y ∼ “fast variable” (weather)
such that

d

dt
x = f(x,y)

d

dt
y = g(x,y)

where
τ ∼ f(x,y)

g(x,y)

is “small"
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A simple example

As a simple example of a coupled fast-slow system consider

d

dt
x = x− x3 + (Σ + x)y

d

dt
y = − 1

τ |x|y +
1√
τ
Ẇ
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dt
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d
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The “weather” processy is Gaussian with stationary autocovariance
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A simple example

As a simple example of a coupled fast-slow system consider

d

dt
x = x− x3 + (Σ + x)y

d

dt
y = − 1

τ |x|y +
1√
τ
Ẇ

The “weather” processy is Gaussian with stationary autocovariance

Cyy(s) = E {y(t)y(t+ s)} =
|x|
2

exp

(

− |s|
τ |x|

)

−→
asτ → 0 τx2δ(s)

Intuition suggests that asτ → 0

d

dt
x ≃ x− x3 +

√
τ(Σ + x)|x| ◦ Ẇ
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Averaging approximation (A)

As τ → 0, over finite times we havex(t) ≃ x(t)

with d

dt
x = f(x)

where

f(x) =

∫

f(x,y)dµx(y) = lim
T→∞

1

T

∫ T

0

f(x,y(t)) dt

averagesf(x,y) over weather for a fixed climate state

To leading order, “climate” follows deterministic averaged dynamics

For simple model

d

dt
x = Ey|x

{

x− x3 + xy + Σy
}

= x− x3

i.e. depending onx(0) system settles into bottom of one of two

potential wellsx = ±1
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Analogy to Reynolds averaging

Approximation (A) analogous to Reynolds averaging in fluid

mechanics: split flow into “mean” and “turbulent” components

u = u+ u′

where
u(t) =

1

2T

∫ T

−T

u(t+ s) ds

Full flow satisfies Navier-Stokes equations

∂tu+ u · ∇u = force

⇒ mean flow satisfies “eddy averaged” dynamics

∂tu+ u · ∇u = force− u′ · ∇u′

Note: averaging is projection operator only if scale separation

betweenu andu′
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whereζ is the multivariate Ornstein-Uhlenbeck process

d
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For τ 6= 0 averaged and full trajectories differ; this difference canbe

modelled as a random process

Basic result: forτ small x(t) ≃ x(t) + ζ

whereζ is the multivariate Ornstein-Uhlenbeck process

d

dt
ζ = Df(x) ζ + σ(x)Ẇ

Diffusion matrixσ(x) defined by lag correlation integrals

σ2(x) =

∫ ∞

−∞

Ey|x {f ′[x,y(t+ s)]f ′[x,y(t)]} ds

where f ′[x,y(t)] = f [x,y(t)] − f [x]

Note that std(ζ) ∼ √
τ so corrections vanish in strictτ → 0 limit
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(L) approximation still has been very successful in many contexts (e.g.

Linear Inverse Modelling)

For the simple example model:

f ′(x, y) = (x− x3 + xy + Σy) − (x− x3) = (x+ Σ)y

so
σ2(x) = (x+ Σ)2

∫ ∞

−∞

Ey|x {y(t+ s)y(t)} ds = (x+ Σ)2x2
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Central limit theorem approximation (L)

Averaging solutionx(t) augmented by Gaussian “corrections” such that

x(t) itself not affected

⇒ feedback of weather on climate only through averaging; weather can’t drive

climate between metastable states

(L) approximation still has been very successful in many contexts (e.g.

Linear Inverse Modelling)

For the simple example model:

f ′(x, y) = (x− x3 + xy + Σy) − (x− x3) = (x+ Σ)y

so
σ2(x) = (x+ Σ)2

∫ ∞

−∞

Ey|x {y(t+ s)y(t)} ds = (x+ Σ)2x2

⇒ x(t) → 1 + ζ such that
d

dt
ζ = −2ζ + (1 + Σ)2Ẇ
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Hasselmann approximation (N)

More complete approximation involves full two-way interaction between

weather and climate
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Most accurate of all approximations on long timescales; cancapture

transitions between metastable states

Noise-induced drift⇒ further potential feedback of weather on climate

Simple model: d

dt
x = x− x3 + (Σ + x)|x| ◦ Ẇ
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Hasselmann approximation (N)

More complete approximation involves full two-way interaction between

weather and climate

x(t) solution of stochastic differential equation (SDE)

d

dt
x = f(x) + σ(x) ◦ Ẇ

Most accurate of all approximations on long timescales; cancapture

transitions between metastable states

Noise-induced drift⇒ further potential feedback of weather on climate

Simple model: d

dt
x = x− x3 + (Σ + x)|x| ◦ Ẇ

Multiplicative noise introduced through:

nonlinear coupling ofx andy in slow dynamics

dependence of stationary distribution ofy onx

Modelling Interactions Between Weather and Climate – p. 15/33



When does this work?

For the (A) approximation to hold all that is required is a timescale

separation
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When does this work?

For the (A) approximation to hold all that is required is a timescale

separation

For (L) and (N) further require fast process isstrongly mixing

Informally, what is required is that the autocorrelation function ofy

decay sufficiently rapidly with lag for large timescale separations the

delta-correlated white noise approximation is reasonable

Crucially : none of this assumes that the fast process is stochastic.

Effective SDEs (L) and (N) arise in limitτ → 0 as approximation to

fastdeterministic or stochasticdynamics
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Relation to “MTV Theory"

Have assumed that influence of weather on climate is bounded as τ → 0
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An example:
dx

dt
= −x+

a√
τ
y

dy

dt
=

1√
τ
x− 1

τ
y +

b√
τ
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An example:
dx

dt
= −x+

a√
τ
y
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dt
=

1√
τ
x− 1

τ
y +

b√
τ
Ẇ

Ey|x {y} =
√
τx , stdy|x = b2/2

Modelling Interactions Between Weather and Climate – p. 17/33



Relation to “MTV Theory"

Have assumed that influence of weather on climate is bounded as τ → 0

“MTV" theory considers averaging assuming that weather influence

strengthensin this limit

An example:
dx

dt
= −x+

a√
τ
y

dy

dt
=

1√
τ
x− 1

τ
y +

b√
τ
Ẇ

Ey|x {y} =
√
τx , stdy|x = b2/2

Stochastic terms remain in the strictτ → 0 limit

dx

dt
= −(1 − a)x+ abẆ

Modelling Interactions Between Weather and Climate – p. 17/33



Relation to “MTV Theory"

Have assumed that influence of weather on climate is bounded as τ → 0

“MTV" theory considers averaging assuming that weather influence

strengthensin this limit

An example:
dx

dt
= −x+

a√
τ
y

dy

dt
=

1√
τ
x− 1

τ
y +

b√
τ
Ẇ

Ey|x {y} =
√
τx , stdy|x = b2/2

Stochastic terms remain in the strictτ → 0 limit

dx

dt
= −(1 − a)x+ abẆ

Present analysis will not make MTV ansatz of increasing weather influence

asτ decreases; rather than a “τ = 0 theory", it is a “smallτ theory"
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Case study 1: Coupled atmosphere-ocean boundary layers

Atmosphere and ocean interact through (generally turbulent) boundary

layers, exchanging mass, momentum, and energy
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Case study 1: Coupled atmosphere-ocean boundary layers

Atmosphere and ocean interact through (generally turbulent) boundary

layers, exchanging mass, momentum, and energy

Idealised coupled model of atmospheric winds and air/sea temperatures:

d

dt
u = 〈Πu〉 −

cd(w)

h(Ta, To)
wu− we

h(Ta, To)
u+ σuẆ1

d

dt
v = − cd(w)

h(Ta, To)
wv − we

h(Ta, To)
v + σuẆ2

d

dt
Ta =

β

γa

(To − Ta)w − β

γa

θ(w − µw) − λa

γa

Ta + Σ11Ẇ3 + Σ12Ẇ4

d

dt
To =

β

γo

(Ta − To)w +
β

γo

θ(w − µw) − λo

γo

To + Σ21Ẇ3 + Σ22Ẇ4
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Case study 1: Coupled atmosphere-ocean boundary layers
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Case study 1: Coupled atmosphere-ocean boundary layers

Atmosphere and ocean interact through (generally turbulent) boundary

layers, exchanging mass, momentum, and energy

Idealised coupled model of atmospheric winds and air/sea temperatures:

d

dt
u = 〈Πu〉 −

cd(w)

h(Ta, To)
wu− we

h(Ta, To)
u+ σuẆ1

d

dt
v = − cd(w)

h(Ta, To)
wv − we

h(Ta, To)
v + σuẆ2

d

dt
Ta =

β

γa

(To − Ta)w − β

γa

θ(w − µw) − λa

γa

Ta + Σ11Ẇ3 + Σ12Ẇ4

d

dt
To =

β

γo

(Ta − To)w +
β

γo

θ(w − µw) − λo

γo

To + Σ21Ẇ3 + Σ22Ẇ4

Atmospheric boundary layer thickness determined by surface stratification

h(Ta, To) = max
[

hmin, h(1 − α(Ta − To))
]
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Case study 1: Coupled atmosphere-ocean boundary layers
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Case study 1: Coupled atmosphere-ocean boundary layers
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Case study 1: Coupled atmosphere-ocean boundary layers

Observed timescale separations:

τw
τTa

∼ 0.7
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Case study 1: Coupled atmosphere-ocean boundary layers

Observed timescale separations:

τw
τTa

∼ 0.7

Takex = T = (Ta, To), y = (u, v) with

Averaging model (A)
d

dt
T = f(T) + ΣẆ
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Case study 1: Coupled atmosphere-ocean boundary layers

Analytic expression forσ(Ta, To)

σ(Ta, To) =
β

√

γ2
a + γ2

o





γo

γa

−1

−1 γa

γo



ψ(Ta − To)
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Case study 1: Coupled atmosphere-ocean boundary layers

Analytic expression forσ(Ta, To)

σ(Ta, To) =
β

√

γ2
a + γ2

o





γo

γa

−1

−1 γa

γo



ψ(Ta − To)

where
ψ(Ta − To) = (Ta − To + θ)

√

∫ ∞

−∞

E {w′(t+ s)w′(t)} ds
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Analytic expression forσ(Ta, To)
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γo

γa

−1
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ψ(Ta − To)

where
ψ(Ta − To) = (Ta − To + θ)

√

∫ ∞
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Case study 1: Coupled atmosphere-ocean boundary layers
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Case study 1: Coupled atmosphere-ocean boundary layers

Sura and Newman (2008) fit observations at OSP to linear

multiplicative SDE

d

dt
T = AT +B(T) ◦ Ẇ
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Form of this SDE justified through simple substitution

w → µw + σẆ

in full coupled dynamics

Modelling Interactions Between Weather and Climate – p. 26/33



Case study 1: Coupled atmosphere-ocean boundary layers

Sura and Newman (2008) fit observations at OSP to linear

multiplicative SDE

d

dt
T = AT +B(T) ◦ Ẇ

Form of this SDE justified through simple substitution

w → µw + σẆ

in full coupled dynamics

Form of SDE did not account for feedback of stratification onh;

physical origin of parameters in inverse model somewhat different

than had been assumed
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Case study 2: extratropical atmospheric LFV

Variability of extratropical atmosphere on timescales of∼ 10 days +

descrbed as “low-frequency variability” (LFV)
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Case study 2: extratropical atmospheric LFV

Variability of extratropical atmosphere on timescales of∼ 10 days +

descrbed as “low-frequency variability” (LFV)

Associated with hemispheric to global spatial scales

Northern Annular Mode (NAM)

Fromwww.whoi.edu

Basic structures characterised

statistically; dynamical questions

remain open

Empirical stochastic models have

been useful for studying LFV

Stochastic reduction techniques⇒
natural tool for investigating

dynamics
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Case study 2: extratropical atmospheric LFV

Kravtsov et al. JAS 2005
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Case study 2: extratropical atmospheric LFV

Using PCA decomposition, identify 2 slow modes: propagating

wavenumber 4, stationary zonal
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Using PCA decomposition, identify 2 slow modes: propagating

wavenumber 4, stationary zonal

Kravtsov et al. (2005) concluded that regime behaviour resulted from

nonlinear interaction of these modes
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Case study 2: extratropical atmospheric LFV

Using PCA decomposition, identify 2 slow modes: propagating

wavenumber 4, stationary zonal

Kravtsov et al. (2005) concluded that regime behaviour resulted from

nonlinear interaction of these modes

Consider reduction to 3-variable, 1-variable (stationarymode) models
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Case study 2: extratropical atmospheric LFV
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Case study 2: extratropical atmospheric LFV

Stationary mode ”potential”

shows prominent shoulder
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Stationary mode ”potential”

shows prominent shoulder

In this model, appears that

multiple regimes produced by

nonlinearity in effective

dynamics of stationary mode
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Case study 2: extratropical atmospheric LFV

Stationary mode ”potential”

shows prominent shoulder

In this model, appears that

multiple regimes produced by

nonlinearity in effective

dynamics of stationary mode

Non-gaussianity doesn’t require

state-dependent noise
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Case study 2: extratropical atmospheric LFV

MTV approximations with “minimal regression” tuning
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Conclusions

Stochastic reduction tools allow systematic derivation oflow-order

climate models from coupled weather/climate systems

Modelling Interactions Between Weather and Climate – p. 33/33



Conclusions

Stochastic reduction tools allow systematic derivation oflow-order

climate models from coupled weather/climate systems

Reduction approach is straightforward, although implementation in

high-dimensional systems challenging

Modelling Interactions Between Weather and Climate – p. 33/33



Conclusions

Stochastic reduction tools allow systematic derivation oflow-order

climate models from coupled weather/climate systems

Reduction approach is straightforward, although implementation in

high-dimensional systems challenging

This approach provides a more general approach than e.g. MTV

theory, with

Modelling Interactions Between Weather and Climate – p. 33/33



Conclusions

Stochastic reduction tools allow systematic derivation oflow-order

climate models from coupled weather/climate systems

Reduction approach is straightforward, although implementation in

high-dimensional systems challenging

This approach provides a more general approach than e.g. MTV

theory, with

benefitof less restrictive assumptions

Modelling Interactions Between Weather and Climate – p. 33/33



Conclusions

Stochastic reduction tools allow systematic derivation oflow-order

climate models from coupled weather/climate systems

Reduction approach is straightforward, although implementation in

high-dimensional systems challenging

This approach provides a more general approach than e.g. MTV

theory, with

benefitof less restrictive assumptions

drawbacksof more difficult implementation, lack of closed-form

solution

Modelling Interactions Between Weather and Climate – p. 33/33



Conclusions

Stochastic reduction tools allow systematic derivation oflow-order

climate models from coupled weather/climate systems

Reduction approach is straightforward, although implementation in

high-dimensional systems challenging

This approach provides a more general approach than e.g. MTV

theory, with

benefitof less restrictive assumptions

drawbacksof more difficult implementation, lack of closed-form

solution

Real systems do not generally have a strong scale separation; an

important outstanding problem is a more systematic approach to

accounting for this
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