Modeling Arctic Sea Ice

Deborah Sulsky Department of Mathematics and Statistics Department of Mechanical Engineering University of New Mexico Albuquerque, New Mexico 87131 http://www.math.unm.edu/~sulsky

Collaborators

Oksana Guba (post doc, now at Sandia National Labs) Ed Love (post doc, now at Sandia National Labs) Giang Nguyen (post doc, now at CE, Univ of Sydney) Lynn Monday (student, now at Univ of Maryland/ARL) Kara Peterson (student, now at Sandia National Labs) Jason Sanchez (student) Howard Schreyer (UNM Mechanical Engineering) <u>Ron Kwok (JPL)</u> Max Coon (NWRA, Seattle) Gad Levy (NWRA, Seattle) Matt Prius (NWRA, Seattle)

Funding: NSF, MMS, NASA

Selected Historical Highlights

1893-1896 Nansen's Voyage: The FRAM drifted between 20-45 degrees to the right of the wind direction.

1902 Ekman layer, Ekman spiral

1928 Sverdrup: Added internal forces proportional to ice velocity but opposite in direction.

1965 Cambell: Viscous fluid model.

1970-1978 Arctic Ice Dynamics Joint Experiment: Elasticplastic model, thermodyanamics, thickness distribution

Saturday, February 13, 2010

1979 Hibler: Viscous-plastic model.

Dedicated to Max Coon

Colleague and Friend

The University of New Mexico

Outline

Introduction

- Satellite Observations
- Motivation
- Ice Model
- Kinematics
- Numerical Simulations
- Conclusions

Why Model Sea Ice?

Forcasts: shipping, safety and environmental remediation.
 Where is the ice?
 How fast is it moving?
 Where is it going?

 Climate: global climate models How thick is the ice? What is its extent? How much is new?

Equations of Motion

$$(\rho h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\rho h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\rho h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_w + (\rho h) f_c(\mathbf{e}_3 \times \mathbf{v}) - \nabla \cdot (\boldsymbol{\sigma} h) = 0$$

$$(\sigma h) \frac{d\mathbf{v}}{dt} - \mathbf{t}_a - \mathbf{t}_a$$

Air

Equations, continued

Thermodynamics:

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} k \frac{\partial T}{\partial z} + \kappa I_0 e^{-\kappa z}$$

fixed temp at ice-ocean interface, flux grows ice flux balance at air-ice interface

Thickness Distribution

$$\frac{Dg}{Dt} = -\frac{\partial}{\partial h}(fg) - g\nabla \cdot \mathbf{v} + \psi$$

Why A New Ice Model?

The viscous-plastic model is an isotropic model based on a 100 km scale in which it was assumed that cracks, ridges and leads were randomly distributed.

RGPS analysis of satellite images shows large ice deformation events occurring in long-lasting linear features that appear to correspond to displacement (or velocity)discontinuities in the deformation field due to leads.

Radarsat Geophysical Processor System at JPL

80

40

120

160

Area

0

RGPS Cells

Divergence L. 0.04 DIV 0.04 950 055-2004 Feb 24,2004 1036 1.000 L Feb 24, 2004 111 111

Saturday, February 13, 2010

The University of New Mexico

Why a New Ice Model?

Most 10 km Lagrangian cells do not have permanent deformation during the year (R. Kwok, J. Geophys. Res., Vol. 111, No. C11, C11S22, 2006)

Saturday, February 13, 2010

In

Elastic-Decohesive Sea Ice Model

<u>Overall Objective</u>: Numerically simulate "linear kinematic features" (eg. leads and ridges)

Initial Focus: Prediction and appearance of leads

- Dominant feature of the Arctic
- Source of new ice production
- Allow ice motion
- Key to describing forces in sea ice

Proposed Approach: Elastic-Decohesive Model

For thick first-year ice and multi-year ice, we assume most deformation occurs due to discontinuities in the displacement field.

Ice is quasibrittle so we can borrow from models of concrete and rock.

Elastic-Decohesive Model

- Intact ice modeled as elastic
- Leads modeled as discontinuities
- Model predicts initiation of a lead and its orientation

Traction is reduced with lead opening

until a complete fracture forms

Schreyer, H., L. Monday, D. Sulsky, M. Coon, R. Kwok (2006), Elastic-decohesive Constitutive Model for Sea Ice, J. of Geophys. Res., 111, C11S26, doi:10.1029/2005JC003334.

Elastic-Decohesive Model

- Similar to elastic-plastic model:
 - damage surface ~ yield surface
 - damage surface gives stress state at which a lead begins
 - damage surface gives orientation of lead
 - behavior is anisotropic after failure
 - damage surface constructed from empirical data (Schulson*) and *in situ* data (Coon⁺)
- Goal: capture essential properties:
 - correct energy dissipation
 - correct peak stress
 - keep method numerical tractable

*Schulson, Brittle Failure of Ice. Engineering Fracture Mechanics, 68:1839-1887, 2001. [†]Coon, Knoke, Eckert, and Pritchard, JGR, 103(C10), 21,915–921,925, 1998.

Laboratory Data

Schulson, E. M. (2001) Brittle failure of ice, Engng. Fract Mech., **68**:1879-1887

Stress at Failure - Failure Initiation

The failure envelope in stress space that describes initiation of failure is

 $F(\boldsymbol{\sigma}) = 0$

What is F?

Schulson, E. Brittle Failure of Ice. Engineering Fracture Mechanics, 68:1839-1887, 2001.

Rankine Criterion

Brittle Decohesion Criterion

$$B_n = \frac{\tau_n}{\tau_{nf}} + \frac{\langle -\sigma_{tt} \rangle^2}{f_c^{\prime 2}} - 1$$

$$\langle x \rangle = \begin{cases} x, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$$

 f_c' = compressive strength

$$\tau_n$$

$$\uparrow$$

$$\leftarrow -\sigma_{tt}$$
The University of New Mexico

Tresca Criterion

$$F_n^T = \left(\frac{\tau_t}{\tau_{sf}}\right)^2 - 1$$

 τ_{sf} = shear strength

Schulson, E. M. (2001) Brittle failure of ice, Engng. Fract Mech., **68**:1879-1887

$$F_n = \left(\frac{\tau_t}{s_m \tau_{sf}}\right)^2 + e^{\kappa B_n} - 1$$

$$B_n = \frac{\tau_n}{\tau_{nf}} + \frac{\langle -\sigma_{tt} \rangle^2}{f_c^{\prime 2}} - 1$$

 τ_{nf} = tensile strength τ_{sf} = shear strength f'_c = compressive strength

Saturday, February 13, 2010

Schulson, E. M. (2001) Brittle failure of ice, Engng. Fract Mech., **68**:1879-1887

$$F_n = \left(\frac{\tau_t}{s_m \tau_{sf}}\right)^2 + e^{\kappa B_n} - 1$$

$$B_n = \frac{\tau_n}{\tau_{nf}} + \frac{\langle -\sigma_{tt} \rangle^2}{f_c'^2} - 1$$

 τ_{nf} = tensile strength τ_{sf} = shear strength f'_c = compressive strength s_m = shear magnification

$$F_n = \left(\frac{\tau_t}{s_m \tau_{sf}}\right)^2 + e^{\kappa B_n} - 1$$

$$B_n = \frac{\tau_n}{\tau_{nf}} + \frac{\langle -\sigma_{tt} \rangle^2}{f_c'^2} - 1$$

 τ_{nf} = tensile strength τ_{sf} = shear strength f'_{c} = compressive strength s_{m} = shear magnification

Schreyer, H., L. Monday, D. Sulsky, M. Coon, R. Kwok (2006), Elastic-decohesive Constitutive Model for Sea Ice, J. of Geophys. Res., 111, C11S26, doi:10.1029/2005JC003334.

$$F_n = \left(\frac{\tau_t}{s_m \tau_{sf}}\right)^2 + e^{\kappa B_n} - 1$$

$$B_n = \frac{\tau_n}{\tau_{nf}} + \frac{\langle -\sigma_{tt} \rangle^2}{f_c'^2} - 1$$

 τ_{nf} = tensile strength τ_{sf} = shear strength f'_{c} = compressive strength s_{m} = shear magnification

Saturday, February 13, 2010

Failure Evolution

As decohesion occurs material becomes weaker.

 $[\mathbf{u}] = u_n \mathbf{n} + u_t \mathbf{t}$ $\bar{u} = u_n$ $f_n = \left\langle 1 - \frac{\bar{u}}{u_0} \right\rangle$ $B_n = \frac{\tau_n}{\tau_{nf}} + f_n \left[\frac{\left\langle -\sigma_{tt} \right\rangle^2}{f_c'^2} - 1 \right]$ $F_n = \left(\frac{\tau_t}{s_m \tau_{sf}} \right)^2 + e^{\kappa B_n} - 1$

Failure Evolution

As decohesion occurs material becomes weaker.

 $[\mathbf{u}] = u_n \mathbf{n} + u_t \mathbf{t}$ $\bar{u} = u_n$ $f_n = \left\langle 1 - \frac{\bar{u}}{u_0} \right\rangle$ $B_n = \frac{\tau_n}{\tau_{nf}} + f_n \left[\frac{\left\langle -\sigma_{tt} \right\rangle^2}{f_c'^2} - 1 \right]$ $F_n = \left(\frac{\tau_t}{s_m \tau_{sf}} \right)^2 + e^{\kappa B_n} - 1$

Failure Evolution

 $e_1 = -e_2$

Saturday, February 13, 2010

Initialized Weak Plane

$$f_n = 0.5$$
 $\theta = 45^\circ$

Elements of an MPM Simulation

The University of New Mexico

Computational Cycle

 $m_i = \sum m_p N_i(\mathbf{x}_p)$

Interpolate
 material-point data
 to background mesh

2. Solve equations of motion on mesh

3. Update material points

4. Redefine the grid

$$m_{i}\mathbf{v}_{i} = \sum_{p} m_{p}\mathbf{v}_{p}N_{i}(\mathbf{x}_{p})$$
$$\mathbf{f}_{i}^{\text{int}} = -\sum_{p} \mathbf{G}_{pi}^{T}\boldsymbol{\sigma}_{p}m_{p}/\rho_{p}$$
$$m_{i}\mathbf{a}_{i} = \mathbf{f}_{i}$$
$$\mathbf{v}_{i} \leftarrow \mathbf{v}_{i} + \Delta t\mathbf{a}_{i}$$
$$\mathbf{x}_{p} \leftarrow \mathbf{x}_{p} + \Delta t\sum_{i} \mathbf{v}_{i}N_{i}(\mathbf{x}_{p})$$
$$\mathbf{v}_{p} \leftarrow \mathbf{v}_{p} + \Delta t\sum_{i} \mathbf{a}_{i}N_{i}(\mathbf{x}_{p})$$
$$\mathbf{F}_{p} \leftarrow \mathbf{f}_{p}\mathbf{F}_{p},$$
$$\mathbf{f}_{p} = \mathbf{I} + \Delta t\sum_{i} \mathbf{v}_{i}\nabla N_{i}(\mathbf{x}_{p})$$
$$\boldsymbol{\sigma}_{p} = \dots$$

Dual description of the continuum: material points and background computational mesh

The convective phase of the algorithm is performed by Lagrangian material points which carry position, mass, velocity...

The interaction between material points is solved using a finite element or finite difference discretization on a mesh (cost is linear in the number of material points)

Information is transferred between the material points and the mesh by interpolation (only changes are interpolated, keeping numerical dissipation relatively small)

Material points move in a continuous velocity field providing a natural no-slip contact algorithm

The University of New Mexico

Can use any constitutive model

Arctic Sea Ice

Saturday, February 13, 2010

Arctic Sea Ice

Saturday, February 13, 2010

Arctic Sea Ice

Problem Set Up

Simulate 16 days in Feb/Mar, 2004

<u>Set up:</u>

- 10 km square background grid
- 4 material points per element
- rigid material points for land
- include wind, ocean, and Coriolis forces
- Right, top, bottom
 boundary conditions from
 RGPS displacements

Simulation Parameters

symbol	name	value
ρ	sea ice density (mass/vol)	917.0
h	sea ice thickness	3.0
f_c	coriolis parameter	1.46×10^{-4}
c_a	air drag coefficient	0.0012
ρ_a	air density	1.20
v _a	wind velocity	from data
α	air turning angle	0.50
c_w	sea water drag coefficient	0.00536
$ ho_w$	sea water density	1026.0
$oldsymbol{eta}$	sea water turning angle	0.0
\mathbf{v}_{w}	sea water velocity	from data
G	(linearized) elastic shear modulus	3.6765×10^5
K	(linearized) elastic bulk modulus	11.905×10^5
e ₃	out of plane vector	$(0, 0, 1)^T$
σ	ice stress	
V	ice velocity	
New Mexico		Units: m, kg, sec

Saturday, February 13, 2010

The University of New Mexico

III

Where are the leads?

Initialization

Use a kinematic analysis of satellite data to find existing leads

E = 1 MPa v = 0.36 $\tau_{nf} = 25 \text{ KPa}$ $\tau_{sf} = 15 \text{ KPa}$ $f'_{c} = 125 \text{ KPa}$ $u_{0} = 400 \text{ m}$ $s_{m} = 4$

Day 54 (Feb. 23)

day 55

Observation

Simulation

In

day 60

Observation

Simulation

The University of New Mexico

In

day 65

Observation

Simulation

day 70

Observation

Simulation

The University of New Mexico

In

Calculations were done

- without tuning parameters
- with crude initial guess
- with no refreezing of leads

- with errors from preprocessing satellite data

Summary

Features of elastic-decohesive model:

- Stress state at which leads initiate
- Orientation of lead at initiation
- Evolution of lead (softening)
- Existing material weakness
- Implemented in plasticity framework

Work in progress:

Metrics

- Initial conditions
- Freezing model
- Coupling to ocean
- The University of New Mexico