# **Progress toward dynamical paleoclimate state estimation** Greg Hakim

University of Washington

Collaborators: **Sebastien Dirren**, **Helga Huntley**, **Angie Pendergrass**, David Battisti, Gerard Roe

### Plan

- Motivation & goals
  - paleo state estimation challenges
  - hypothesis: current weather DA sufficient
- Efficiently assimilating time-integrated obs
  - Results for a simple model
  - Results for a less simple model
- Optimal networks

– where to site future obs conditional on previous

### Motivation

- Reconstruct past climates from proxy data.
- Statistical methods (observations)
  - time-series analysis
  - multivariate regression
  - no link to dynamics
- Modeling methods
  - spatial and temporal consistency
  - no link to observations
- State estimation
  - This talk & workshop.

### Long-term Goals

- Reconstruct last 1-2K years
  - Expected value and error covariance
  - Unique dataset for decadal variability
  - Basis for rational regional downscaling
- Test paleo network design ideas
  - Where to take highest impact **new** obs?

### Challenges for paleo state estimation

No shortage of excuses for not trying!

1) proxy data are time integrated

cf. weather assimilation of "instantaneous" obs

2) long-time periods

computational expense

predictability "horizon"

3) Proxies often chemical or biological forward model problem (tree rings)

4-n) nonlinearity; non-Gaussianity; bias; proxy timing; external forcing, etc.[similar problems in weather DA haven't stopped decades of progress]

### Is Precipitation Gaussian?







#### Annual Precipitation (100+ years)

# Approach

- Develop a method as close to "classical" as possible
- Assume (until proven otherwise) that:
  - Errors are Gaussian distributed
  - Dynamics are ~linear in appropriate sense
  - I.e., Kalman filtering is a reasonable first approximation
- Why? Relax one key aspect of statistical reconstruction:
  - stationary statistics (leading EOFs; proxy regression)
- Key challenge topics addressed here:
  - 1. Efficient Kalman filtering for time-averaged observations
  - 2. Simplified models; assess predictability on proxy timescales
  - 3. Physical proxies only: ice core accumulation & isotopes

### Paleoclimate

- Historical record of Earth's climate.
- Benchmark for future climate change.
  - E.g., dynamics of decadal variability.
- "observations" are by proxy.
  - Examples:
    - Ice cores (accumulation, isotopes)
    - Tree rings.
    - Corals.
    - Sediments (pollen, isotopes).
  - Typically, related to climate variables, then analyzed.

#### Climate variability: a qualitative approach



### The estimation problem

Observe & estimate a low-frequency signal in the presence of large amplitude high frequency noise.

Kalman filtering on high frequency timescale is problematic

Traditional Kalman Filtering  

$$\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{x}^{b})$$

$$\mathbf{K} = \mathbf{B}\mathbf{H}^{\mathrm{T}}[\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R}]^{-1}$$

$$\mathbf{H}\mathbf{x} = \frac{1}{t_{1} - t_{0}} \int_{t_{0}}^{t_{1}} \mathbf{\hat{H}}\mathbf{x} \, dt \equiv \mathbf{y}^{e}$$

$$\mathbf{B}\mathbf{H}^{\mathrm{T}} = \mathbf{x}\mathbf{y}^{e\mathrm{T}} = \operatorname{cov}(\mathbf{x}, \mathbf{y}^{e}) \quad \text{fast noise}$$
sequential filtering
$$\begin{array}{c} \mathbf{+t_{0}} \cdots \mathbf{+t_{1}} \\ \mathbf{+t_{0}} \cdots \mathbf{+t_{1}} \end{array}$$

Observations have little effect on the *averaged* state.

### Affecting the Time-Averaged State



To filter the  $t_0 \rightarrow t_1$  time mean:

- 1. Perform n assimilation steps over the interval.
  - Expensive: scales linearly with n.

- 2. Only update the time-mean (Dirren and Hakim 2005).
  - No more expensive than traditional KF.

### Time-Averaged Assimilation

$$\mathbf{x} = \overline{\mathbf{x}} + \mathbf{x}'$$
  $\overline{\mathbf{x}} = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} \mathbf{x} \, dt$   $\mathbf{H}\mathbf{x} = \mathbf{\hat{H}}\overline{\mathbf{x}}$ 

$$\overline{\mathbf{x}}^a = \overline{\mathbf{x}}^b + \mathbf{K}_A(\mathbf{y} - \mathbf{\hat{H}}\overline{\mathbf{x}}^b) \quad \mathbf{K}_A = \overline{\mathbf{x}}\mathbf{y}^{eT}[\mathbf{y}^e\mathbf{y}^{eT} + \mathbf{R}]^{-1}$$

$$\mathbf{x}^{a\prime} = \mathbf{x}^{b\prime} + \mathbf{K}_{\mathrm{P}}(\mathbf{y} - \mathbf{\hat{H}}\overline{\mathbf{x}}^{b}) \ \mathbf{K}_{\mathrm{P}} = \mathbf{x}'\mathbf{y}^{e\mathrm{T}}[\mathbf{y}^{e}\mathbf{y}^{e\mathrm{T}} + \mathbf{R}]^{-1}$$

 $\mathbf{x'y}^{eT} \approx 0 \rightarrow \mathbf{x}^{a\prime} = \mathbf{x}^{b\prime}$  Cost savings: just update time-mean

# EnKF Algorithm

- 1. Advance full ensemble from  $t_0$  to  $t_1$ .
- 2. Compute time mean, perturbations.
  - observation estimate.
- 3. Update ensemble mean and perturbations.
  - Time-averaged fields only!
- 4. Add time perturbations to the updated mean.
  - •Time-mean can be accumulated while running the model •Existing code requires only minor modification.

### Testing on idealized models

- 1-D Lorenz (1996) system
- Idealized mountain--storm-track interaction
- QG model coupled to a slab ocean
- Analytical stochastic energy-balance model

#### Illustrative Example #1 Dirren & Hakim (2005)

Lorenz & Emanuel (1998): Linear combination of fast & slow processes



- LE ~ a scalar discretized around a latitude circle.

 LE has elements of atmos. dynamics: chaotic behavior, linear waves, damping, forcing Observe all d.o.f.



Low-frequency variable well constrained.Instantaneous states have large errors.

#### **Improvement Percentage of RMS errors**



#### **Constrains signal at higher freq.than the obs themselves!**

### A less simple model Helga Huntley (University of Delaware)

- QG "climate model"
  - Radiative relaxation to assumed temperature field
  - Mountain in center of domain
- Truth simulation
  - 100 observations (50 surface & 50 tropopause)
  - Gaussian errors
  - Range of time averages

### Snapshot



### **Observation Locations**



### Average Spatial RMS Error



Ensemble compared against an ensemble control

## Implications

- Mean state is well constrained by few, noisy, obs.
- Forecast error saturates at climatology for tau ~ 30.
- For longer averaging times, model adds little.
  - Equally good results are obtained by assimilating with an ensemble drawn from climatology:
    - cheap (no model runs).
    - reduced sampling error (huge ensembles easy).
    - but, no flow-dependence to corrections.
    - subject to model error.

QG model coupled to a slab ocean and it's approximation by an energy balance model

With A. Pendergrass, G. Roe, & D. Battisti

Barsugli & Battisti (1998) energy balance model

$$\frac{d\vec{T}}{d\hat{t}} = \begin{bmatrix} -a & b \\ \\ \frac{c}{\beta} & -\frac{d}{\beta} \end{bmatrix} \vec{T} + \begin{bmatrix} N & 0 \\ \\ 0 & 0 \end{bmatrix} \vec{W} = \mathbf{A}\vec{T} + \mathbf{N}\vec{W},$$

- a, d : damping parameters (radiation)
- b, c : coupling coefficients
- $\beta$  : ratio of heat capacities
- N : noise forcing

### Eigenvectors

IVP ocean (blue) atmosphere (red) mode O mode 0.8 A mode O mode 2 0.6 0.4 perturbation T (K) 0.2 0 -0.2 -0.4 -0.6 -0.8 10<sup>°</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> time (days)

One fast mode and one slow mode

# QG & BB spectral comparison



• Good agreement, particularly in phasing

#### Key to estimation: covariance propagation

$$\begin{split} \left\langle \bar{\varepsilon}^* \bar{\varepsilon}^{*T} \right\rangle &= \frac{1}{\tau^2} \int_0^\tau e^{\mathsf{A}t} \varepsilon^*(0) dt \left( \int_0^\tau e^{\mathsf{A}t} \varepsilon^*(0) dt \right)^T \\ &+ \frac{1}{\tau^2} \int_0^\tau \left( \int_s^\tau e^{\mathsf{A}(t-s)} \mathsf{N} dt \right) \left( \int_s^\tau e^{\mathsf{A}(t-s)} \mathsf{N} dt \right)^T ds. \end{split}$$

- First term: initial condition error (damped)
- Second term: accumulation of noise.

### Energy model DA spinup



### One time-averaged forecast cycle



Averaging time

### Sensitivity to Slab Depth

QG

BB



#### Increasing slab depth:

- Improves ocean
- <u>Degrades</u> atmosphere



#### Why does depth degrade atmosphere?



Noise "accumulates" in the atmosphere when the slab ocean is deeper

# Sensitivity to Coupling



#### Increasing coupling:

- Atmosphere: QG & BB opposite sensitivity
- Ocean: tighter coupling degrades the analysis
- BB: Noise "recycles"

0.8

0.6 0.4

0.2

#### Observing Network Design with Helga Huntley (U. Delaware)

# **Optimal Observation Locations**

- Rather than use random networks, how to <u>optimally</u> site new observations?
  - choose locations with largest change in a metric.
  - theory based on ensemble sensitivity (Hakim & Torn 2005; Ancell & Hakim 2007; Torn and Hakim 2007; similar: Evans et al. 2002; Khare & Anderson 2006)
  - Here, metric = projection coefficient for first EOF
  - QG model with mountain

### **Ensemble Sensitivity**

- Given metric *J*, find the observation that most reduces error variance.
- Find a second observation conditional on first.
- Let *x* denote the state (ensemble mean removed).
  - Analysis covariance  $A = cov(\mathbf{x}, \mathbf{x})$
  - Changes in metric given changes in state

- Metric variance 
$$\delta J = \left[\frac{\partial J}{\partial \mathbf{x}}\right]^T \delta \mathbf{x} + \mathbf{O}(\delta \mathbf{x}^2)$$

$$\sigma = \frac{1}{M-1} \delta J \delta J^T = \left[\frac{\partial J}{\partial \mathbf{x}}\right]^T A \left[\frac{\partial J}{\partial \mathbf{x}}\right]$$

### Sensitivity + State Estimation

• Estimate variance change for the i'th observation

$$\delta \sigma = \left[\frac{\partial J}{\partial \mathbf{x}}\right]^T \left(A_{i-1} - A_i\right) \left[\frac{\partial J}{\partial \mathbf{x}}\right]$$

• Kalman filter theory gives A<sub>i</sub>:

$$A_i = (I - K_i H_i) A_{i-1}$$

where 
$$K_i = A_{i-1}H_i^T [H_i A_{i-1}H_i^T + R_i]^{-1}$$

• Given  $\delta \sigma$  at each point, find largest value.

### Results for tau = 20

• The four most sensitive locations, conditional on previous point. Sens. of First EOF Coeff to 1st obs for level 1,  $\tau$  = 20, N = 50,  $\sigma_{_{O}}$  = 0.1





#### **4** Optimal Observation Locations



# Summary

- Time for paleo assimilation of select proxy data.
  - ensemble filters
  - ice-core accumulation & isotopes
- Modified Kalman filter approach
  - Update time mean
  - Easy, works well in existing EnKF.
- Filter corrects time scales shorter than proxy timescale.
  - Dynamics scatter information.
- Beyond predictability time scale, random samples drawn from model climate work well.
  - Model error problematic.

## Ensemble Sensitivity (cont'd)

• For identity *H*, choose the point maximizing:

$$\delta \sigma = \frac{[\operatorname{cov}(\delta J, \delta x_i)]^2}{\operatorname{var}(\delta x_i) + R}$$

• Choose second point conditional on first:

$$\delta\sigma = \frac{\left[\operatorname{cov}(\delta J, \delta x_i) - \frac{\operatorname{cov}(\delta J, \delta x_1) \operatorname{cov}(\delta x_1, \delta x_i)}{\operatorname{var}(\delta x_1) + R}\right]^2}{\operatorname{var}(\delta x_i) - \frac{\operatorname{cov}(\delta x_1, \delta x_i)}{\operatorname{var}(\delta x_1) + R} + R}$$

• Etc.

### Ensemble Sensitivity (cont'd)

A recursive formula, which requires the evaluation of just <u>k+3</u> lines (1 covariance vector + (k+6) entry-wise mults/divs/adds/subs) for the k'th point.

### Results for tau = 20



#### First EOF





### Results for tau = 20

Reduction in Var of First EOF Coeff for level 1,  $\tau$  = 20, N = 50,  $\sigma_{\rm o}$  = 0.1

- The ten most sensitive locations (unconditional)
- $\sigma_o = 0.10$





### Results for tau = 20; $\sigma_0 = 0.10$



#### Note the decreasing effect on the variance.

#### Control Case: No Assimilation



#### 100 Random Observation Locations



#### **4 Random Observation Locations**



| Summary      |        |        |                          |                      |  |  |  |
|--------------|--------|--------|--------------------------|----------------------|--|--|--|
| Avg<br>Error | Fcst   | Anal   |                          | Percent of ctr error |  |  |  |
| Control      | 5.4484 |        | -                        |                      |  |  |  |
| 100 obs      | 3.6403 | 1.0427 | Control                  | 100 Fcst<br>66.8     |  |  |  |
| 4 chosen     | 4.8808 | 2.0545 | 100 obs<br>-<br>4 chosen | 19.1<br>37.7<br>89.6 |  |  |  |
| 4 random     | 5.6279 | 5.5644 | 4 random                 | 103.3<br>102.1       |  |  |  |
| 4 random     | 5.5410 | 5.5091 | 4 random                 | 101.7                |  |  |  |
| 4 random     | 5.2942 | 5.2953 | 4 random                 | 97.2                 |  |  |  |

Assimilating just the 4 *chosen* locations yields a significant portion of the gain in error reduction in J achieved with 100 obs.

### 15 Chosen Observations

- For this experiment, take
  - 4 best obs to reduce variability in 1st EOF
  - 4 best obs to reduce variability in 2nd EOF
  - 2 best obs to reduce variability in 3rd EOF
  - $-2\Box$  best obs to reduce variability in 4th EOF
  - 3 best obs to reduce variability in 5th EOF
- Number for each EOF chosen by  $\delta\sigma < 0.7$
- All obs conditional on assimilation of previous obs.

### 15 Obs: Error in 1st EOF Coeff



| EOF1 | Control | 100R   | 4R     | 40     | 80     | 15 total |
|------|---------|--------|--------|--------|--------|----------|
| Fcst | 5.4484  | 3.6403 | 5.4877 | 4.8808 | 4.7586 | 3.5138   |
| Anal |         | 1.0427 | 5.4563 | 2.0545 | 1.9020 | 1.8819   |

### 15 Obs: Error in 2nd EOF Coeff



| EOF2 | Control | 100R   | 4R     | 40     | 80     | 15 total |
|------|---------|--------|--------|--------|--------|----------|
| Fcst | 5.4114  | 3.3212 | 5.3394 | 4.3677 | 3.9937 | 3.5727   |
| Anal |         | 0.8478 | 5.1207 | 4.2796 | 3.4832 | 1.4563   |

### 15 Observations: RMS Error



| RMS  | Control | 100 R  | 4 R    | 4 O    | 8 O    | 15 O   |
|------|---------|--------|--------|--------|--------|--------|
| Fcst | 0.2899  | 0.2586 | 0.2957 | 0.2810 | 0.2770 | 0.2596 |
| Anal |         | 0.1402 | 0.2912 | 0.2539 | 0.2425 | 0.2024 |

### Current & Future Plans

Angie Pendergrass (UW)

- modeling on the sphere: SPEEDY
  - simplified physics
  - slab ocean
- ice-core assimilation
  - annual accumulation
  - oxygen isotopes

