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Plan
• Motivation & goals

– paleo state estimation challenges
– hypothesis: current weather DA sufficient

• Efficiently assimilating time-integrated obs
– Results for a simple model
– Results for a less simple model

• Optimal networks
– where to site future obs conditional on previous



Motivation
• Reconstruct past climates from proxy data.
• Statistical methods (observations)

– time-series analysis
– multivariate regression
– no link to dynamics

• Modeling methods
– spatial and temporal consistency
– no link to observations

• State estimation
– This talk & workshop.



Long-term Goals

• Reconstruct last 1-2K years
– Expected value and error covariance
– Unique dataset for decadal variability
– Basis for rational regional downscaling

• Test paleo network design ideas
– Where to take highest impact new obs?



Challenges for paleo state estimation

No shortage of excuses for not trying!
1) proxy data are time integrated

cf. weather assimilation of “instantaneous” obs
2) long-time periods

computational expense
predictability “horizon”

3) Proxies often chemical or biological
forward model problem (tree rings)

4-n) nonlinearity; non-Gaussianity; bias; proxy timing; external forcing, etc.
[similar problems in weather DA haven’t stopped decades of progress]



Is Precipitation Gaussian?

Mt. Shasta, CA

Aberdeen, WA Blue Hill, MA

Annual Precipitation 
(100+ years)



Approach

• Develop a method as close to “classical” as possible
• Assume (until proven otherwise) that:

– Errors are Gaussian distributed
– Dynamics are ~linear in appropriate sense
– I.e., Kalman filtering is a reasonable first approximation

• Why? Relax one key aspect of statistical reconstruction:
– stationary statistics (leading EOFs; proxy regression)

• Key challenge topics addressed here:
1. Efficient Kalman filtering for time-averaged observations
2. Simplified models; assess predictability on proxy timescales
3. Physical proxies only: ice core accumulation & isotopes



Paleoclimate
• Historical record of Earth’s climate.
• Benchmark for future climate change.

– E.g., dynamics of decadal variability.
• “observations” are by proxy. 

– Examples:
• Ice cores (accumulation, isotopes)
• Tree rings.
• Corals.
• Sediments (pollen, isotopes).

– Typically, related to climate variables, then analyzed.



Climate variability: a qualitative approach

North

GRIP δ18O (temperature)

GISP2 K+ (Siberian High)

Swedish tree line limit shift

Sea surface temperature 
from planktonic 
foraminiferals 

hematite-stained grains in 
sediment cores (ice 
rafting)

Varve thickness (westerlies)

Cave speleotherm isotopes 
(precipitation)

foraminifera

Mayewski et al., 2004 



The estimation problem

Observe & estimate a low-frequency 
signal in the presence of large 

amplitude high frequency noise.

Kalman filtering on high frequency timescale is problematic



Traditional Kalman Filtering

fast noise

Observations have little effect on the averaged state.

sequential filtering



Affecting the Time-Averaged State

To filter the t0 --> t1 time mean:
1. Perform n assimilation steps over the interval.

• Expensive: scales linearly with n.

2. Only update the time-mean (Dirren and Hakim 2005).

• No more expensive than traditional KF.



Time-Averaged Assimilation

Cost savings: just update time-mean



EnKF Algorithm

1.Advance full ensemble from t0 to t1.
2. Compute time mean, perturbations.

• observation estimate.
3. Update ensemble mean and perturbations.

• Time-averaged fields only!
4. Add time perturbations to the updated mean.

Time-mean can be accumulated while running the model
Existing code requires only minor modification.



Testing on idealized models

• 1-D Lorenz (1996) system
• Idealized mountain--storm-track interaction 
• QG model coupled to a slab ocean
• Analytical stochastic energy-balance model



Lorenz & Emanuel (1998):  Linear combination of fast & slow processes

Illustrative Example #1
Dirren & Hakim (2005)

“low-freq.”“high-freq.” 450 600lfτ ≈ −

3 4hfτ ≈ −

- LE ~ a scalar discretized around a latitude circle.

- LE has elements of atmos. dynamics:
chaotic behavior, linear waves, damping, forcing

Observe all d.o.f. 



RMS instantaneous

Low-frequency variable well constrained.
Instantaneous states have large errors.

(dashed : clim)



RMS all means
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Constrains signal at higher freq.than the obs themselves!
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A less simple model
Helga Huntley (University of Delaware)

• QG “climate model”
– Radiative relaxation to assumed temperature field
– Mountain in center of domain

• Truth simulation
– 100 observations (50 surface & 50 tropopause)
– Gaussian errors
– Range of time averages



Snapshot



Observation Locations



Average Spatial RMS Error

Ensemble compared against an ensemble control



Implications

• Mean state is well constrained by few, noisy, obs.
• Forecast error saturates at climatology for tau ~ 30.
• For longer averaging times, model adds little.

– Equally good results are obtained by assimilating with an 
ensemble drawn from climatology:

• cheap (no model runs).
• reduced sampling error (huge ensembles easy).
• but, no flow-dependence to corrections.
• subject to model error.



QG model coupled to a slab ocean
and it’s approximation by an energy balance model

With A. Pendergrass, G. Roe, & D. Battisti



Barsugli & Battisti (1998) energy balance model

• a, d : damping parameters (radiation)
• b, c : coupling coefficients
•     β : ratio of heat capacities
• N : noise forcing



Eigenvectors

One fast mode and one slow mode



QG & BB spectral comparison

• Good agreement, particularly in phasing



Key to estimation: covariance propagation

• First term: initial condition error (damped)
• Second term: accumulation of noise.



Energy model DA spinup



One time-averaged forecast cycle



Sensitivity to Slab Depth
QG                      BB

Increasing slab depth:
• Improves ocean
• Degrades atmosphere



Why does depth degrade atmosphere?

Noise “accumulates” in the atmosphere 
when the slab ocean is deeper

atmosphere

ocean



Sensitivity to Coupling
QG                      BB Increasing coupling:

• Atmosphere: QG & BB 
opposite sensitivity

• Ocean: tighter coupling 
degrades the analysis

• BB: Noise “recycles”



Observing Network Design
with Helga Huntley (U. Delaware)



Optimal Observation Locations

• Rather than use random networks, how to 
optimally site new observations? 
– choose locations with largest change in a metric. 
– theory based on ensemble sensitivity (Hakim & Torn 

2005; Ancell & Hakim 2007; Torn and Hakim 2007; similar: Evans et 
al. 2002; Khare & Anderson 2006)

– Here, metric = projection coefficient for first EOF
– QG model with mountain



Ensemble Sensitivity
• Given metric J, find the observation that most reduces 

error variance.
• Find a second observation conditional on first.
• Let x denote the state (ensemble mean removed).

– Analysis covariance

– Changes in metric given changes in state

– Metric variance                              + O(δx2)



Sensitivity + State Estimation
• Estimate variance change for the i’th observation

• Kalman filter theory gives Ai:

where

• Given δσ at each point, find largest value.



Results for tau = 20
• The four most 

sensitive locations, 
conditional on 
previous point.



4 Optimal Observation Locations

Avg Error - Anal = 2.0545
- Fcst = 4.8808



Summary
• Time for paleo assimilation of select proxy data.

– ensemble filters
– ice-core accumulation & isotopes

• Modified Kalman filter approach
– Update time mean
– Easy, works well in existing EnKF.

• Filter corrects time scales shorter than proxy timescale.
– Dynamics scatter information.

• Beyond predictability time scale, random samples drawn 
from model climate work well.
– Model error problematic.





Ensemble Sensitivity (cont’d)

• For identity H, choose the point maximizing:

• Choose second point conditional on first:

• Etc.



Ensemble Sensitivity (cont’d)

• A recursive formula, which requires the 
evaluation of just k+3 lines (1 covariance 
vector + (k+6) entry-wise 
mults/divs/adds/subs) for the k’th point.



Results for tau = 20

First EOF



Results for tau = 20

• The ten most 
sensitive locations 
(unconditional)

• σo = 0.10



Results for tau = 20; σo = 0.10

Note the decreasing effect on the variance.



Control Case: No Assimilation

Avg error = 5.4484



100 Random Observation Locations

Avg Error - Anal = 1.0427
- Fcst = 3.6403



4 Random Observation Locations

Avg Error - Anal = 5.5644
- Fcst = 5.6279



Summary

5.29535.29424 random
5.50915.54104 random
5.56445.62794 random
2.05454.88084 chosen
1.04273.6403100 obs

5.4484Control

AnalFcstAvg 
Error

Assimilating just the 4 chosen locations yields a 
significant portion of the gain in error reduction in J
achieved with 100 obs.  

Percent of ctr error
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15 Chosen Observations
• For this experiment, take

– 4 best obs to reduce variability in 1st EOF
– 4 best obs to reduce variability in 2nd EOF
– 2 best obs to reduce variability in 3rd EOF
– 2�best obs to reduce variability in 4th EOF
– 3 best obs to reduce variability in 5th EOF

• Number for each EOF  chosen by               .
• All obs conditional on assimilation of previous obs.



15 Obs: Error in 1st EOF Coeff
100
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100.7
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64.5
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Fcst
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1.88191.90202.05455.45631.0427Anal
3.51384.75864.88085.48773.64035.4484Fcst
15 total8O4O4R100RControlEOF1



15 Obs: Error in 2nd EOF Coeff
100

61.4

98.7
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15 total8O4O4R100RControlEOF2



15 Observations: RMS Error
100
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0.20240.24250.25390.29120.1402Anal
0.25960.27700.28100.29570.25860.2899Fcst
15 O8 O4 O4 R100 RControlRMS



Current & Future Plans
Angie Pendergrass (UW)

• modeling on the sphere: SPEEDY
– simplified physics
– slab ocean

• ice-core assimilation
– annual accumulation
– oxygen isotopes
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