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Talk outline

The basic approach
Bias estimation
Extensions: non-Gaussianity, nonlinear H
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Introduction: the estimation problem

Observations: yo = H(xt)+ ε with E(ε) = 0 and
E(εεT) = R
Forecast: xb = xt +η with E(η) = 0 and E(ηηT) = Pb

Minimize the quadratic cost function: J(x) =(
yo−H(x)

)TR−1(yo−H(x)
)
+(x−xb)TP−1

b (x−xb)
Current NCEP operations: ∼ 1.75 million obs
assimilated into a ∼ 3 billion variable model every 6
hours
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Minimization properties

When the errors are Gaussian and the underlying
dynamics are linear, the minimizer of J is “optimal”
(unbiased, minimum variance)
To evaluate J, we must invert R and Pb

The observation covariance matrix R is a nearly
diagonal p×p matrix with p ∼ 106 –107

Pb is not diagonal and is n×n, where n ∼ 107 –109 for
typical weather models
Ensemble Kalman filters attempt a low-rank empirical
estimate of Pb
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Our approach: Use dynamics to reduce the dimensionality

Key finding: Over typical synoptic regions, the forecast
uncertainty evolves in a much lower-dimensional space
than the phase space
Example: The Global Forecast System at T62
resolution has ∼ 3000 variables in a typical
1000×1000-km synoptic region
An ensemble of 100–200 forecast vectors typically
spans a ∼ 40-dimensional subspace over short forecast
periods
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The LETKF algorithm: update overlapping local regions

Consider all observations with a prespecified distance
of each grid point
Given k ensemble forecasts, change coordinates to the
(k−1)-dimensional subspace that they span
Compute the Kalman update in these coordinates
Naturally parallel algorithm
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Relation to 4DVar

The LETKF and 4DVar attempt to minimize the same
type of cost function
LETKF uses a flow-dependent background covariance
(determined empirically from an ensemble of forecasts)
4DVar requires integration of the nonlinear model and
its linearization
LETKF is model independent

IMAGe DA & Climate Research June 23 E. Kostelich MATHEMATICAL & STATISTICAL SCIENCES 9 / 35



Current applications

NCEP Global Forecast System (GFS)
ECOM (Estuarine & Coastal Ocean Model)—with
Ross Hoffman
NCEP Regional Spectral Model—Dasa Merkova
CO and O3 assimilation—Dave Kuhl
GFDL model (Mars Microwave Sounder)—John
Wilson, Matt Hoffman
CAM/CASA’ model (OCO)—Junjie Liu, Inez Fung
CPTEC and JMA working towards operational
implementation
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Other advantages of the LETKF

Uses flow-dependent covariances, including the
analysis uncertainty
Assimilates all data at once—full 4-d scheme
Nonlinear observation operators are readily
accommodated
The local region and ensemble size are the only free
parameters
No adjoint necessary!
Model parameters can be estimated as part of the state
vector
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Details of the local analyses

Goal: Find the linear combination of ensemble
solutions that best fits the observations
Start with background ensemble {xi

b}
k
i=1 with mean x̄b

and perturbation matrix

Xb =
(

x1
b− x̄b x2

b− x̄b · · · xk
b− x̄b

)
Compute the analysis mean x̄a and analysis ensemble
perturbations Xa = XbWa

The analysis is Xa + x̄a
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Change of basis to the background perturbations

The ensemble covariance matrix Pb = (k−1)−1XbXT
b

has rank k−1
Since Xb is 1–1 on its column space S, we minimize J
on S, where P−1

b is defined
Treat Xb as a linear transformation from an abstract
k-dimensional space S̃ to S
If w ∈ S̃ is Gaussian with mean 0 and covariance
(k−1)−1I, then x = x̄b +Xbw is Gaussian with mean
x̄b and covariance Pb
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The objective function

The cost function

J(x) = (x−xb)TP−1
b (x−xb)

+
(
yo−H(x)

)TR−1(yo−H(x)
)

becomes

J̃(w) = (k−1)−1wTw+
[y0−H(x̄b +Xbw)]T R−1 [y0−H(x̄b +Xbw)]

and we linearize H(x̄b +Xbw)≈
(
ȳb−Ybw

)
where

ȳb = H(xi
b) and Yb =

(
H(x1

b)− ȳb · · · H(xk
b)− ȳb

)
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Treatment of the observation operator H

Only the components of H(xi
b) belonging to the current

local region are selected to form ȳb and Yb

If wa minimizes J̃, then x̄a = x̄b +Xbwa minimizes the
original J
Modifications are required for satellite radiance
observations
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The analysis ensemble

The minimizer wa = QYT
b R−1(yo− ȳb), where

Q = [(k−1)I+YT
b R−1Yb]−1

The analysis mean is x̄a = x̄b +Xbwa with covariance
matrix Pa = XbQXT

b

The analysis perturbations are Xa = XbWa where
Wa = [(k−1)Q]1/2 and we take the symmetric square
root
Wa then depends continuously on Q and assures that
the columns of Xa sum to 0 (for the correct sample
mean)
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Computational efficiency

The forecasts are the most expensive part!
Given an ensemble of size k and s observations in a
local region
Most expensive step ( > 90% of cpu cycles):
computing YT

b R−1Yb, which is O(k2s)
Second most expensive step: computing the symmetric
square root, which is O(k3)
Observation lookup is O(logL) where L is the size of
the total observation set
Wall-clock time: 40 sec on 16 quad-core processors for
500,000 obs and T62 GFS with a 40-member ensemble
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Representative results

Reference system (“truth”): NCEP operational
analyses (T254L64) using the SSI (Parris & Derber,
1992) with all available data (including satellite
radiances), truncated to T62L28
Benchmark system: NCEP operational system,
omitting radiance data, with forecasts run at T62L28
Comparison: 〈48-h forecast− truth〉2 with forecasts
started from the LETKF analysis and from the
Benchmark system

IMAGe DA & Climate Research June 23 E. Kostelich MATHEMATICAL & STATISTICAL SCIENCES 18 / 35



48-hour forecast error: temperature in extratropics

K K

P
re

ss
ur

e 
(h

P
a)

P
re

ss
ur

e 
(h

P
a)

SH Temperature NH Temperature

IMAGe DA & Climate Research June 23 E. Kostelich MATHEMATICAL & STATISTICAL SCIENCES 19 / 35



48-hour forecast error: wind in extratropics
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Geographical comparison of 48-h forecast error

gpm2

Geopotential height at
500 hPa
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Model bias

Many sources of model bias: finite resolution,
parametrizations of subgrid processes, errors in
boundary conditions, etc.
Baek et al. (2006 and 2009) proposed methods for
doing local ensemble Kalman filtering in presence of
model bias
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Mathematical setup

Atmospheric state: u(r, tn) = un

Atmospheric dynamics: un = F (un−1)
Forecast model: xn = f(xn−1) approximates un

Assumption: There exists a projection P from the
infinite-dimensional space of the atmospheric
dynamics to the finite-dimensional model space
Data assimilation computes an estimate xa

n of P(un)
using the forecast xb

n and observations yo
n

IMAGe DA & Climate Research June 23 E. Kostelich MATHEMATICAL & STATISTICAL SCIENCES 23 / 35



Kalman filter data assimilation scheme

Forecast: xb
n = f(xa

n−1)

Analysis: xa
n = xb

n +Kn
[
yo

n−H(xb
n)

]
Observation operator: yo

n = H(xb
n)+ εn

“Noise:” εn ∼ N(0,Rn), assuming xb
n ≈P(un)

Model error: P(un) = f(P(un−1))+bn

Model error evolution: bn = G(bn−1)
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Kalman filter data assimilation scheme
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Two potential approaches to handle model bias

Bias model I: Correct the background using the
estimated bias and compute the analysis using the
bias-corrected background and latest observations
Assumption: The model is subject to the same error
whether it is started from the projection P(un−1) or
from the best estimate thereof, xa

n−1

Bias model II: Assume the forecast dynamics evolve on
a model attractor that is shifted from the “true” one
Assumption: For every finite-dimensional projection
P(un) of the “true” atmospheric state, there is a
corresponding point P̂ on the model attractor
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Schematic illustration

“attractor space” (infinite dimensional)

P model space (finite dimensional)

P̂

model attractor“true” attractor
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Revised Kalman filter implementation

Bias model I:

xb
n = f(xa

n−1)+bn

xa
n = xb

n +Kn

[
yo

n−H
(
xb

n
)]

Bias model II:

xb
n = f(xa

n−1)

xa
n = xb

n +Kn

[
yo

n−H
(
xb

n +bn
)]
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Surface pressure correction schemes

1 Orography correction:

∆z = model orography− true orography

at the observing location
2 Hydrostatic correction: ps = pmodel

s × exp(g∆z/RT̄)
3 Bias model II: H(xb

n) = Ĥ(xb
n)− cn

4 Bias model II plus hydrostatic correction:

H(xb
n) = Ĥ(xb

n) · exp(g∆z/RT̄)− cn
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Numerical experiment (S. J. Baek)

“Truth:” Generate surface pressure data using a free
run of the T62L28 GFS (144×73×28 grid) for
Jan.–Feb. 2004 at model grid points approximating a
real observing network
Model: Assimilate synthetic obs (surface pressure,
temperature, wind) using a 60-member emsemble with
the T30L7 Simplified Parametrization Primitive
Equation (SPEEDY) model
Compute RMS averages of 6-hour surface pressure
forecast errors using the different bias correction
schemes
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Results (verified against background)Fig. 9. Time evolution of the surface pressure root-mean-square error using different strate-

gies to correct for the surface pressure bias. The strategies that produced the different curves

are identified by the labels placed above the curves.

45
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Work in progress

Bias estimation in a radiative transfer model in
assimilation of satellite radiance data (with José
Aravéquia, CPTEC)
Apply Baek’s scheme to surface pressure
measurements in the GFS
Quantify effects on forecast and analysis accuracy
using high-resolution NCEP analyses
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Extensions to non-Gaussian data

Nonlinearities in model evolution cause the ensemble
eventually to underestimate the true uncertainty
Compensate by variance inflation
In ensemble coordinates, inflation gives (for ρ ≥ 0)

(k−1)wTw
1+ρ

Harlim and Hunt (2007) suggested the modification

(k−1)wTw
1+α

√
wTw
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Digital filtering with the LETKF (Kostelich & Szunyogh)

Sometimes the analyzed fields excite spurious
dynamics in the model forecasts due to balance issues
between atmospheric variables
Add an extra constraint to penalize (say) divergence or
frequency of changes in the analysis window

J̃(w) = (k−1)−1wTw+
[y0−H(x̄b +Xbw)]T R−1 [y0−H(x̄b +Xbw)]
+wT(Xb−F)TQ(Xb−F)w

where F is a suitable linear combination of background
forecast perturbations.
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Conclusions

The LETKF is a fast and accurate data assimilation
scheme for meteorological applications
Lends itself to potential applications to nonlinear
models and digital filtering (though issues like multiple
minima will arise)
Local low dimensionality of the dynamics is key
Requires a reasonably dense observing network for
continuity
The LETKF and ensemble diagnostics for
predictability may be useful for climate simulations on
decadal scales
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