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o Mathematical details: B. R. Hunt, E. K., I. Szunyogh,
Physica D 230 (2007), 112-126

o Review paper on GFS: I. Szunyogh, E. K., et al.,
Tellus A 60 (2008), 113-130

o Bias estimation: S. J. Baek, B. R. Hunt, E. Kalnay, E.
Ott, I. Szunyogh, Mon. Wea. Rev. 139 (2009),
2349-2364.

o ECOM model: R. N. Hoffman, et al., J. Atmos. Ocean
Tech. 25 (2008), 1638—-1656.
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Talk outline

o The basic approach
o Bias estimation

o Extensions: non-Gaussianity, nonlinear H
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Introduction: the estimation problem

o Observations: y, = H(x;) + € with E(¢) = 0 and
E(ee") =R
o Forecast: x, = x;, +1 with E(n) =0and E(nnT) =P,
o Minimize the quadratic cost function: J(x) =
(Yo —H(x)) R (y, — H(x)) + (x = x5) TP, " (x — x,)
o Current NCEP operations: ~ 1.75 million obs

assimilated into a ~ 3 billion variable model every 6
hours
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Minimization properties

o When the errors are Gaussian and the underlying
dynamics are linear, the minimizer of J is “optimal”
(unbiased, minimum variance)

o To evaluate J, we must invert R and Py,

o The observation covariance matrix R is a nearly
diagonal p X p matrix with p ~ 10°-107

o P, is not diagonal and is n x n, where n ~ 107 —10° for
typical weather models

o Ensemble Kalman filters attempt a low-rank empirical
estimate of Py,
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Our approach: Use dynamics to reduce the dimensionality

o Key finding: Over typical synoptic regions, the forecast
uncertainty evolves in a much lower-dimensional space
than the phase space

o Example: The Global Forecast System at T62

resolution has ~ 3000 variables in a typical
1000 x 1000-km synoptic region

o An ensemble of 100—-200 forecast vectors typically
spans a ~ 40-dimensional subspace over short forecast
periods
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The LETKF algorithm: update overlapping local regions

o Consider all observations with a prespecified distance
of each grid point

o Given k ensemble forecasts, change coordinates to the
(k — 1)-dimensional subspace that they span

o Compute the Kalman update in these coordinates

o Naturally parallel algorithm
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Relation to 4DVar

o The LETKF and 4DVar attempt to minimize the same
type of cost function

o LETKEF uses a flow-dependent background covariance
(determined empirically from an ensemble of forecasts)

o 4DVar requires integration of the nonlinear model and
its linearization

o LETKEF is model independent
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Current applications

o NCEP Global Forecast System (GFS)

o ECOM (Estuarine & Coastal Ocean Model)—with
Ross Hoffman

o NCEP Regional Spectral Model—Dasa Merkova
o CO and O3 assimilation—Dave Kuhl

o GFDL model (Mars Microwave Sounder)—John
Wilson, Matt Hoffman

o CAM/CASA’ model (OCO)—Iunjie Liu, Inez Fung

o CPTEC and JMA working towards operational
implementation
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Other advantages of the LETKF

o Uses flow-dependent covariances, including the
analysis uncertainty

o Assimilates all data at once—full 4-d scheme

o Nonlinear observation operators are readily
accommodated

o The local region and ensemble size are the only free
parameters

o No adjoint necessary!
o Model parameters can be estimated as part of the state
vector
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Details of the local analyses

e Goal: Find the linear combination of ensemble
solutions that best fits the observations

o Start with background ensemble {x{ }*_ with mean %,
and perturbation matrix

Xb:(X})—)_(b X%—)_(b X]];—)_(b)

o Compute the analysis mean X, and analysis ensemble
perturbations X, = X, W,

o The analysis is X, + X,
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Change of basis to the background perturbations

o The ensemble covariance matrix P, = (k— 1)~ X, X}
has rank k — 1

e Since X, is 1-1 on its column space S, we minimize J
on S, where P;l 18 defined

e Treat X}, as a linear transformation from an abstract
k-dimensional space S to S

o If w € S is Gaussian with mean 0 and covariance
(k—1)""I, then x = X, + X,,w is Gaussian with mean
X;, and covariance P,
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The objective function

e The cost function
I = (x—x) TP, (x %)
+ (Yo —H(x)) 'R~ (y, — H(x))
becomes
Jw) = (k=1)"'wlw+
[Yo—H(%, +X,w)] R [yg — H(X;, + X,w))]

and we linearize H(X; + X,w) ~ (yb — wa) where

yo=H(x)) and Y,=(H(x,) -y - H(x;)—5s)
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Treatment of the observation operator H

o Only the components of H(x} ) belonging to the current
local region are selected to form y; and Y,

o If w, minimizes J, then X, = X;, + X;,W, minimizes the
original J

o Modifications are required for satellite radiance
observations
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The analysis ensemble

e The minimizer w, = QYrbe_1 (Yo —¥»), where
Q=[k—DI+YRY,]!

o The analysis mean is X, = X, + X;w, with covariance
matrix P, = XbQXg

o The analysis perturbations are X, = X;, W, where
W, = [(k—1)Q]'/? and we take the symmetric square
root

o W, then depends continuously on Q and assures that
the columns of X, sum to 0 (for the correct sample
mean)
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Computational efficiency

o The forecasts are the most expensive part!

o Given an ensemble of size k and s observations in a
local region

o Most expensive step ( > 90% of cpu cycles):
computing Y, R™Y,, which is O(k%s)

o Second most expensive step: computing the symmetric
square root, which is O(k?)

o Observation lookup is O(logL) where L is the size of
the total observation set

o Wall-clock time: 40 sec on 16 quad-core processors for
500,000 obs and T62 GFS with a 40-member ensemble
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Representative results

o Reference system (“truth”): NCEP operational
analyses (T254L.64) using the SSI (Parris & Derber,
1992) with all available data (including satellite
radiances), truncated to T62L.28

o Benchmark system: NCEP operational system,
omitting radiance data, with forecasts run at T621.28

o Comparison: (48-h forecast — truth)? with forecasts
started from the LETKF analysis and from the
Benchmark system
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48-hour forecast error: temperature in extratropics
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48-hour forecast error: wind in extratropics

Pressure (hPa)
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Geographical comparison of 48-h forecast error
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Model bias

o Many sources of model bias: finite resolution,
parametrizations of subgrid processes, errors in
boundary conditions, etc.

o Baek et al. (2006 and 2009) proposed methods for
doing local ensemble Kalman filtering in presence of
model bias
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Mathematical setup

o Atmospheric state: u(r,z,) = u,
o Atmospheric dynamics: u, = .% (u,,_1)
o Forecast model: x,, = f(x,,_|) approximates u,

o Assumption: There exists a projection & from the
infinite-dimensional space of the atmospheric
dynamics to the finite-dimensional model space

o Data assimilation computes an estimate x! of Z(u,)
using the forecast x? and observations y?
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Kalman filter data assimilation scheme

o Forecast: x2 = f(x?_))

o Analysis: x¢ = x2+ K, [y, —H(x})]
o Observation operator: y2 = H(x?) + ¢,

o “Noise:” &, ~ N(0,R,), assuming x ~ 2 (u,)
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Kalman filter data assimilation scheme

o Forecast: x2 = f(x?_))

o Analysis: x¢ = x2+ K, [y, —H(x})]
o Observation operator: y2 = H(x?) + ¢,

o “Noise:” &, ~ N(0,R,), assuming x ~ 2 (u,)
o Model error: Z(u,) =f(Z(u,_1))+b,

o Model error evolution: b, = G(b,_1)
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Two potential approaches to handle model bias

o Bias model I: Correct the background using the
estimated bias and compute the analysis using the
bias-corrected background and latest observations

o Assumption: The model is subject to the same error
whether it is started from the projection & (u,_1) or

from the best estimate thereof, x7 |
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Two potential approaches to handle model bias

o Bias model I: Correct the background using the
estimated bias and compute the analysis using the
bias-corrected background and latest observations

o Assumption: The model is subject to the same error
whether it is started from the projection & (u,_1) or
from the best estimate thereof, x7 |

o Bias model II: Assume the forecast dynamics evolve on
a model attractor that is shifted from the “true” one

o Assumption: For every finite-dimensional projection
Z(uy,) of the “true” atmospheric state, there is a

corresponding point & on the model attractor
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Schematic illustration

“attractor space” (infinite dimensional)

model space (finite dimensional)

A
7

“true” attractor model attractor
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Revised Kalman filter implementation

e Bias model I:

x, = f(x;,_1)+by

x! = x'+K, [yZ—H(xﬁ)}

S S

e Bias model II:

= f(x;_;)
— xﬁ—l—Kn {yZ—H(Xz—l—bH)}

SQ I
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Surface pressure correction schemes

@ Orography correction:
Az = model orography — true orography

at the observing location
@ Hydrostatic correction: p; = p™°%! x exp(gAz/RT)
@ Bias model II: H(x?) = H(x2) — ¢,

@ Bias model II plus hydrostatic correction:

H(x}) = H(x}) -exp(gAz/RT) — ¢,

n
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Numerical experiment (S. J. Baek)

o “Truth:” Generate surface pressure data using a free
run of the T621.28 GFS (144 x 73 x 28 grid) for
Jan.—Feb. 2004 at model grid points approximating a
real observing network

o Model: Assimilate synthetic obs (surface pressure,
temperature, wind) using a 60-member emsemble with
the T30L7 Simplified Parametrization Primitive
Equation (SPEEDY) model

o Compute RMS averages of 6-hour surface pressure
forecast errors using the different bias correction
schemes
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Results (verified against background)

No correction
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Work in progress

o Bias estimation in a radiative transfer model in
assimilation of satellite radiance data (with José
Aravéquia, CPTEC)

o Apply Baek’s scheme to surface pressure
measurements in the GFS

o Quantify effects on forecast and analysis accuracy
using high-resolution NCEP analyses
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Extensions to non-Gaussian data

o Nonlinearities in model evolution cause the ensemble
eventually to underestimate the true uncertainty
o Compensate by variance inflation
o In ensemble coordinates, inflation gives (for p > 0)
(k—1)wlw
l1+p

o Harlim and Hunt (2007) suggested the modification
(k—1)wlw
1+avwlw
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Digital filtering with the LETKF (Kostelich & Szunyogh)

o Sometimes the analyzed fields excite spurious
dynamics in the model forecasts due to balance issues
between atmospheric variables

o Add an extra constraint to penalize (say) divergence or
frequency of changes in the analysis window

Jw) = (k—1)"'wlw+
[Yo— H(%p +Xw)] R~ [yo — H(X} + Xpw)]
+w (X, —F)'Q(X, —F)w

where F 1s a suitable linear combination of background
forecast perturbations.
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Conclusions

o The LETKEF is a fast and accurate data assimilation
scheme for meteorological applications

o Lends itself to potential applications to nonlinear
models and digital filtering (though issues like multiple
minima will arise)

o Local low dimensionality of the dynamics is key

o Requires a reasonably dense observing network for
continuity

o The LETKF and ensemble diagnostics for
predictability may be useful for climate simulations on
decadal scales
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