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MIT Multidisciplinary Simulation Estimation 

and Assimilation System (MSEAS)

Error Subspace Statistical EstimationStochastic Ocean Modeling Systems

Uncertainty forecasts, Ensemble-

based, Multivariate DA, Adaptive 

sampling, Adaptive modeling, 

Towards multi-model estimates

Free-surface PE, Generalized Biological 

models, Coupled to acoustic models,

XML schemes to check configuration,

Unstructured grid models (Ueckermann et al)

(Haley and Lermusiaux, OD-2010) (Lermusiaux, PhysD-2007)



PFJL- MIT

New MSEAS Methods and Codes

 Two new OA schemes to remove correlations 

across ground but introduce 3D effects (Agarwal

and Lermusiaux, 2008, in prep.) based on:

1. Fast Marching Method or Level Sets Method

2. Numerical Diffusion Equation

 New Nested Barotropic Tidal Prediction and 

Inversion (Logutov and Lermusiaux, Ocean Mod.-2008; 

Logutov, Ocean Dyn.-2008)

 Uncertainty Estimation and Bayesian Fusion of 

Multi-Model Estimates (Logutov 2007 and Logutov et al, 

2008, Lermusiaux et al, HOPS-ROMS-NCOM, In prep):

OA of T at 1000m in 

Philippines Strait

Tidal Currents 

[cm/s]



Duplication at corners, 

but no interior DOFs!

Duplication at edges, 

too many DOFs

No duplication of DOF

Hybrid Discontinuous 

Galerkin (HDG) Discontinuous GalerkinContinuous Galerkin

HDG Basics: if boundary value of element is known, the element is solved, Cockburn et al (2009)

Next-Generation Ocean Models

 Ocean Codes: Complex, based on 20-30 years old schemes

 Goal: Develop Multiscale Next-Generation Codes using new Technology

Ueckermann, MIT-SM-2009; Ueckermann and Lermusiaux, OD-2010, OM-2010)

MIT Workshop August 2010, see:

http://mseas.mit.edu/IMUM2010/
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Lock Exchange Problem (2D N-S, non-hydrostatic)

• 37,000 DOF, 14,000 HDG unknowns

• 13.5 hrs

• 1320 Elements

• p=6

• Gr = 1.25x106, Sc=0.71

4. Hartel, C., Meinburg, E., and Freider, N. (2000). Analysis and direct numerical simulations of the flow at a gravity-

current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid. Mech, 418:189-212.



OMAS – moving sound source

Predict full sonified field in 3D environmental region and  
guide the locations of source and receiver deployment 

Nx2D (RAM) 15km propagation  – 0.2 degree resolutions  
in 360 degree:

1800 (directions)  X 15 locations

300 Hz
RCV 60 m
SRC 100 m

Bathymetry of Mien Hua Canyon

Bathymetry

Source tracks

Taiwan

Less TL when OMAS 
on the shelf

More TL when 
OMAS  in deep 
ocean

Quantifying, Predicting and Exploiting Uncertainty DRI:
Canyon Acoustics  - Xu and Lermusiaux, JOE-2010, JASA-2010



ESSE Surf. Temp. Error Standard Deviation Forecasts for AOSN-II

Aug 12 Aug 13

Aug 27Aug 24

Aug 14

Aug 28

End of Relaxation Second Upwelling period

First Upwelling periodStart of Upwelling

• Real-time consistent error forecasting, data assimilation and adaptive sampling (1 month)

• ESSE results described in details and posted on the Web daily

Leonard and Ramp, Lead PIs



PFJL- MIT

Flow Skeletons and Uncertainties: 
Mean LCS overlaid on DLE error std 

estimate for 3 dynamical events

Upwel 1

Relax. Upwel 2

• Two upwellings and one relaxation (about 1 

week apart each)

• Uncertainty estimates allow to identify most 

robust LCS (more intense DLE ridges are 

usually relatively more certain)

• Different oceanic regimes have different LCS 

uncertainty fields and properties

[ Lermusiaux and Lekien, 

2005. and In Prep, 2010

Lermusiaux, JCP-2006

Lermusiaux, Ocean.-2006]



A Grand challenge in Large Nonlinear Systems

Computational challenges for the deterministic (ocean) problem

• Large dimensionality of the problem, un-stationary statistics

• Wide range of temporal and spatial scales (turbulent to climate)

• Multiple instabilities internal to the system 

• Very limited observations

Need for stochastic modeling …

• Approximations in deterministic models including parametric uncertainties

• Initial and Boundary conditions uncertainties

• Measurement models

Need for data assimilation …

• Evolve the nonlinear, i.e. non-Gaussian, correlation structures

• Nonlinear Bayesian Estimation

Quantitatively estimate the accuracy of predictions



Overview of Uncertainty Predictions Schemes
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Uncertainty propagation via Monte Carlo method

restricted to an “evolving uncertainty subspace”
(Error Subspace Statistical Estimation - ESSE)

Lermusiaux & Robinson, MWR-1999, Deep Sea Research-2001

Lermusiaux, J. Comp. Phys., 2006
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Uncertainty propagation via generalized 

Polynomial-Chaos Method

Xiu & Karniadakis, J. Comp. Physics, 2002

Knio & Le Maitre, Fluid Dyn. Research, 2006

Meecham & Siegel, Phys. Fluids, 1964 [X
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Uncertainty propagation via POD method

According to Lumley (Stochastic tools in Turbulence, 1971) it was introduced

independently by numerous people at different times, including Kosambi (1943),

Loeve (1945), Karhunen (1946), Pougachev (1953), Obukhov (1954 ).[C
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Problem Setup

Statement of the problem: A Stochastic PDE

, ;
, ; ;

t
t

t

u x
u xL

0 0, ; ;tu x u x ;hDu | DB

x D

x D

An important representation property for the solution: Compactness
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Advantage: Finite Dimension Evolving Subspace

Disadvantage: Redundancy of representation 

;L

;h D

0 ;u x

Nonlinear differential operator (possibly with stochastic coefficients) 

Stochastic initial conditions (given full probabilistic information)

Stochastic boundary conditions (given full probabilistic information)

Goal: Evolve the full probabilistic information describing  , ;tu x



Evolving the full representation

Major Challenge : Redundancy
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First Step (easy): Separate deterministic from stochastic/error subspace

Commonly used approach:  Assume that ; 0iY t

Second step (tricky): Evolving the finite dimensional subspace 

A separation of roles: What can                tell us ?  
;idY t

dt

Only how the stochasticity evolves inside

Restrict “evolution of     ” to be “normal to    ”  i.e. 

,
, 0      for all   1,...,    and   1,...,

i

j

t
t d i s j s

t

u x
u x x

SV

SV

A separation of roles: What can               tell us ?  
,i t

t

u x

How the stochasticity evolves both inside and normal to SV

source of

redundancy

Natural constraint to overcome redundancy

SV SV



Dynamically Orthogonal Evolution Equations

Theorem 1: For a stochastic field described by the evolution equation
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we obtain the following evolution equations 

assuming a response of the form
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evolution of

stochasticity inside

Family of PDEs

describing evolution of

stochastic subspace

sV

sV

PDE describing

evolution of 

mean field
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Sapsis and Lermusiaux, Physica D (2009)



POD & PC methods from DO equations

Choosing a priori the stochastic subspace         using POD methodology we recover

POD equations.
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, ; , ; ,  t E h tu DB

sV

Choosing a priori the statistical characteristics of the stochastic coefficients          

we recover the PC equations.

;jY t



Formulation of Initial Conditions

Stochastic initial conditions

0 0, ; ;tu x u x x D

Formulation in stochastic subspace terms

0 0 0 0, ; ; ; ;
T

EuuC x y u x u x u y u y

2, i i iduuC x y u x x u y

Initial condition for the mean field equation

0 0, ; ;t Eu x u x

Initial condition for the basis of the error subspace

Initial condition for the stochastic coefficients

0 0; ; ; ,i iY t t d
D

= u y u y u y y

Computation of eigenvalues/eigenvectors

|s cr i i crV span u x Selection of Error Subspace dimensionality

Miller and Ehret, MWR-2002Lermusiaux et al, Q.J.R. Meteorol. Soc.-1999; Lermusiaux, JAOT-2001 



Application I : Navier-Stokes in a cavity

2D viscous flow with stochastic initial conditions and no stochastic excitation
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Initial mean flow

PDE Numerics: C-grid, upwind [M. Griebel et al., 1998]         SDE Numerics: here, s-dimensional Monte-Carlo 

Streamfunction



Application I : Navier-Stokes in a cavity

Energy 

of mean 

flow

Variances 

of each 

mode

Re = 1000



Comparison with Monte-Carlo

Comp. time: 11min  (4000 samples) 12,3h (300 samples)



von – Kármán vortex street

behind a cylinder

Application: Navier-Stokes behind a cylinder

Re = 100

Stochastic Initial Conditions

Gaussian Distribution
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Application II: Navier-Stokes behind a cylinder

Energy 

of mean 

flow

Variances 

of each 

mode

Re = 100



Example of Convergence Study

Mode 1 Mode 2 Mode 3 Mode 4Mean
Subspace

Size:

5

6

7



Adapt the stochastic subspace dimension

sV

sV Probability measure

1i
u x

2i
u x

cr

• In the context of DO equations so far the size of the stochastic subspace 

remained invariant.
sV

• For intermittent or transient phenomena  the dimension  of  the  stochastic 

subspace may vary significantly with time. This is accounted for by ESSE.

We need criteria to evolve the dimensionality of the stochastic subspace

This is a particularly important issue for stochastic systems with 

deterministic initial conditions



Criteria for dimension reduction / increase

Dimension Reduction

min i jY Y crC

,i tu x sV

Dimension Increase

Comparison of the minimum eigenvalue of the correlation matrix         . 
i jY YC

Removal of the corresponding direction from the stochastic subspace.

Comparison of the minimum eigenvalue of the correlation matrix         . 
i jY YC

min i jY Y crC

Addition of a new direction                in the stochastic subspace     . 

pre-defined value

pre-defined value

How do we choose this new direction ?

Same problem when we start with deterministic initial condition

(dimension of stochastic subspace is zero)



Analytical criteria for selection of new directions

Theorem 2: For a stochastic field described by the evolution equation
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Example: Double Gyre look-alike,  Re=200

Deterministic

Initial Conditions
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Stochastic behaviour of an idealized 

wind-driven ocean circulation model
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• Realistic parameters 

• Zero initial conditions

• Small stochastic initial 

disturbance – Gaussian 

characteristics 

• Adaptive number of modes

Barotropic, single – layer quasi-geostrophic model

0 0f f y

Dimensional parameters

Non - dimensional parameters

(Simmonet and Dijkstra, 2002)
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Summary of deterministic analysis (Simmonet and Dijkstra, 2002)

Bifurcation diagram

Unstable mode

Stable regimes
Hopf bifurcation (Simmonet and Dijkstra, 2002)



28

Stochastic response for larger Reynolds/excitation

Re = 28,  a =3000

• Detachment of the double
gyre from the left boundary.

• Exponential growth of variance
through periodic oscillations.

• Minor deformation of the mean
flow from the modes.

• Periodic oscillations of the DO
modes with two periods of 
oscillations.

• Both the modes and the mean 
preserve their symmetry
properties.

2

2

1
cos 2

Re 2

1

Re

u uvu P a
u fv y

t x x y

vuvv P
v fu

t y x y
0 0f f y

Re = 50,  a =3000

• Mean flow reach, temporarily,
a steady state regime.

• Modes variance is initially
increasing monotonically
through periodic oscillations.

• Subsequently variance is 
varying chaotically. At this
point both the modes and the
mean preserve symmetry
properties.

• Mean flow loses its stability 
and oscillations begin to
occur, while the modes lose 
their symmetry properties.

• Mean flow lose its structure.

• Transition to completely 
chaotic state.

Re = 10000,  a =3000

• Mean flow forms a jet.

• DO modes consist of very small
scale structures.

• Jet penetrates inside the basin up
until the variance becomes 
comparable with the energy of the
mean.

• For these ICs, Gaussian statistics 
are very robust although the 
variance is completely
unsteady.



Grand challenge II in Large Nonlinear Systems

Smart Sensing Vehicle Swarms

• Knowledgeable about the predicted (ocean) system and its uncertainties

• Knowledgeable about the predicted effects of their sensing on future estimates

Our collaborative experience …

• Adaptive sampling via ESSE with non-linear predictions of error reductions

• Mixed Integer Linear Programming (MILP) for path planning

• Nonlinear path planning using Genetic algorithms

• Dynamic programming and onboard routing for path planning

• Command and control of vehicles over the Web, directly from model instructions

Optimally sense the (ocean) system

with large numbers 

of heterogeneous and autonomous vehicles 

that are smart

29



Consider the spatially-discretized dynamical stochastic prediction (SPDEs) of 

the ocean state x and the data yk collected by a spatially-discretized sampling 

H of a swarm of underwater vehicles:

Consider optimum estimate of x knowing yk that is a function of the conditional 

probability p(x, t | yk) which is itself governed between observations by a 

Fokker–Planck equation (Lermusiaux, JCP-2006). 

General problem statement: Predict and evolve H such that an objective 

function J, that is a function of the optimal estimate of x and of the evolving 

sensing plans H(t), is maximum. 

J represents properties to be optimized by evolving swarming plans H:

(uncertainties, hot-spots, coverage)

Progress in ocean/weather prediction (ESSE/ETKF etc, Bishop, Majumdar)

New ocean aspects: swarms, multi-scale, nonlinear (ESSE – DO equations)

Our General Autonomy Problem Statement

( , ) (1)

( , ) (2)k k k k

d t d

t

x M x η

y H x



Our autonomy problem is more than learning from data only 

(based on eqn. (2) only), which is often referred to as onboard 

routing with or without communications among vehicles

Also more than classic robotics problems such as obstacle 

avoidance by swarms of vehicles or path planning that minimize 

energy utilization using the flow field. In these cases, the optimum 

estimation of the ocean state (based on fluid SDEs) is not used

Also more than using dynamical system theory to steer groups of 

agents (also not coupled with ocean estimation itself) 

Our Plan: combine schemes so that ocean prediction, learning 

and swarming are all part of single problem, with all feedbacks

Theoretical work generic and applicable to varied domains where 

the fields to be sensed are dynamic and of large-dimensions. 

However, applications focus on marine operations

Remarks on General Problem Statement



PFJL- MIT

Foci
- Optimal science & applications (Physics, Acoustics and Biology)

- Demonstration of adaptive sampling value, etc.

Objective 

Functions

i. Maintain synoptic accuracy (e.g. regional coverage)

ii. Minimize uncertainties (e.g. uncertain ocean estimates), or 

iii. Maximize sampling of expected events (meander, eddy, filament) 

Multidisciplinary or not   - Local, regional or global, etc.

Time and 

Space 

Scales

i. Tactical scales (e.g. minutes-to-hours adaptation by each vehicle)

ii. Strategic scales (e.g. hours-to-days adaptation for cluster/swarm)

iii. Experiment scales

Assumptions
- Fixed or variable environment (w.r.t. asset speeds)

- Objective function depends on the predicted data values or not

- With/without constraints (operational, time and cost).

Methods
Control, Bayesian-based, Nonlinear programming, (Mixed)-integer 

programming, Simulated Annealing, Genetic algorithms, Neural 

networks, Fuzzy logics, Artificial intelligence, etc

Ocean Autonomy and Adaptive Sampling: Multiple Facets 

Choices set the type of Autonomy research 



PFJL- MIT

a) Adaptive sampling via ESSE

Metric or Cost function: e.g. Find future Hi and Ri such that 

dt

t

t

tPtrMinortPtrMin

f

RiHi
f

RiHi
0

,,
))(())((

Dynamics: dx =M(x)dt+ d ~ N(0, Q)

Measurement: y = H(x) + ~ N(0, R)

Non-lin. Err. Cov.:

• Objective: Minimize predicted trace of error covariance (T,S,U,V error std Dev). 

• Scales: Strategic/Experiment. Day to week.

• Assumptions: Small number of pre-selected tracks/regions (based on quick look on 

error forecast and constrained by operation)

• Example of Problem solved: e.g. Compute today, the tracks/regions to sample 

tomorrow, that will most reduce uncertainties the day after tomorrow.

- Objective field changes during computation and is affected by data to-be-collected

- Model errors Q can account for coverage term

QTxxxMxMTxMxMxxdtdP )ˆ)(ˆ()(())ˆ()()(ˆ(/

[ Lermusiaux, DAO-1999;

Lermusiaux, Physica D-2007;

Lermusiaux and Majumdar, In prep. ]



PFJL- MIT

Which sampling on Aug 26 optimally reduces uncertainties on Aug 27?

4 candidate tracks, overlaid on surface T fct for Aug 26

ESSE fcts after DA 

of each track

Aug 24 Aug 26 Aug 27

2-day ESSE fct

ESSE for Track 4

ESSE for Track 3

ESSE for Track 2

ESSE for Track 1DA 1

DA 2

DA 3

DA 4

IC(nowcast) DA

Best predicted relative error reduction: track 1

• Based on nonlinear error covariance 

evolution 

• For every choice of adaptive strategy, an 

ensemble is computed



Adaptive Sampling Methodologies for Smart Robotic Swarms
Lermusiaux et al

Adaptive Sampling via ESSE

[Lermusiaux, Phys.D-2007]

Optimal Path generation w/ ‘fixed’ objective field

[Yilmaz et al, OE-2008; Lermusiaux, et al 2007]

Genetic Algorithm

[Heaney et al., JFR-2007, OSSE OM-2010]

Path Planning based on Dynamic Programming

[Wang et al., Proc. IEEE-2006, JMS-2009]
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PFJL- MIT

Combines MILP path planning optimization                                       

with ESSE-data-assimilation and adaptive sampling

- Extends MILP-scheme of Yilmaz et al.(IEEE-Oceans-2006; IEEE Trans.-JOE-

2008) which assumed fixed and 2D objective field

- Uses the ESSE prediction of the uncertainty reduction by the sampling paths

- n-days look-ahead, assimilates forecast mean data (idealized POMDPS)

- Hiearchical multigrid approach (computes paths on averaged coarse grid first, then 

refines the paths)

- 3D paths included by vertical integration over key ocean layers, then solving 

smaller set of 2D problems, then back to 3D

Advantages:

- Objective field (error stand. dev.) set piecewise-linear: solved exactly by MILP

- Possible paths defined on discrete grid: set of possible path is thus finite

- Multiple constraints imposed on vehicle displacements for meaningful paths:

- Ship, communications, separation distance, etc.

Disadvantages: Ignores ocean currents (and not based on SPDEs)

Optimal Path Generation for a “Variable” Objective Field
[Yilmaz and Lermusiaux,  Ocean Modeling, 2010-to-be-submitted]



PFJL- MIT09/16/08

Optimal Path Generation for a “Variable” Objective Field
[Yilmaz and Lermusiaux,  Ocean Modeling, 2010-to-be-submitted]

 MILP computes optimal paths for n days using ESSE forecast uncertainties

 ESSE assimilates forecast data for day 1, updates forecast errors for days 2 to n

 MILP re-computes paths for days 2 to n based on updated ESSE forecast

 ESSE assimilates forecast data for day 2, updates errors for days 3 to n, …, etc

Posterior ESSE error forecast for 3 days (after DA of forecast optimal AUVs): 

difference with previous line is the forecast of the data impacts

Result: Optimal AUV paths, on top of Prior ESSE error forecast for 3 days
 MILP computes paths 

that samples largest 

ESSE forecast errors 

for the next 3 days 

 ESSE assimilates the 

unknown forecast 

data for day 1, new 

ESSE errors are 

predicted for days 2 

and 3, and a new MILP 

search is done for the 

last 2 days

 ESSE assimilates the 

forecast data for day 

2, predicts a new error 

for day 3 and a final 

MILP search is done 

for this final day 3 

 Result: predicted 

optimal paths for 3 

days

Example: Two Vehicles, n=3 days of forecast optimal paths 



Level Set Representation for 
Optimal Path Planning for Swarms in (strong) Currents

Advance many vehicles
in many directions

OR

Represent vehicles ‘front’
with a level set

• Can lead to poorly defined curves
• Only have to solve for 1D curve

• What to do with multiple vehicles?
• Exponential increase in cost

• Continuous representation
• Need so solve 2D field

• Easily deals with multiple vehicles
• Front propagates normal to itself

Time 1

Time 2

38



Level Set Representation for 
Optimal Path Planning for Swarms in Currents
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Numerically: Fractional Step PDE scheme
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Level Set Representation – Optimal Path Construction

Once Level sets are constructed, we need to reconstruct the optimal 
path or AUV headings
• Save Level Set curves and flowfield at each point on Level Set
• Integrate backwards from point of interest (go back from Lagrangian

to Eulerian reference frame, used in the proof of optimality)

40

x

start

end

1) Vehicle Heading
2) Flowfield
1+2



Level Set Path Planning – Examples

Crossing a Jet

Other examples tested:
-Getting in/out of an eddy
-Meanders
-Wavy field, etc



Level Set Path Planning – Examples

42

Complex Flowfield with strong currents, Multiple vehicles
• 1 vehicle wishes to sample South-West Corner
• 1 vehicle wishes to sample as North as possible

Optimal planned
Paths

Paths with
No Flowfield
Assumed

Guessed paths



Level Set Path Planning – Examples
Uses a 2D-wind-driven ocean circulation

• Example



Level Set Planning: Ongoing Work on Uncertainty - DA

• Example

1) Utilize Uncertainty on Level Sets       and/or    2) Uncertain level sets



Combine Partially Observable MDPs  (POMDPs) 
with DO/ESSE equations for Adaptive Sampling

Key Idea: Steer UAVs using hierarchical “Partially Observable Markov Decision Processes”
Examples of global goals may be:

• Track region / ocean feature
• Mimic swarming scheme
• Investigate region of large predicted uncertainties
• Combinations of the above

Goal: Maximize utility (Bellman Optimality Equation):

Initial Simple Test Case: Game of Life.
• One AUV (black circle).
• One global goal (green circle).
• Many local goals:

• “Good” cells (blue dots).
• “Bad” cells (red x’s).

• Multiple uncertainties:
• observations and actions.

max , ' ' , '
a

U b r b a U b p b b a db

M. Gardner, The fantastic combinations of John Conway’s new solitaire game “life”, Scientific
American 223 (October 1970): 120-123.



Data Assimilation (by Kalman update, combining DO uncertainty predictions with ESSE):
• Generate realizations:

• Calculate Kalman Gain:

• Perform Kalman update:

• Project back into D.O. framework:

Inter-vehicle communication/potential:
• Add penalty term to POMDP reward function:

DO equations and ESSE data assimilation
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Example: Lorenz-95

Adaptive Sampling using POMDP-like scheme:

1 1 2 1 12i
i i i i i i i

du
u u u k u u u u f

dt
advection diffusion

dissipation

forcing

Lorenz-95 Equation (with added diffusion):

“40 ODEs: represent an atmospheric quantity at 40 sites spaced equally about a latitude circle..” 
Where to make supplementary observations?

E.N. Lorenz & K.A. Emanuel, Journal of the Atmospheric Sciences, 1998, Vol: 55, Iss: 3.



Example: Lorenz-95

Adaptive Sampling using POMDP-like scheme:



Example: Lorenz-95

Adaptive Sampling using POMDP-like scheme:



Example: Lorenz-95

Adaptive Sampling using POMDP-like scheme:



- Adaptive Observations -

Example: Lorenz-95



- Fixed Observations -

Example: Lorenz-95



- Adaptive Observations  (overlaid on Fixed observations)-

Example: Lorenz-95



Key Idea: The D.O. equations provide an accurate probabilistic description of current and future
states of the ocean field. When making intelligent decisions, we wish to move beyond simple
metrics defined in terms of second order statistics only.

Useful Information Theoretic Measures:

• Differential Entropy:

• Mutual Information:

Key Concept: The “Information matrix”,

Goal:

Information Theory with DO-ESSE
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 DO Data Assimilation (ESSE+Bayesian)

 Complete “DO Numerics” manuscripts

• Direct cost of DO eqns:

• With projection methods, cost reduces to:

Impose all modes to be incompressible and solve for 

pseudo-pressures that contain all cross-pressure terms  

Note: looking into non-intrusive methods too

CONCLUSIONS – DO equations

 Prognostic Equations for Stochastic Fields

 Derived new closed DO field equations (applied to several 2D NS/cases)

 Adapted the size of the subspace (as in ESSE)

 Ongoing Research: 

 Idealized Climate – MOC  (Cessi and Young, 1992, Ganopolski and Rahmstorf, 2002) 

 Evolve the subspace based on data (learning as in ESSE)

2( ) (Cost of Determ. PDE)sO

( ) (Cost of Determ. PDE)sO



CONCLUSIONS – Smart Sampling

 Intelligent Adaptive Sampling: the Science of Autonomy

 Developed and utilized varied Adaptive Sampling schemes

 Path Planning for Sensing Swarms using Level Set Methods

 Merging adaptive DO equations, ESSE-Data-Assimilation and 

POMDPs for Smart Adaptive Sampling in 1D

 Ongoing Research: 

 Continue combination of “ESSE+DO + Level Set + Information theory” 

for Collaborative Sampling Swarms

 Optimal control and dynamical systems

 Artificial intelligence and “Noisy Game Theoretic” schemes

 Bio-inspired and agile sensing


