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Uncertainty Quantification Group

o Faculty
e JMR (Math, Physics, Atmospheric Sciences)
o Shankar Venkataramani, Kevin Lin, Hermann Flaschka (Math)
o Shlomo Neuman, Larry Winter (Hydrology)
o Rabi Bhattacharya, Walt Piegorsch (Math, Statistics)
o Kobus Barnard, Alon Efrat (Computer Science)
@ Post-Docs
o P. Krause (estimation)
e J. Ramirez (probability)
o P. Dostert (scientific computing)
o T.-T. Shieh (variational methods)
@ Graduate Students: 15 (Brad Weir, Darin Comeau, Suz Tolwinski)
@ Undergraduate Students: 2 (Jason Ditmann)
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Focus Problems
Climate/Weather Hydrogeology Computer Vision
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Complex Problems.
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Focus Problems
Climate/Weather Hydrogeology Computer Vision

Complex Problems. Problems in which progress will result from a
combination of statistical methods, and deterministic and stochastic
mathematics.
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UQG Group

Earth’s Climate: Forced/Dissipative/Thermodynamic
System

continent

Climate

ci

WEATHER

1day 1 season 10 years 300 years
TIME

Climate, Assimilation of Data and Models June 2010 4/88



The Meteorology vs. Climate Problem

o Climate: poor and/or sparse data. Very large spatio-temporal ranges
(oceans). Challenging interations: ocean’s interaction with the
atmosphere and ice.

@ Meteorology: lots of data, very nonlinear, very stiff
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The Meteorology vs. Climate Problem

o Climate: poor and/or sparse data. Very large spatio-temporal ranges
(oceans). Challenging interations: ocean’s interaction with the
atmosphere and ice.

e Aim is to discern variability and understanding dynamics

@ Meteorology: lots of data, very nonlinear, very stiff

e Societal imperative: forecasts
]
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The Meteorology vs. Climate Problem

o Climate: poor and/or sparse data. Very large spatio-temporal ranges
(oceans). Challenging interations: ocean’s interaction with the
atmosphere and ice.

Aim is to discern variability and understanding dynamics
Bayesian data assimilation is viable strategy

@ Meteorology: lots of data, very nonlinear, very stiff

Societal imperative: forecasts
Ensemble forecasting
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The Meteorology vs. Climate Problem

o Climate: poor and/or sparse data. Very large spatio-temporal ranges
(oceans). Challenging interations: ocean’s interaction with the
atmosphere and ice.

e Aim is to discern variability and understanding dynamics

o Bayesian data assimilation is viable strategy

o Need to make more use of models, need to develop parameterizations
o

@ Meteorology: lots of data, very nonlinear, very stiff
e Societal imperative: forecasts
o Ensemble forecasting
o Reduced state space representation
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The Meteorology vs. Climate Problem

o Climate: poor and/or sparse data. Very large spatio-temporal ranges
(oceans). Challenging interations: ocean’s interaction with the
atmosphere and ice.

e Aim is to discern variability and understanding dynamics

o Bayesian data assimilation is viable strategy

o Need to make more use of models, need to develop parameterizations

e Need to focus more on non-Gaussian issues as well as the use of data
assimilation combined with time of transit dynamics

@ Meteorology: lots of data, very nonlinear, very stiff

e Societal imperative: forecasts
o Ensemble forecasting

o Reduced state space representation
o Large deviation theory could be explored here
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What Models tell Us about Data, the Non-Gaussian Issue

When data fool us...
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What Models tell Us about Data, the Non-Gaussian Issue

When data fool us...

same data, zoomed in
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What Models tell Us about Data, the Non-Gaussian Issue
...use our understanding of the dynamics

dx = 4x(1—x*)dt+ xdW,
x(0) = xo

HOT
COLD
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Data Assimilation in Climate Studies

Combine information derived from data and models....

Bayes Theorem:

P(X|Y) o< likelihood X prior
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Least Squares and Kalman Filter/Smoother

W(m)x—V =0,
0~ 4(0,0).

Find X , mean, such that IE(OTB) is minimized.
Find the uncertainty U := E[(x —¥)(x — %) ].

Alternatively, can find X and U using a sequential approach, the Kalman
Filter/Smoother (RTS Algorithm).

Review in C. Wunsch The Ocean Inverse Circulation Problem, Cambridge U. Press )
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Time Dependent Estimation Linear/Gaussian Estimation

Kalman Filter

Forecast

X* = MX(1)+BP(1) t=0,1,...,
Us = MUNOM'

Analysis

X(t+1) = X'+K@e+D)[Y(+1)—-H(t+1)X"],
U(t+1) = UK(t+1)H(t+1)U*
where the Kalman Gain Matrix is
K(t+1):=UH@t+ 1) [Ht+ DU HE+1)"]!
X(0) and U(0) are known.

Review in C. Wunsch The Ocean Inverse Circulation Problem, Cambridge U. Press

J
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Nonlinear Non-Gaussian Problems?

Forecast, not much of a problem:
X(t+1)=N(X(t),BP(1))
But not clear how to propagate uncertainty U(t+ 1).

Extended Kalman Filter used extensively on nonlinear problems: linearize
about X () and use closure ideas for moments.
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Nonlinear Non-Gaussian Estimation

A Nonlinear, Non-Gaussian Example

Letx(r) e R, 0<¢<T.

Data:
Model:
Y(tm) = x(tm) +1(tm),
dx = 4x(1—x%)dt+ kdW, E(N.n) = RS,
x(0) = xp, known distrib. m = 1,2,...,M.
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Nonlinear Non-Gaussian Estimation

Double-Well Stationary Distribution

dx = 4x(1—x*)dt+ xdW,
The Stationary distribution for the double-well problem (x = 0.5):

HOT
coLp
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Estimation

The Observations
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Nonlinear Non-Gaussian Estimation

Goals of Traditional Data Assimilation

e Find mean history xg(#) conditioned on observations E(x(z)|y1,...,ym),
and the uncertainty Cy(¢) = E[(x(t) — x(£)) (x(¢) — x5(£)) [y1, -, 0]
@ x,() should minimize the tr(Cy)

@ Guarantee statistical convergence of moments
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Nonlinear Non- Estimation

The EKF Results!

(c)

Filtgred Solution

siimated Error Covarionce

00 25 w0 "5

IR. Miller, M. Ghil, P. Gauthiez, Advanced data assimilation in strongly nonlinear
dynamzcal systems, J. Atmo Sci. 51 1037-1056 (1994)
Climate, Assimilation of Data and Models June 2010

17 /88



Nonlinear Non- Estimation

The EKF Results!

0.0 20 40 6.0

(c)
Fitgred Solution

Figure: 10% uncertainty, A = 1.

siimated Error Covarionce

IR. Miller, M. Ghil, P. Gauthiez, Advanced data assimilation in strongly nonlinear
dynamzcal systems, J. Atmo. Sci. 51 1037-1056 (1994)
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Nonlinear Non-Ga Estimation

The EKF Results!

(c)

Filtgred Solution

siimated Error Covarionce

Figure: 10% uncertainty, A = 1.

Reference Solution

-161 T = ==
0.0 20 %0 5o

IR. Miller, M. Ghil, P. Gauthiez, Advanced data assimilation in strongly nonlinear
dynamzcal systems, J. Atmo. Sci. 51 1037-1056 (1994)
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Nonlinear Non-Ga Estimation

The EKF Results!

(c)

Filtgred Solution

siimated Error Covarionce

Figure: 10% uncertainty, A = 1.

Reference Solution

-161 T = ==
0.0 20 %0 5o

Figure: 20% uncertainty, At = 0.25.

IR. Miller, M. Ghil, P. Gauthiez, Advanced data assimilation in strongly nonlinear
dynamzcal systems, J. Atmo. Sci. 51 1037-1056 (1994)
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Estimation

Other Approaches on Nonlinear/Non-Gaussian Problems

Optlma] (Val‘i ance-minimizel‘) KSP (Kushner, Stratonovich, Pardoux), early 60’s
4D-Var/AdjOint (Maximum leellhood) (Wunsch, McLaughlin, Courtier, late 80’s)
ensemble KF (Evensen, 97)

Mean Field Variational yink, Restrepo, *01)

Pal‘ametrized Resampllng Partlcle Fllter (Kim, Eyink, Restrepo, Alexander, Johnson, *02)

o Langevin Sampler . swar, 05
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Estimation

Other Approaches on Nonlinear/Non-Gaussian Problems

Optimal (variance-minimizer) KSP (ushner, swatonovich, Pardoux), early 60°s
4D-Var/Adjoint (Maximum Likelihood) wunsch, McLaughlin, Courtier, ate 80's)
ensemble KF vensen, 97)

Mean Field Variational yink, Restrepo, *01)

Parametrized Resampling Particle Filter (im, byink, Restrepo, Alexander, Johnson, *02)
Path Integral Monte Carlo ®eswepo '07. Alexander, Eyink & Restrepo, '05)

Diffusion Kernel Filter «rause, Restrepo, '09)

Langevin Sampler . swar, '05)
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Nonlinear Non-Gaussian Estimation

KSP: Optimal...so why not use it?

Filter: between t,, and t,,11, solve

3P = —8XV(x)@]+%K28M9
P(x,0) = Ps(x)

At measurement times t,,, the probability jumps

P(x, 1) = %eé%*ﬂy(x, )
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Nonlinear Non-Gaussian Estimation

Smoother: between f,,11 and t,,, solve
1
o = —o[f(x)] + EKZ%W%
g (x,t) = 1

At measurement times t,,, the probability jumps

2

o (x,t7) = %eé[ymf%]%(x, )

Finally P(x,t|ym,m =1,2,,M) = o/ (x,t) P (x,1) .
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Nonlinear Non-Ga Estimation

KSP Filter and Smoother Results

20

state x

fime.

Figure: KSP Smoother
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Nonlinear Non-Gaussian Estimation

enKF Most Favored in Practice

The enKF (”state-of-the-art”)
@ Use model for forecast.
@ Update the uncertainty using Monte Carlo.

Pros and Cons:

@ Can handle legacy code easily
@ Linear (Gaussian) analysis

@ Requires full model runs

@ Ad-hoc

G. Evensen, Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res. 99, 10143-10162. J
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Estimation The Path Integral Monte Carlo (PIMC)

PIMC The Path Integral Monte Carlo

Optimal, on the discretized model
Simple to implement, but very subtle
Can handle legacy code

Relies on sampling

Can yield a variety of different estimators

J. Restrepo, A Path Integral Method for Data Assimilation, Physica D, 2007,
F. Alexander, G. Eyink, J. Restrepo, Accelerated Monte-Carlo for Optimal Estimation of Time Series, J. Stat. Phys., 2005 J
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Estimation The Path Integral Monte Carlo (PIMC)

Bayesian Statement

@ P(x|y) o< Likelihood x Prior.
@ Use data for likelihood.
@ Use model for prior.

P(X‘y) o efdmodelef%am — ele{(x)'
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Nonlinear Non-Gaussian Estimation The Path Integral Monte Carlo (PIMC)

=Q7/m0del

dx = f(x,1)dt + [2D(x,1)]'/2dw

is discretized:
Xn+1 = Xn +Alf(xn7tn) + [ZD(xnytn)]l/z[Wn-&-l - Wn]

n=0,1,....T—1
T
Dpodel = Z [(xn+1 —Xn _Atf(xmtn))TD(xn;[n)_l (xn—H —Xn _Atf(xn:tn))]a
n=1

if Prob(AW) o< exp(—AW? /D).
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Nonlinear Non-Gaussian Estimation The Path Integral Monte Carlo (PIMC)

ym = H(xm) + [ZR[xmutm)]l/znm
m=12,....M.

M
Data = Z [(ym _H(xm))TR(xnatn)il (ym —H(Xm))],

m=1

if Prob(n) < exp(—n?/R).
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Nonlinear Non-Gaussian Estimation Samplers

MCMC Samplers

P(x‘y) oc efﬂmodelefgfdata — efﬂ(x)'

The Path Integral Monte Carlo practicality depends on fast sampling:
@ Multigrid (UMC)
o Langevin Sampler (LS)
e Hybrid Monte Carlo (HMC)
@ Shadow Hybrid MC (sHMC)
@ Riemannian Manifold Hamiltonian Monte Carlo (RM-HMC)
@ generalized Hybrid Monte Carlo (gHMC)
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Nonlinear Non-Gaussian Estimation Samplers

(HMC) Hybrid Markov Chain Monte Carlo

@ Proposals generated by
solving Hamiltonian
system in fictitious time
T.

@ Accept/reject via
Metropolis Hastings
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Nonlinear Non-Gaussian Estimation Samplers

HMC Algorithm

Let g,(t =0) = x,.

The momenta p,, give rise to a kinetic contribution

The Hamiltonian of the system 7 = <7 (q) + K (p).

F, where F,= —grad(<(q)).

Solve using Verlet integrator (detailed balance).

°
°
K= Z,f:lp,IM_lpn/Z.
°
The dynamics are:
94Gn
at
Ipn
at
°
°

'UAN M. RESTREPO Group Leader Uncertaint)

Accept/Reject Metropolis/Hastings.

Climate, Assimilation of Data and Models

To each g,, a conjugate generalized momemtum, p,, is assigned.

June 2010
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Nonlinear Non-Gaussian Estimation Samplers

Why does HMC work? What are good HMC properties?

Write probability IT(g) = e~ (@):

11

e Sampling n(q,p) = Zine_%(q’p) ~ %e"‘y(q) samples I1(g).
@ Gradient dynamics makes system search through configuration space
more efficiently.

@ Moves in g, are linear in p,, i.e., % =M"p

o/ (q) and grad(<7(g)) should be easily evaluated.
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Nonlinear Non-Gaussian Estimation Samplers

Sampler Efficiency Estimates

Sampler Efficiency: key to choosing and tuning sampler
e Computational Cost: O (NT)" Ryenoa (P, L)
@ p:=< Py >=<min{l,exp[—A]} >e< erfc (%STm(NT)l/z).
@ ¢(L): =< (0)7(0+L) >. Depends on problem dimension and state
space characteristics.
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Nonlinear Non-Gaussian Estimation Samplers

RM-HMC Algorithm?

Hamiltonian replaced by:

1 _
H = (q)+ EPTG(CI) 'p

where the non-degenerate Fisher information matrix G := B{V.&/V.e/ "}

Challenges:

o find a time-reversible/volume-preserving discrete integrator for
Hamiltonian problem.

@ optimize its computational efficiency.

2Girolami, Calderhead, Chin, preprint, 2009.

'UAN M. RESTREPO Group Leader Uncertaint)
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Nonlinear Non-Gaussian Estimation Samplers

Decrease decorrelation length L: gHMC Algorithm

Hamiltonian dynamics replaced by:

dqn . 1
ot CM P
apn . T

where C € RT*T matrix

Challenge: find C that leads to a significant reduction in the sample
decorrelation length.

We used the circulant matrix C = circ(1,e=% e72%, ... e T%).
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Nonlinear Non-Gaussian Estimation

Samplers

Sampler Efficiency Comparison

Table: T is the number of time steps, (-) is the standard deviation on the number of
samples, (& used in C; J is the number of T time steps.

T+1 | HMC (J=1) | HMC (J=8) UMC ¢gHMC (J=1)

8 900(125) 170(7) 800(40) 40(8) [0.20]
16 5300(1600) 560(20) 1040(60) 60(10) [0.10]
32 | 13300(8300) | 2700 (140) | 1430(100) | 200(30) [0.05]
64 | 30000(7800) | 2800(400) | 1570(100) | 420(70) [0.0245]

'UAN M. RESTREPO Group Leader Uncertaint)

Climate, Assimilation of Data and Models
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The Diffusion Kernel Filter

Collaborator

Paul Krause, UQG U. Arizona J

@ A particle-filter based method:

p(xly ) = PO PO ).
p(Vm)
@ Sequential.
e Simple to implement, provided an adjoint exists.
@ The Clustered cDKF is competitive with EKF.

@ Can handle nonlinear/non-Gaussian problems.

P. Krause and J. Restrepo, The Diffusion Kernel Filter Applied to Lagrangian Data Assimilation, Mon. Wea. Rev. 2009,
P. Krause and J. Restrepo, Sequential Estimation with Deterministic Models and Noisy Data, SIAM J. Sci. Comp. 2009 J
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The Diffusion Kernel

() =¢()+P'(),

e &@'(-) is obtained by applying
Duhamel’s principle and
expectation projections:

O (E (1), 1) ~ [ G adwls— 1),

I/ m

where " L
G(& (tm;0),1,5) := VO (G (tm,0),1) (D5 (m; 0),5))
is the Diffusion Kernel.
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The Uncertainty Norm

The diffusion kernel is

G(&(tm;0),1,8) 1= V(& (tm, 1), 1) §(P(E (1m 1))

The uncertainty norm ||G||(¢) for branches of prediction bounds the sup-norm
of the covariance matrix of @' (& (t,,1),1):

1
lleov( @)l <GP, 1 <1 <ty

The key observation is that ||cov(®’)|
will be small whenever ||G|| is small.

«, & measure of entropy of the branch,
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Application: Lagrangian Data Assimilation

The Oceanic Lagrangian Setting

Figure: Four MLFII'’s Ready for

Figure: Synthetic Eulerian Flow. Lagrangian Hurr.icallle Isidore after Puget Sound
Tracks. From Molcard et al J. Atmos Ocean. Testing in July, 2002. From E.
Tech. (2005). D’ Asaro’s (Washington) Web Page.
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ian Data Assimilation

2D Vortex/Drifter Problem

Measure the tracks of N, passive tracers §;(t) := vy (t) +iwy (1), give an
optimal estimate of tracks and of N, point vortices 7, (1) := xp (1) + iy (1).

2r ‘ ‘ ‘ + particle;
Vortices: o vortex
15 +
. N, 1t
dzw 0 Y I v
@ a0 e
I=1,l#m *m — <1
> 0
Drifters: 05}
N, I
; 4
dgnzizi_’_nP(t) 15
% %
e 2mim G 7 2
—2 -1 0 1 2
X
L. Kusnetsov and K. Ide and C.K.R.T. Jones, A method for assimilation of Lagrangian data, Mon. Wea. Rev 131 (2003) )
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Application: Lagrangian Data Assimilation

EKF Lagrangian Estimation

Kusnetsov et al proposed using Constrained EKF"

o for reasonable data uncertainties and/or frequent enough observations
EKF works reasonably well, based on the computation of distance
between the “true” path and the EKF estimate

o if pushed too hard the EKF would fail: saddles in the orbit paths would
cause divergences in the forecast stage

@ reasonably efficient, robust
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Application: Lagrangian Data Assimilation

Comparison of Benchmark, DKF and EKF

Mean drifter path (v,wy), as estimated by DKF and benchmark and EKF
(Jagged, dashed). The true path is superimposed (black).
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Application: Lagrangian Data Assimilation

Comparison of Bootstrap, DKF and EKF

Mean drifter path (v;,wy), as estimated by DKF and particle filter and EKF
(Jagged, dashed). The true path is superimposed (black).
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Application: Lagrangian Data Assimilation

(Short-time) Behavior of Bootstrap, DKF and EKF

0.5f

=1 -0.5 0 0.5 1 1.5

Mean drifter path (v, wy), as estimated by DKF and particle filter, and EKF
(red dashed). "Truth” path (black), Measurements (green, dashed).
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Application: Lagrangian Data Assimilation

Comparison of Benchmark, DKF and enKF

Figure: Mean drifter path (vi,w;), as estimated by DKF and benchmark and enKF
(jagged, dashed). The true path is superimposed (black).
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Application: Lagrangian Data Assimilation

SECOND MOMENT: Comparison of Benchmark, DKF,
enKF and EKF

0.07
€ EO.I
[ [
€ €
o o
£ £ i
he] he] T
= = I
« 005 |
Bl M
A
A
;&a,i '
0
0 2

(a)

Comparison of DKF, benchmark filter for v (¢). Second moment (a) EKF, (b)
enKF.
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THIRD MOMENT: Comparison of Benchmark, DKF and
enKF

0.04

3rd moment

-0.02
0

Comparison of enKF, DKF, and benchmark filter moment estimates for v; (7).
Third moment. EKF does not generate a third moment.
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Computational Cost EKF vs. Particle Filter vs. DKF

Computational Efficiency, from #; to ;4

Bootstrap Filter Cost

CBaT x N2 x1,

I sample paths (5 x 10° in examples).
Ny is the dimension of state variable.

T is the number of deterministic time steps.

1074, 7 =1072).

DKEF Cost

T x (C'Ny+CN3) x I, ~ T x CN2 x I..

oT is the number of times steps taken in the stochastic differential equation integrator, & > 1, § > 1. (SODE time step in examples,

Conditions whereby the cost of the bootstrap filter exceeds that of the DKF:
Ny < aBl/Iy.
Reflects the impact of non-Gaussianity in the cost of the DKF: the less Gaussian, the closer 1 /I is to 1.

EKF vs. DKF Cost

@ In the prediction step both methods are comparable.
@ In the analysis step EKF is min{N3 ,N;?}, for DKF itis I x N2.

Climate, Assimilation of Data and Models June 2010
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Computational Cost, Clustered DKF

Computational Efficiency, from #; to ;4

Bootstrap Filter Cost
CBaT x N2 1, J
@ 7 sample paths (5 x 10° in examples).
@ N, is the dimension of state variable.
@ 7 is the number of deterministic time steps.
o

aT is the numbzer of times steps taken in the stochastic differential equation integrator, ot > 1, § > 1. (SODE time step in examples,
1074, 7 =1072).

DKEF Cost

T x (C'Nx+CN3) x I, = T x CN2 x I.. J

Conditions whereby the cost of the bootstrap filter exceeds that of the DKF:

Ny < aBl/I.
Reflects the impact of non-Gaussianity in the cost of the DKF: the less Gaussian, the closer / /I is to 1.
cDKF Cost

Canuse Iy <107"1,r>1. J

In examples, r = 2. Conditions whereby the cost of bootstrap exceeds that of rDKF:

Ny < aB10”.
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New Projects

In nonlinear problems there is no unique best predictor:

2-norm error

time.

Shown: average, entropy average, likelihood average.

from P. Krause J. M. Restrepo, to be submitted, SIAM J. Sci. Comp, 2010. J
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Lagrangian Data Blending

Data Blending: Contour Dynamics

2

Contour
Classic (c) Analysis (d)

A competing approach: B. Beechler, J. Weiss, G. Duane, J. Tribbia, to appear in J. Atmos Sci 2010

J
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The Meteorology vs. Climate Problem

the data assimilation problem will remain dimensionally-challenging:
@ Develop statistically-convergent methods

@ Increase the availability and quality of the data
@ Reduction of the state space:

e Exploit vastly different degrees of uncertainty.
e Develop closures and stochastic parameterizations.

all the while, being clear about what it is that we are doing...
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The Ensemble Bred Vectors

GOAL:

@ Propose an alternative and robust methodology for sensitivity analysis
and reduced-space representation

COLLABORATORS:
Nusret Balci IMA/UMN), Anna Mazzucato (PSU), George Sell (UMN).
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The Ensemble Bred Vectors

GOAL:

@ Propose an alternative and robust methodology for sensitivity analysis
and reduced-space representation

o Provide a mathematical basis for the Bred Vector (BV).

COLLABORATORS:
Nusret Balci IMA/UMN), Anna Mazzucato (PSU), George Sell (UMN).
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The Bred Vectors, Defined

Given a model
Y(ty+6t,) = M(Y(ty),t,), n=0,1,2, .,
Y(0) = Y,

Y(ty) ~ y(t = t,), while Yo ~ yo.

BVs computed as follows:
6Yn+1 = M(Yn'f's%atn)_M(Ynatn)a
0%+1 = ROY,1.

oY
oo lIsw|

= m, the normalization factor.
n+1

See Toth and Kalnay 1993, Bull. Amer. Met. Soc, Toth and Kalnay Mon Wea Rev, 1997
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State-Space Reduction

The Lyapunov Vectors, Defined

Let 6O be the solution of the initial value problem

00(t,+6t,) = L,60(,), n=0,1,2,..
00(0) = 80,,

Take n — oo.
At each time step the Tangent Linear Model is
IG(y, 1)

Ln = L(Yn,tn) = Ty

y=Yp 1=ty
LV make sense in asymptotic time (the BV is local in time)
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The Lorenz63

dx

&~ oy

A

d

i —  xy—bz 1>0. )

Atr=0,x=0.8001, y=0.4314, z = 0.9106. Here we set r = 28,b = 8/3,0 = 10.
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State-Space Reduction

The Cahn Hilliard (Cessi-Young 92 Model)

as 22 228
dr 97
S(z,0) = So(z)

N
02
k 0.5
01
005
= o
) S,
01 04
- 015
R ~02f 0
e T S S e T
z z

Forcing function and perturbation

04§
3 2 a 0 1 2 3

Solution of CY92, and LV, vs- BV.
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Numerical Instability of Bred Vectors

dx
A
a7

where A is non-normal constant (Jordan) matrix of dim(20):

Bred Vectors, Norm=2 Bred Vectors, Norm=2

0.
0.2
0.15]
o
0.05)

14

1) 20|

10} 15|

8]

4 5|

Time Time
standard BV computation Well-conditioned computation
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The Ensemble Bred Vector (EBV), Defined

The Ensemble Bred Vector
@ Pick a norm and its size, for an ensemble of initial conditions.
@ Advance the ensemble of initial conditions using the BV

o find the element from the ensemble that grew the most and use it to
resize the whole ensemble

@ repeat
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The Lorenz63 using EBV

y 01 o1

Superposition of an ensemble of 1500 runs, over all times from 0 to 50. (We
show 150 of these), normalized to the initial condition 2-norm, set to 0.1.
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The Cahn Hilliard CY92, using EBV

BV’s EBV’s
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The Non-Normal Linear Problem, using EBV

dx

— = Ax

dr ’
where A is non-normal and dim(20):
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Bred Vectors, Some of our Conclusions

@ BV are attractive because they can be applied to legacy code

o Established that BV is a nonlinear generalization of the LV, though it is
not clear how a finite-time quantity is to be compared to an
asymptotically-defined quantity, unless we are discussing a steady state.

o Established that BV is norm dependent

o In applications the norm matters a great deal when considering what is to
be analyzed.

@ But do they provide any practical information not contained in singular
vectors or LV?
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Stochastic Parameterization

Dimension Reduction via Stochastic Parameterization

dx = f(x)dr+ sochastic term
x(0) = xo
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Stochastic Parameterization

Stochastic Parameterization

GOAL:
@ Produce stochastically-based subscale parameterization

COLLABORATORS:

Darin Comeau (U Arizona),

Brad Weir (U Arizona), Jorge Ramirez (U. Nacional de Colombia), J. C.
McWilliams (UCLA), M. Banner (UNSW)
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Stochastic Parameterization

Stochastic Parameterization

GOAL:
@ Produce stochastically-based subscale parameterization

@ Make greater contact with data (and data assimilation).

COLLABORATORS:

Darin Comeau (U Arizona),

Brad Weir (U Arizona), Jorge Ramirez (U. Nacional de Colombia), J. C.
McWilliams (UCLA), M. Banner (UNSW)
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Stochastic Parameterization

WAVE BREAKING DISSIPATION:

Geophysical Goals
@ How does dissipation at wave scales manifest itself at longer time scales?
@ What is the correct stochastic parameterization?

o Can we parameterize dissipation in such a way that we use field data
more efficiently?
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Stochastic Parameterization

Scale Range of the Model

10 secs-months
100m-basin scale

Speed: waves > currents
kH ~ 1

Applications:

e climate dynamics (transport)
erodible bed dynamics

river plume evolution
algal/plankton blooms

Oil spills/pollution

J. McWilliams and J. M. Restrepo The Wave-driven OceanCirculation J. Phys. Oceanogr. (1999)

J. Restrepo, Wave-Current Interactions and Shore-connected Bars J. Estuarine Sci. (2001)

J. McWilliams J. M. Restrepo, E. Lane An asymptotic Theory for the Interaction of Waves and Currents in Coastal Waters J. Fluid Mechanics
(2004)

E. Lane, J. M. Restrepo, J. McWilliams Wave-Current Interaction: A comparison of radiation-stress and vortex-force representations J. Phys
Oceanogr (2007)
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Stochastic Parameter

Lagrangian Motion

Climate, Assimilation of Data and Models

dX = Vdt

Figure: Deterministic

June 2010
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Lagrangian Motion Under White Capping

dX, =V(X,t)dt+dW,(X,1)

Figure: Stochastic
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Stochastic Parameterization

What Stochastic Model?

Experiments are needed to determine the right model

Figure: dW standard Figure: dW with added Figure: dW with added
white noise mean-reverting process jump process
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Stochastic Parameterization Projection/Filtering Strategy

Lagrangian/Eulerian Projections in Multiscale Setting

BASIC STRATEGY

Multiscale projection of systems of (mostly) hyperbolic equations between
the Eulerian and Lagrangian frames.
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Stochastic Parameterization Model

Current/Waves/Breaking Model
The momentum with breaking-generated stresses and diffusion:

Ive I
%:VxZ—Vd>+((b><Z)+b><(be)+[Vxbe}—§V|b|2>+V-R

where V = v¢ +u' Z = V x v42Q and ® = po + 1 |V|>.

The u*?** is the wave contribution.
The break-stresses modify the vortex force and Bernoulli head.
The diffusion accounts for mixed-layer boundary-layer effects

The tracers obey
aC

J. M. Restrepo, Wave Breaking Dissipation in the Wave-Driven Ocean Circulation J. Phys. Oceanogr. (2007)
J.M. Restrepo, J. M. Ramirez, J.C. McWilliams & M. Banner Wave Breaking Dissipation and Diffusion in Waves and Currents , J. Phys.

Oceanogr 2010

)
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Stochastic Parameterizati Model

Wave Breaking Diffusion

The observation is that wave breaking increases the size of the mixing layer
and this layer will then create a great deal of dissipation.

th
R, vt R,
dz !
aC
Q\' ~ K—, Q/l ~ kVC.
Jz

Q
Q

VVVh

We assume that
VN<€b‘Wb‘>, KN<€9|Wh’>.

w! is the vertical component of the velocity associated with breaking, and the
mixing length is

Eb:YTI(XJ)a 59 = aﬂ(XJ)'

'UAN M. RESTREPO Group Leader Uncertaint)
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Stochastic Parameterization Model

Boundary Conditions

The surface boundary conditions at z = 1(xj,?) are the following:

Dn aq 1 aC _ 7

w Dt’ p ngn +paa aZ pO 9 aZ

Lead to (at z=0)

we=V-M—w’  p = n+po—P
ave db° aC
v(aZJrS)—T—vaZ, Ka—z_?.

where the wave-induced adjustments (at z = 0) are

M= (), p=(on), s= (S0,
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How to determine b(X,7)?

Thus far we have answered the question:

@ if breaking occurs, how do waves and currents get modified, at these
large spatio-temporal scales?
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How to determine b(X,7)?

@ How is the breaking velocity b determined?

LSRN NN NN O Er T R P Tty ety Climate, Assimilation of Data and Models June 2010 751788



How to determine b(X,7)?

@ How is the breaking velocity b determined?

it can be determined by field data...or
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Steps to determine b(X, T):

Ingredients in determining b, using averaging and breaking kinematics:
e individual breaker b velocity are obtained parametrically from data.
@ breaking events need to be upscaled, to yield b.
@ kinematics of their occurrence can be tied to wave-group dynamics.
@ breaking events should be energetically consistent.
°

breaking events should yield a Poisson process in space-time.

Phys. Oceanogr 2010.

Details in: J.M. Restrepo, J. M. Ramirez, J.C. McWilliams & M. Banner, Wave Breaking Dissipation and Diffusion in Waves and Currents , J.
B. Weir & J. M. Restrepo, Stability of the Langmuir Circulation in the Presence of Wave Breaking, in preparation. J
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Individual breaker velocity b are obtained parametrically:

Individual breaker velocity b given by:

Bl TR
o1 R AR i
“‘H“\\\\\\\\F“\”W/”\““ 300 a B B VB 1 AB A
02 ‘\\\\\\\\M‘,V + o = — +
fl t —
03 i 250 Re ’
-0.4]
200
" V-b=0
06 150 ' o
-07
100
8 where
S 50

o 02 04 5 06 08 1 A = kb%(x)@(y)g(z)y(t)a

cf., Sullivan, McWilliams, Melville, JEM, 507 (2004). )
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Determining b

Breaking events need to be upscaled to yield b
Model b := B + b’ as the random sum

b(X/7,Z,T) = Z bE(XhJ)(Xh—Xh,Z)6(T—T)
(Xh,‘L')G(I’
where

1 (%=
bE(Xh —Xh,z) = ?E/O b(Xh —Xh,Z,t)dl‘

The ensemble average at (Xj,,z,T) of some functional .% of the field b is:

(Z (b)) (xp,2,T)dT = < ) y(bE(X,l.r)(xh’thz))E(T’T>>

(Xp.71)eP

= ol 7 e X DA AT E)E

B(z) = /R [ /Q EbE(Xh,Z,T)dthT} Ap(E)dE

'UAN M. RESTREPO Group Leader Uncertaint)
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Determining b

Kinematics of their occurrence can be tied to wave-group
dynamics

Waves expressed in terms of a carrier and an envelope:

N (X, 1) =Re {ei(l_(h‘Xh+C_)'t)p (X, t)eie(x,,,z) } .

where

2
P(p(xp,t) €dp) = 27?2)772> exp {‘2872> }

a Rayleigh distribution.
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Determining b

Mean growth rate of wave group energy:

Ifd:= (JT)DD*‘; > 8% ~ 1.4 x 1073 a breaking wave group.

where the material derivative is taken following the wave group.

Local wave energy* 1(t) := 0% (Xmax, ) k> (Xmax, ).

sl ) is maximum of crest point in the group.
(k, (o)) wavenumber, mean frequency.
* see Song and Banner, J Phys Oceanogr, 2002 )
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Determining b

2D Example

(Loading breakmovie)

f,g‘”

%f

moe?
G

I PR T
" ‘%’@?g AT
7

~e oY mar L
oo 80, 60 40 20 [) 20 ) 60 80 100
o

Space-time evolution of breaking
events shown in movie.
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breakmov.qt
Media File (video/quicktime)


Determining b

Breaking events should be energetically consistent:

Recall:
ABABVE = L ab k2 (WY 2T ()a,

Vb = 0.

kj, found by equating the energy E(T,,) from the break velocity field with the
total energy change of the surface pogA,..

0.55gpoks
k2

If A, is total change in N?(Xmax, -) during the breaking event, then Thus

Poc
E TW = A f—

. 2
ky = 1.82K%A 2.
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Breaking events should be Poisson process

60 o
23]
. 2000)
s
4
1500
15}
3
| 1000 —I(r)
—Tr
[ o) 500
0f
002 004 006 008 01 012 0 02 04 06 08 1 1214
Fm™) ks 0 500 1000 1500 2000 2500

v (m)

Poissor
fit: theoretical indicator function vs.
computational /(r).

Histograms of wave group mean
wavenumber k* and breaking strength
kp
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Initial Current, with top speed 0.1 m/sec.
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with waves and breaking due to 15 m/s winds:

Current, after 6.4 hours (0.1 m/s contours),
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AVERAGE DISPERSION OF PASSIVE TRACERS
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«10° TRACER DISPERSION
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Closing Comments

@ Data assimilation with sparse data forces us to put emphasis on climate
model development.

@ The “dimensional-curse” is unavoidable. In the long term, convergent
methods allow one to know how much a computational gain is possible
at the expense of optimality

o Closure methods and stochastic parameterizations can lead to robust and
efficient models and hence dimension reduction...it exploits deep
knowledge of the system dynamics.

o Taking advantage of different degrees of uncertainty among the degrees
of freedom can be a productive alternative to reduced representations of
background error fields
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Further Information

Juan M. Restrepo J

http://www.physics.arizona.edu/~restrepo

Uncertainty Quantification Group
http://www.physics.arizona.edu/~tolwinski J

—EE
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