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UQG Group

Focus Problems
Climate/Weather Hydrogeology Computer Vision

Complex Problems. Problems in which progress will result from a
combination of statistical methods, and deterministic and stochastic
mathematics.

UQGQG
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UQG Group

Earth’s Climate: Forced/Dissipative/Thermodynamic
System
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UQG Group

The Meteorology vs. Climate Problem

Climate: poor and/or sparse data. Very large spatio-temporal ranges
(oceans). Challenging interations: ocean’s interaction with the
atmosphere and ice.

Aim is to discern variability and understanding dynamics
Bayesian data assimilation is viable strategy
Need to make more use of models, need to develop parameterizations
Need to focus more on non-Gaussian issues as well as the use of data
assimilation combined with time of transit dynamics

Meteorology: lots of data, very nonlinear, very stiff
Societal imperative: forecasts
Ensemble forecasting
Reduced state space representation
Large deviation theory could be explored here
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UQG Group

What Models tell Us about Data, the Non-Gaussian Issue

When data fool us...
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UQG Group

What Models tell Us about Data, the Non-Gaussian Issue

When data fool us...
same data, zoomed in
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UQG Group

What Models tell Us about Data, the Non-Gaussian Issue

...use our understanding of the dynamics

dx = 4x(1− x2)dt +κdWt

x(0) = x0
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Time Dependent Estimation

Data Assimilation in Climate Studies

Combine information derived from data and models....

Bayes Theorem:

P(X|Y) ∝ likelihood×prior
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Time Dependent Estimation Linear/Gaussian Estimation

Least Squares and Kalman Filter/Smoother

W(m)x−V = Θ,

Θ∼N (0,σ).

Find x̃ , mean, such that E(θ>θ) is minimized.
Find the uncertainty U := E[(x− x̃)(x− x̃)>].

Alternatively, can find x̃ and U using a sequential approach, the Kalman
Filter/Smoother (RTS Algorithm).

Review in C. Wunsch The Ocean Inverse Circulation Problem, Cambridge U. Press
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Time Dependent Estimation Linear/Gaussian Estimation

Kalman Filter

Forecast

X∗ = MX(t)+BP(t) t = 0,1, . . . ,

U∗ = MU(t)M>

Analysis

X(t +1) = X∗+K(t +1)[Y(t +1)−H(t +1)X∗],
U(t +1) = U∗K(t +1)H(t +1)U∗

where the Kalman Gain Matrix is

K(t +1) := U∗H(t +1)>[H(t +1)U∗H(t +1)>]−1

X(0) and U(0) are known.

Review in C. Wunsch The Ocean Inverse Circulation Problem, Cambridge U. Press
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Time Dependent Estimation Linear/Gaussian Estimation

Nonlinear Non-Gaussian Problems?

Forecast, not much of a problem:

X(t +1) = N(X(t),BP(t))

But not clear how to propagate uncertainty U(t +1).

Extended Kalman Filter used extensively on nonlinear problems: linearize
about X(t) and use closure ideas for moments.

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group ( University of Arizona )Climate, Assimilation of Data and Models June 2010 12 / 88



Nonlinear Non-Gaussian Estimation

A Nonlinear, Non-Gaussian Example

Let x(t) ∈R1, 0 < t ≤ T .

Model:

dx = 4x(1− x2)dt +κdWt

x(0) = x0, known distrib.

Data:

y(tm) = x(tm)+η(tm),
E(ηmηl) = Rδtm,tl ,

m = 1,2, ...,M.
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Nonlinear Non-Gaussian Estimation

Double-Well Stationary Distribution

dx = 4x(1− x2)dt +κdWt

The Stationary distribution for the double-well problem (κ = 0.5):
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Nonlinear Non-Gaussian Estimation

The Observations
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Nonlinear Non-Gaussian Estimation

Goals of Traditional Data Assimilation

Find mean history xS(t) conditioned on observations E(x(t)|y1, ...,yM),
and the uncertainty Cs(t) = E[(x(t)− xs(t))(x(t)− xs(t))T |y1, ...,yM].
xs(t) should minimize the tr(Cs)
Guarantee statistical convergence of moments
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Nonlinear Non-Gaussian Estimation

The EKF Results1

Figure: 10% uncertainty, ∆t = 1.

Figure: 20% uncertainty, ∆t = 1.

Figure: 20% uncertainty, ∆t = 0.25.

1R. Miller, M. Ghil, P. Gauthiez, Advanced data assimilation in strongly nonlinear
dynamical systems, J. Atmo. Sci. 51 1037-1056 (1994)
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Nonlinear Non-Gaussian Estimation

Other Approaches on Nonlinear/Non-Gaussian Problems

Optimal (variance-minimizer) KSP (Kushner, Stratonovich, Pardoux), early 60’s

4D-Var/Adjoint (Maximum Likelihood) (Wunsch, McLaughlin, Courtier, late 80’s)

ensemble KF (Evensen, ’97)

Mean Field Variational (Eyink, Restrepo, ’01)

Parametrized Resampling Particle Filter (Kim, Eyink, Restrepo, Alexander, Johnson, ’02)

Path Integral Monte Carlo (Restrepo ’07. Alexander, Eyink & Restrepo, ’05)

Diffusion Kernel Filter (Krause, Restrepo, ’09)

Langevin Sampler (A. Stuart, ’05)
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Nonlinear Non-Gaussian Estimation

KSP: Optimal...so why not use it?

Filter: between tm and tm+1, solve

∂tP = −∂x[f (x)P]+
1
2

κ
2
∂xxP

P(x,0) = Ps(x)

At measurement times tm, the probability jumps

P(x, t+) =
1
N

e
1

R2 [ym− x2
m
2 ]P(x, t−)
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Nonlinear Non-Gaussian Estimation

Smoother: between tm+1 and tm, solve

∂tA = −∂x[f (x)]A +
1
2

κ
2
∂xxA

A (x, tf ) = 1

At measurement times tm, the probability jumps

A (x, t−) =
1
N

e
1

R2 [ym− x2
m
2 ]A (x, t+)

Finally P(x, t|ym,m = 1,2, ,M) = A (x, t)P(x, t) .
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Nonlinear Non-Gaussian Estimation

KSP Filter and Smoother Results

Figure: KSP Filter

Figure: KSP Smoother
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Nonlinear Non-Gaussian Estimation

enKF Most Favored in Practice

The enKF (”state-of-the-art”)

Use model for forecast.

Update the uncertainty using Monte Carlo.

Pros and Cons:

Can handle legacy code easily

Linear (Gaussian) analysis

Requires full model runs

Ad-hoc

G. Evensen, Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res. 99, 10143-10162.
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Nonlinear Non-Gaussian Estimation The Path Integral Monte Carlo (PIMC)

PIMC The Path Integral Monte Carlo

Optimal, on the discretized model

Simple to implement, but very subtle

Can handle legacy code

Relies on sampling

Can yield a variety of different estimators

J. Restrepo, A Path Integral Method for Data Assimilation, Physica D, 2007,
F. Alexander, G. Eyink, J. Restrepo, Accelerated Monte-Carlo for Optimal Estimation of Time Series, J. Stat. Phys., 2005
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Nonlinear Non-Gaussian Estimation The Path Integral Monte Carlo (PIMC)

Bayesian Statement

P(x|y) ∝ Likelihood×Prior.

Use data for likelihood.

Use model for prior.

P(x|y) ∝ e−Amodele−Adata := e−A (x).
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Nonlinear Non-Gaussian Estimation The Path Integral Monte Carlo (PIMC)

Amodel

dx = f (x, t)dt +[2D(x, t)]1/2dW

is discretized:

xn+1 = xn +∆tf (xn, tn)+ [2D(xn, tn)]1/2[Wn+1−Wn]

n = 0,1, ...,T−1

Amodel ≈
T

∑
n=1

[(xn+1− xn−∆tf (xn, tn))>D(xn, tn)−1 (xn+1− xn−∆tf (xn, tn))],

if Prob(∆W) ∝ exp(−∆W2/D).
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Nonlinear Non-Gaussian Estimation The Path Integral Monte Carlo (PIMC)

Adata

ym = H(xm)+ [2R[xm, tm)]1/2
ηm

m = 1,2, . . . ,M.

Adata =
M

∑
m=1

[(ym−H(xm))>R(xn, tn)−1 (ym−H(xm))],

if Prob(η) ∝ exp(−η2/R).
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Nonlinear Non-Gaussian Estimation Samplers

MCMC Samplers

P(x|y) ∝ e−Amodele−Adata := e−A (x).

The Path Integral Monte Carlo practicality depends on fast sampling:

Multigrid (UMC)

Langevin Sampler (LS)

Hybrid Monte Carlo (HMC)

Shadow Hybrid MC (sHMC)

Riemannian Manifold Hamiltonian Monte Carlo (RM-HMC)

generalized Hybrid Monte Carlo (gHMC)
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Nonlinear Non-Gaussian Estimation Samplers

(HMC) Hybrid Markov Chain Monte Carlo

Proposals generated by
solving Hamiltonian
system in fictitious time
τ .

Accept/reject via
Metropolis Hastings

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group ( University of Arizona )Climate, Assimilation of Data and Models June 2010 28 / 88



Nonlinear Non-Gaussian Estimation Samplers

HMC Algorithm

Let qn(τ = 0) = xn.

To each qn, a conjugate generalized momemtum, pn, is assigned.

The momenta pn give rise to a kinetic contribution
K = ∑

T
n=1 p>n M−1pn/2.

The Hamiltonian of the system H = A (q)+K(p).
The dynamics are:

∂qn

∂τ
= M−1pn

∂pn

∂τ
= Fn where Fn =−grad(A (q)).

Solve using Verlet integrator (detailed balance).

Accept/Reject Metropolis/Hastings.
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Nonlinear Non-Gaussian Estimation Samplers

Why does HMC work? What are good HMC properties?

Write probability Π(q) = 1
ZΠ

e−A (q):

Sampling π(q,p) = 1
Zπ

e−H (q,p) ∼ 1
Z e−A (q) samples Π(q).

Gradient dynamics makes system search through configuration space
more efficiently.

Moves in qn are linear in pn, i.e., ∂q
∂τ

= M−1p

A (q) and grad(A (q)) should be easily evaluated.
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Nonlinear Non-Gaussian Estimation Samplers

Sampler Efficiency Estimates

Sampler Efficiency: key to choosing and tuning sampler

Computational Cost: O(NT)r nmethod(p,L)
p :=< Pacc >=< min{1,exp[−∆H ]}>∝ erfc

(1
2 δτm(NT)1/2

)
.

c(L) :=< H (0)H (0+L) >. Depends on problem dimension and state
space characteristics.
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Nonlinear Non-Gaussian Estimation Samplers

RM-HMC Algorithm2

Hamiltonian replaced by:

H = A (q)+
1
2

p>G(q)−1p

where the non-degenerate Fisher information matrix G := E{∇A ∇A >}

Challenges:

find a time-reversible/volume-preserving discrete integrator for
Hamiltonian problem.

optimize its computational efficiency.

2Girolami, Calderhead, Chin, preprint, 2009.
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Nonlinear Non-Gaussian Estimation Samplers

Decrease decorrelation length L: gHMC Algorithm

Hamiltonian dynamics replaced by:

∂qn

∂τ
= CM−1pn

∂pn

∂τ
= C>F(qn)

where C ∈RT×T matrix

Challenge: find C that leads to a significant reduction in the sample
decorrelation length.

We used the circulant matrix C = circ(1,e−α ,e−2α , . . . ,e−Tα).
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Nonlinear Non-Gaussian Estimation Samplers

Sampler Efficiency Comparison

Table: T is the number of time steps, (·) is the standard deviation on the number of
samples, [α] used in C; J is the number of τ time steps.

T +1 HMC (J=1) HMC (J=8) UMC gHMC (J=1)
8 900(125) 170(7) 800(40) 40(8) [0.20]
16 5300(1600) 560(20) 1040(60) 60(10) [0.10]
32 13300(8300) 2700 (140) 1430(100) 200(30) [0.05]
64 30000(7800) 2800(400) 1570(100) 420(70) [0.0245]
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The DKF

The Diffusion Kernel Filter

Collaborator

Paul Krause, UQG U. Arizona

A particle-filter based method:

p(x|ym, tm) =
p(ym|x) p(x, tm)

p(ym)
.

Sequential.
Simple to implement, provided an adjoint exists.
The Clustered cDKF is competitive with EKF.
Can handle nonlinear/non-Gaussian problems.

P. Krause and J. Restrepo, The Diffusion Kernel Filter Applied to Lagrangian Data Assimilation, Mon. Wea. Rev. 2009,
P. Krause and J. Restrepo, Sequential Estimation with Deterministic Models and Noisy Data, SIAM J. Sci. Comp. 2009
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The DKF

The Diffusion Kernel

Φ(·) = φ(·)+Φ′(·),

Φ′(·) is obtained by applying
Duhamel’s principle and
expectation projections:

Φ
′(ξ (tm, i), t)∼

∫ t

tm
G dw(s− tm),

where

G(ξ (tm, i), t,s) := ∇φ(ξ (tm, i), t) g(Φ(ξ (tm, i),s))

is the Diffusion Kernel.
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The DKF

The Uncertainty Norm

The diffusion kernel is

G(ξ (tm, i), t,s) := ∇φ(ξ (tm, i), t) g(Φ(ξ (tm, i),s))

The uncertainty norm ||G||(t) for branches of prediction bounds the sup-norm
of the covariance matrix of Φ′(ξ (tm, i), t):

1
N
||cov(Φ′)||∞ ≤ ||G||2, tm ≤ t ≤ tm+1.

The key observation is that ||cov(Φ′)||∞, a measure of entropy of the branch,
will be small whenever ||G|| is small.
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Application: Lagrangian Data Assimilation

The Oceanic Lagrangian Setting

Figure 2: CONTROL run: layer thickness displacement (h − hrest) superimposed to the

velocity field in each layer (L1,L2,L3), at initial time (DAY0) and at the end (DAY120) of

the simulation. Contour intervals are 25m and the maximum velocity field is approximately

50cm/s in L1, 10cm/s in L2, 5cm/s in L3.

Figure 3: Left column shows successive drifters positions (one point each half day) in

each layer (L1,L2,L3). Right column shows the corresponding Lagrangian autocovariance

functions (in cm2/s2) versus time lag (in days). The solid (dashed) line shows the meridional

(zonal) component.

Figure: Synthetic Eulerian Flow. Lagrangian
Tracks. From Molcard et al J. Atmos Ocean.
Tech. (2005).

Figure: Four MLFII’s Ready for
Hurricane Isidore after Puget Sound
Testing in July, 2002. From E.
D’Asaro’s (Washington) Web Page.
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Application: Lagrangian Data Assimilation

2D Vortex/Drifter Problem

Measure the tracks of Np passive tracers ζi(t) := vm(t)+ iwm(t), give an
optimal estimate of tracks and of Nv point vortices zm(t) := xm(t)+ iym(t).

Vortices:

dzm

dt
=

i
2π

Nv

∑
l=1,l,m

Γl

z∗m− z∗l
+η

V(t),

Drifters:

dζn

dt
=

i
2π

Np

∑
l=1

Γl

ζ ∗n − z∗l
+η

P(t).
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L. Kusnetsov and K. Ide and C.K.R.T. Jones, A method for assimilation of Lagrangian data, Mon. Wea. Rev 131 (2003)
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Application: Lagrangian Data Assimilation

EKF Lagrangian Estimation

Kusnetsov et al proposed using Constrained EKF:

for reasonable data uncertainties and/or frequent enough observations
EKF works reasonably well, based on the computation of distance
between the ”true” path and the EKF estimate

if pushed too hard the EKF would fail: saddles in the orbit paths would
cause divergences in the forecast stage

reasonably efficient, robust
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Application: Lagrangian Data Assimilation

Comparison of Benchmark, DKF and EKF
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Mean drifter path (v1,w1), as estimated by DKF and benchmark and EKF
(jagged, dashed). The true path is superimposed (black).
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Application: Lagrangian Data Assimilation

Comparison of Bootstrap, DKF and EKF
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Mean drifter path (v1,w1), as estimated by DKF and particle filter and EKF
(jagged, dashed). The true path is superimposed (black).
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Application: Lagrangian Data Assimilation

(Short-time) Behavior of Bootstrap, DKF and EKF

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

t=0
t
1

DKF

EKF

Mean drifter path (v1,w1), as estimated by DKF and particle filter, and EKF
(red dashed). ”Truth” path (black), Measurements (green, dashed).
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Application: Lagrangian Data Assimilation

Comparison of Benchmark, DKF and enKF
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Figure: Mean drifter path (v1,w1), as estimated by DKF and benchmark and enKF
(jagged, dashed). The true path is superimposed (black).
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Application: Lagrangian Data Assimilation

SECOND MOMENT: Comparison of Benchmark, DKF,
enKF and EKF
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Comparison of DKF, benchmark filter for v1(t). Second moment (a) EKF, (b)
enKF.
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Application: Lagrangian Data Assimilation

THIRD MOMENT: Comparison of Benchmark, DKF and
enKF
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Comparison of enKF, DKF, and benchmark filter moment estimates for v1(t).
Third moment. EKF does not generate a third moment.
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Application: Lagrangian Data Assimilation Computational Cost EKF vs. Particle Filter vs. DKF

Computational Efficiency, from tk to tk+1

Bootstrap Filter Cost

CβαT×N2
x × I,

I sample paths (5×105 in examples).

Nx is the dimension of state variable.

T is the number of deterministic time steps.

αT is the number of times steps taken in the stochastic differential equation integrator, α � 1, β > 1. (SODE time step in examples,
10−4 , T = 10−2).

DKF Cost

T× (C′Nx +CN3
x )× Ik ≈ T×CN3

x × Ik .

Conditions whereby the cost of the bootstrap filter exceeds that of the DKF:

Nx < αβ I/Ik .

Reflects the impact of non-Gaussianity in the cost of the DKF: the less Gaussian, the closer I/Ik is to 1.

EKF vs. DKF Cost

In the prediction step both methods are comparable.

In the analysis step EKF is min{N3
x ,N3

y }, for DKF it is Ik ×N2
x .
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Application: Lagrangian Data Assimilation Computational Cost, Clustered DKF

Computational Efficiency, from tk to tk+1

Bootstrap Filter Cost

CβαT×N2
x × I,

I sample paths (5×105 in examples).
Nx is the dimension of state variable.
T is the number of deterministic time steps.
αT is the number of times steps taken in the stochastic differential equation integrator, α � 1, β > 1. (SODE time step in examples,
10−4 , T = 10−2).

DKF Cost

T× (C′Nx +CN3
x )× Ik ≈ T×CN3

x × Ik .

Conditions whereby the cost of the bootstrap filter exceeds that of the DKF:

Nx < αβ I/Ik .

Reflects the impact of non-Gaussianity in the cost of the DKF: the less Gaussian, the closer I/Ik is to 1.

cDKF Cost

Can use Ik ≤ 10−r I, r ≥ 1.

In examples, r = 2. Conditions whereby the cost of bootstrap exceeds that of rDKF:

Nx < αβ10r .
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New Projects

In nonlinear problems there is no unique best predictor:

Shown: average, entropy average, likelihood average.

from P. Krause J. M. Restrepo, to be submitted, SIAM J. Sci. Comp, 2010.
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New Projects

Lagrangian Data Blending

Data Blending: Contour Dynamics
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A competing approach: B. Beechler, J. Weiss, G. Duane, J. Tribbia, to appear in J. Atmos Sci 2010
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New Projects

The Meteorology vs. Climate Problem

the data assimilation problem will remain dimensionally-challenging:

Develop statistically-convergent methods

Increase the availability and quality of the data
Reduction of the state space:

Exploit vastly different degrees of uncertainty.
Develop closures and stochastic parameterizations.

all the while, being clear about what it is that we are doing...
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State-Space Reduction

The Ensemble Bred Vectors

GOAL:

Propose an alternative and robust methodology for sensitivity analysis
and reduced-space representation

Provide a mathematical basis for the Bred Vector (BV).

COLLABORATORS:
Nusret Balci (IMA/UMN), Anna Mazzucato (PSU), George Sell (UMN).
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State-Space Reduction

The Bred Vectors, Defined

Given a model

Y(tn +δ tn) = M(Y(tn), tn), n = 0,1,2, ..,

Y(0) = Y0,

Y(tn)≈ y(t = tn), while Y0 ≈ y0.

BVs computed as follows:

δYn+1 := M(Yn +δYn, tn)−M(Yn, tn),
δYn+1 := RδYn+1.

R :=
‖δY0‖
‖δYn+1‖

, the normalization factor.

See Toth and Kalnay 1993, Bull. Amer. Met. Soc, Toth and Kalnay Mon Wea Rev, 1997
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State-Space Reduction

The Lyapunov Vectors, Defined

Let δΘ be the solution of the initial value problem

δΘ(tn +δ tn) = LnδΘ(tn), n = 0,1,2, ...

δΘ(0) = δΘ0,

Take n→ ∞.
At each time step the Tangent Linear Model is

Ln := L(Yn, tn) =
∂G(y, t)

∂y

∣∣∣∣
y=Yn,t=tn

.

LV make sense in asymptotic time (the BV is local in time)
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State-Space Reduction

The Lorenz63
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dx
dt

= σ(y− x)

dy
dt

= x(r− z)− y

dz
dt

= xy−bz, t > 0. (1)

At t = 0, x = 0.8001, y = 0.4314, z = 0.9106. Here we set r = 28,b = 8/3,σ = 10.
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State-Space Reduction

The Cahn Hilliard (Cessi-Young 92 Model)

∂S
∂ t

= α
∂ 2

∂ z2 [f (z)+ µS(S− sin(z))2 +S− γ
∂ 2S
∂ z2 ], t > 0,z ∈ [−π,π]

S(z,0) = S0(z)
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State-Space Reduction

Numerical Instability of Bred Vectors

dx
dt

= Ax

where A is non-normal constant (Jordan) matrix of dim(20):
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State-Space Reduction

The Ensemble Bred Vector (EBV), Defined

The Ensemble Bred Vector
Pick a norm and its size, for an ensemble of initial conditions.

Advance the ensemble of initial conditions using the BV

find the element from the ensemble that grew the most and use it to
resize the whole ensemble

repeat
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State-Space Reduction

The Lorenz63 using EBV
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Superposition of an ensemble of 1500 runs, over all times from 0 to 50. (We
show 150 of these), normalized to the initial condition 2-norm, set to 0.1.
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State-Space Reduction

The Cahn Hilliard CY92, using EBV

BV’s
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State-Space Reduction

The Non-Normal Linear Problem, using EBV

dx
dt

= Ax,

where A is non-normal and dim(20):
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New Projects

Bred Vectors, Some of our Conclusions

BV are attractive because they can be applied to legacy code

Established that BV is a nonlinear generalization of the LV, though it is
not clear how a finite-time quantity is to be compared to an
asymptotically-defined quantity, unless we are discussing a steady state.

Established that BV is norm dependent

In applications the norm matters a great deal when considering what is to
be analyzed.

But do they provide any practical information not contained in singular
vectors or LV?
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Stochastic Parameterization

Dimension Reduction via Stochastic Parameterization

dx = f (x)dt + sochastic term

x(0) = x0
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Stochastic Parameterization

Stochastic Parameterization

GOAL:

Produce stochastically-based subscale parameterization

Make greater contact with data (and data assimilation).

COLLABORATORS:
Darin Comeau (U Arizona),
Brad Weir (U Arizona), Jorge Ramı́rez (U. Nacional de Colombia), J. C.
McWilliams (UCLA), M. Banner (UNSW)
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Stochastic Parameterization

WAVE BREAKING DISSIPATION:

Geophysical Goals
How does dissipation at wave scales manifest itself at longer time scales?

What is the correct stochastic parameterization?

Can we parameterize dissipation in such a way that we use field data
more efficiently?
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Stochastic Parameterization

Scale Range of the Model

10 secs-months

100m-basin scale

Speed: waves > currents

kH ∼ 1
Applications:

climate dynamics (transport)
erodible bed dynamics
river plume evolution
algal/plankton blooms
Oil spills/pollution

J. McWilliams and J. M. Restrepo The Wave-driven OceanCirculation J. Phys. Oceanogr. (1999)
J. Restrepo, Wave-Current Interactions and Shore-connected Bars J. Estuarine Sci. (2001)
J. McWilliams J. M. Restrepo, E. Lane An asymptotic Theory for the Interaction of Waves and Currents in Coastal Waters J. Fluid Mechanics
(2004)
E. Lane, J. M. Restrepo, J. McWilliams Wave-Current Interaction: A comparison of radiation-stress and vortex-force representations J. Phys
Oceanogr (2007)
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Stochastic Parameterization

Lagrangian Motion

dX = Vdt

Figure: Deterministic
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Stochastic Parameterization

Lagrangian Motion Under White Capping

dXt = V(X, t)dt +dWt(X, t)

Figure: Stochastic
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Stochastic Parameterization

What Stochastic Model?

dXt = V(X, t)dt +dWt(X, t)

Experiments are needed to determine the right model

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.2

−0.1

0

0.1

X

Z

Figure: dW standard
white noise

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.2

−0.1

0

0.1

X

Z

Figure: dW with added
mean-reverting process

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.2

−0.1

0

0.1

X

Z

Figure: dW with added
jump process

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group ( University of Arizona )Climate, Assimilation of Data and Models June 2010 69 / 88



Stochastic Parameterization Projection/Filtering Strategy

Lagrangian/Eulerian Projections in Multiscale Setting

BASIC STRATEGY
Multiscale projection of systems of (mostly) hyperbolic equations between
the Eulerian and Lagrangian frames.
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Stochastic Parameterization Model

Current/Waves/Breaking Model

The momentum with breaking-generated stresses and diffusion:

∂vc

∂T
= V×Z−∇Φ+ 〈(b×Z)+b× (∇×b)+ [V×∇×b]− 1

2
∇|b|2〉+∇ ·R

where V = vc +ustokes, Z = ∇×v+2Ω and Φ = p0 + 1
2 |V|

2.

The ustokes is the wave contribution.
The break-stresses modify the vortex force and Bernoulli head.
The diffusion accounts for mixed-layer boundary-layer effects

The tracers obey
∂C
∂T

+V ·∇C =−b ·∇C+∇ ·Q.

J. M. Restrepo, Wave Breaking Dissipation in the Wave-Driven Ocean Circulation J. Phys. Oceanogr. (2007)
J.M. Restrepo, J. M. Ramı́rez, J.C. McWilliams & M. Banner Wave Breaking Dissipation and Diffusion in Waves and Currents , J. Phys.
Oceanogr 2010
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Stochastic Parameterization Model

Wave Breaking Diffusion

The observation is that wave breaking increases the size of the mixing layer
and this layer will then create a great deal of dissipation.

Rv ≈ ν
∂vh

∂ z
, Rh ≈ ν∇vh

Qv ≈ κ
∂C
∂ z

, Qh ≈ κ∇C.

We assume that
ν ∼ 〈`b

∣∣wb
∣∣〉, κ ∼ 〈`θ

∣∣wb
∣∣〉.

wb is the vertical component of the velocity associated with breaking, and the
mixing length is

`b = γη(x, t), `θ = αη(x, t).
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Stochastic Parameterization Model

Boundary Conditions

The surface boundary conditions at z = η(xh, t) are the following:

w =
Dη

Dt
, p = gρ0η +pa, ν

∂q
∂ z

=
1
ρ0

τ, κ
∂C
∂ z

= T .

Lead to (at z = 0)

wc = ∇ ·M−wb, pc = η
c +pa0−P

ν

(
∂vc

∂ z
+S
)

= τ−ν
∂bc

∂ z
, κ

∂C
∂ z

= T .

where the wave-induced adjustments (at z = 0) are

M≡
〈

uw
η

w
〉
, P≡

〈
pw

z η
w
〉
, S≡

〈
∂ 2uw

∂ z2 η
w
〉
.
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Determining b

How to determine b(X,T)?

Thus far we have answered the question:

if breaking occurs, how do waves and currents get modified, at these
large spatio-temporal scales?
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Determining b

How to determine b(X,T)?

How is the breaking velocity b determined?

it can be determined by field data...or
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Determining b

Steps to determine b(X,T):

Ingredients in determining b, using averaging and breaking kinematics:

individual breaker b̃ velocity are obtained parametrically from data.

breaking events need to be upscaled, to yield b.

kinematics of their occurrence can be tied to wave-group dynamics.

breaking events should be energetically consistent.

breaking events should yield a Poisson process in space-time.

Details in: J.M. Restrepo, J. M. Ramı́rez, J.C. McWilliams & M. Banner, Wave Breaking Dissipation and Diffusion in Waves and Currents , J.
Phys. Oceanogr 2010.
B. Weir & J. M. Restrepo, Stability of the Langmuir Circulation in the Presence of Wave Breaking, in preparation.
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Determining b

Individual breaker velocity b̃ are obtained parametrically:

Individual breaker velocity b̃ given by:
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∂tb̃+ b̃ ·∇b̃ =
1

Re
∆b̃+A,

∇ · b̃ = 0.

where

A = kbX (x)Y (y)Z (z)T (t)a

cf., Sullivan, McWilliams, Melville, JFM, 507 (2004).
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Determining b

Breaking events need to be upscaled to yield b

Model b := B+b′ as the random sum

b(xh,z,T) = ∑
(Xh,τ)∈Φ

bE(Xh,τ)(xh−Xh,z)δ (τ−T)

where
bE(xh−Xh,z) :=

1
τE

∫
τE

0
b̃(xh−Xh,z, t)dt

The ensemble average at (xh,z,T) of some functional F of the field b is:

〈F (b)〉(xh ,z,T)dT :=

〈
∑

(Xh ,τ)∈Φ

F (bE(Xh ,τ)(xh−Xh ,z))δ (T− τ)

〉

=
∫
R

∫
xh−ΩE

F (bE(xh−Xh ,z))Λ(dXh,dT)p(E)dE.

B(z) =
∫
R

[∫
Ω̃E

bE(Xh,z,T)dXhdT
]

λ p(E)dE
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Determining b

Kinematics of their occurrence can be tied to wave-group
dynamics

Waves expressed in terms of a carrier and an envelope:

η(Xh, t) = Re
{

ei(k̄h·xh+σ̄ t)
ρ(xh, t)eiθ(xh,t)

}
.

where

P(ρ(xh, t) ∈ dρ) =
ρ

2π〈η2〉
exp
{
− ρ2

2〈η2〉

}
a Rayleigh distribution.
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Determining b

Mean growth rate of wave group energy:

If δ := 1
〈σ〉

Dµ

Dt > δ ∗ ≈ 1.4×10−3 a breaking wave group.

where the material derivative is taken following the wave group.

Local wave energy∗ µ(t) := η2(xmax, t)k2(xmax, t).

xmax(t) is maximum of crest point in the group.

(k,〈σ〉) wavenumber, mean frequency.

∗ see Song and Banner, J Phys Oceanogr, 2002
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Determining b

2D Example

(Loading breakmovie)
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Space-time evolution of breaking
events shown in movie.
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breakmov.qt
Media File (video/quicktime)



Determining b

Breaking events should be energetically consistent:

Recall:

∂t b̃+ b̃ ·∇b̃ =
1

Re
∆b̃+ kbX (x)Y (y)Z (z)T (t)a,

∇ · b̃ = 0.

kb found by equating the energy E(Tw) from the break velocity field with the
total energy change of the surface ρ0g∆η2 .

E(Tw) :=
ρ0c

TwΩb

∫
Ωb[0,Tw]

Adxds =
0.55gρ0kb

k2 .

If ∆η2 is total change in η2(xmax, ·) during the breaking event, then Thus

kb = 1.82k2
∆η2 .
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Determining b

Breaking events should be Poisson process
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Results
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Results
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Results
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Closing

Closing Comments

Data assimilation with sparse data forces us to put emphasis on climate
model development.

The ”dimensional-curse” is unavoidable. In the long term, convergent
methods allow one to know how much a computational gain is possible
at the expense of optimality

Closure methods and stochastic parameterizations can lead to robust and
efficient models and hence dimension reduction...it exploits deep
knowledge of the system dynamics.

Taking advantage of different degrees of uncertainty among the degrees
of freedom can be a productive alternative to reduced representations of
background error fields
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Further Information

Further Information

Juan M. Restrepo
http://www.physics.arizona.edu/∼restrepo

Uncertainty Quantification Group
http://www.physics.arizona.edu/∼tolwinski

UQGQG
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