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Introduction

Began thinking about PF as a postdoc at SAMSI
Been lucky to work with

m A. Budhiraja (U NC) , K. Ide (U Maryland), CKRT. Jones (U NC)
and more recently

m Amit Apte (Tata Institute), and Sherry Scott (Marquette U)
Brief outline

m General background on Lagrangian DA & particle filters

= Applied to point-vortex model

m Some problems and potential solutions for PFs



Models and Observations

Model:

xRN —  state vector containing all relevant dynamic info
(e.g. flow velocity, temperate, salinity, etc)

M — deterministic
model of state evolution
dx = M(x, t)dt + G(x, t)dW;

G(X;, t)dW; — stochastic
component

Note: M is often nonlinear
Observations:

_ t .
on = H[Xj] + ¢
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H — observation operator

¢j — Observation error
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Lagrangian ocean observations

m Much data in the ocean is Lagrangian in nature

Problem: Lagrangian

L R —
/ — ] observations from drifters and
‘\ floats do not give data in terms
\\ of model variables

Solution: Include drifter
coordinates into model

m Direct method of assimilating Lagrangian data
(Kuznetsov, Ide, Jones, 2003)



Bayesian view of sequential DA — estimate flow field

t, L, t, ty
\ update obs update
Bayes Bayes

X = state
Y =obs p(x|Y)«x p(Y [x)p(x)

Key question: how do we obtain the distributions on RHS?



Point-vortex flows (2 vortices, 1 tracer)

vortices:
CIZ;K . L Iy
dat  2r 21 — 2o
dz; 0T X = {2z, 2,¢} — state variable
at 27z — z I —  circulation strength
tracer:
agr i Ty N EEY
dt_27T§—Z1 271’&—22
test bed:

m complex, nonlinear dynamics
m six-dimensional state space



Tracer paths

Stream function

m transformed to
lagrangian coordinates

m tracer paths for deterministic flow
m focus on four tracer IC
(0.3—0.6i,1—-0.6i,1—1i,2.4—24j)

dXi = M(X;, t)dt + G(Xt, t)dW;, W; — standard Wiener process

m model noise G(X;, t)dW; = odn with n ~ N(O, dfl)
— unresolved small scale effects & uncertainty
m tracers can experience multiple “types" of flow



Noisy flow examples

1 (< 4 P )]
20 ﬂk \Y 20 Z ?
1 \\"‘f 1 @\J
(£00)=1-1) (£(0)=1-0.6i)
experiment:

m generate one “truth run”

m observe tracer locations periodically (f; = jAt),
m Y =£9(4) = g/.f + On; with n; ~ N(0,1)

m use DA to infer vortex locations



Bayesian view of sequential DA

t, L, t, ty
\ update obs update
Bayes Bayes

X = state
Y =obs p(x|Y)«x p(Y [x)p(x)

Key question: how do we obtain the distributions on RHS?
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Sequential Monte Carlo

We can rewrite Bayes formula conditioning on all previous
observations

(X[ Yo,) o< R(YjPg)m (Xl Yo,i-1)

where R(Y)|x;) is the likelihood of the j observation and where

(X Yo,j-1) = /Pj(Xj|Xj1 ) (X—1]Yo,-1)dXj—1.

m transition probability, p;(X;|Xj_1), is tricky
m PF approximates integral with Monte Carlo
m resulting prior is discrete approx of w(x;| Yo j_1)



Particle filters: from {i_1 fo {

prediction step:

(x| Yo, 1) = {x5, WP (%) : wP (%)) = w;_1(x;_1) where X;_1 SDE x;}

discrete approx:

Particles are the 04 or

support of the 0.2 {Monte-Carlo step) J

discrete | e

approximations to =0 e e l

these distributions PRI o) ‘analysis” att, |
) ) , "prediction" at t
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associated with a x

weight, w;(x;)



FParticle filters: update/analysis at t = {;

Know (discrete approximation):
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_~prediction/prior
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FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page)
Bayes:

(x| Yo,) o< R(x;, Y;)m (x| Yo,j—1)

_—prediction/prior
Yo, 54
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FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page)
Bayes:
(x| Yo,1) o< R(xj, Yj)m (x| Yo,i—1)
Likelihood:

) Y !H(X)\z]
2 202

(recall x = {&, z1, 22}, but H(x) = &)

R(x,Y)= exp[H();

__—Pprediction/prior
Yo, 54
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FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page)
Bayes:
(x| Yo,) o< R(x;, Yj)m (x| Yo,i-1)
Likelihood:

)Y !H(X)\z]
2 202
(recall x = {&, 21,20}, but H(x) =€)
Update (discrete Bayes):

R(x,Y)= exp[H();

(%] Yo.1) = {x, wj(x)}

__—Pprediction/prior
Yo, 54
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Farticle filter algorithm

Sequential Monte-Carlo algorithm

Generate the “truth” — one numerical simulation of SDE
Generate N “particles”, i.e., N copies of the initial state
Evolve the N-particle “cloud” to next observation instant
Observe the tracer location (obs = “truth” + “uncertainty”)

Calculate R(x;, Y;) and posterior distribution 7;
(posterior cloud is a reweighted estimate of prior cloud)

Filter approximates hidden states (vortex locations)

28 5 (1) = Ex[z0.2)(8)]
Posterior cloud is now best estimate of current state,
repeat steps 3-7 until t; = tsny
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Movie
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The good and bad of particle filters

Benefits
m Naturally handles nonlinearity

m Don’t need to make Gaussian assumptions on prior or
posterior distributions
— no problem with bi-modal or skew distributions

Drawbacks

m degeneracy
— a few particles hold all the weight — poor MC approx

m loss of support
— particle cloud pulls away from observations

m poor performance in high dimensional problems
Strategy
m some form of importance sampling on the prior

—note, can perturb observations, see
(Houtekamer & Derome, 1995), (Burgers et al 1998)




Back to the prior

In the most basic sense, importance sampling is sampling from
a distribution that has been biased/nudged/perturbed/altered
somehow and accounting for it.

(x| Yo,j-1) = /Pj(XjIXj—1)7T(X/1Yo,j1)de—1~
To do so here, we can alter

m 7(X;_1|Yo,_1), posterior from j — 1! observation
or
m pj(Xj|xj—1), transition probability

Typically, the former is altered when applying PFs to DA
for example...



PF divergence and resampling

problem: degeneracy
= all the weight gets centered on a few particles
m well known and studied (Doucet et al)
solution: resampling
idea:
m pick subset of “best”
particles k=1,...,M
m make my copies of each -
particle where
My o Wj(Xj(k)) where
Z my = N

reasonable:
m doesn’t add sampling error
m stochastic evolution to ;1 “spreads out” cloud



Application of PF with resampling

Experiment:
m run 2,000 truth runs (500 x 4 IC)

m use particle filter (PF) & EKF to
approx vortex trajectories

m Calculate RMS error between
true vortex locations &
assimilated approximations

m Failure if error exceeds threshold

Failure rate:

03-06/i|1-06i|1—i|24-24i
PF 7.8% 3.0% | 4.6% 12.0%
EKF 4.6% 78.2 % | 0.6% 2.0%

PF does well in strongly nonlinear case, but we can do better



When a PF diverges, how else can it fail?

problem: losing support
m prior cloud pulls away from observation

0.5F ' ' ;
r >
2" 0_ ‘ wd
05 " g
-1 -0.5 0 0.5 1 15

notice:
m cloud pulls away, but vortex approx OK



Modified particle filter: monitor cloud

At each observation, calculate discrepancy factor
5 = exp[—n%; 'l /2]
where r; = |Y; — Mﬂ and X ; covariance matrix

0

0 02 0.4 06 08 1 1.2

If 6; beneath a small threshold (~ 0.01) employ backtracking



Modified particle filter: backtracking

idea:
m when §; < threshold, back up to observation instant j — 2

reinitialize:
m double number of particles that approx = (xj_z| Yy j—2)

m evolve forward to t;, ¢, assimilating along the way
m sometimes different noise realization enough

idea: perturb states in 7(x;_2|Yp j—2)
m perturb tracer coordinates (not hidden state)

two schemes:

cloud expansion directed doubling



Modified particle filters: back up

At observation instant t;_5 ...

Cloud expansion Directed doubling

= Add i.i.d.normal RV to = pick M particles with
each tracer component of highest weight
each particle’s state m bias particles along a line
(2N particles) toward (& away from) Yj_»
-0.4 :i 05
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Modified particle filters: old initialization

At observation instant t;_5 ...

Cloud expansion Directed doubling

= Add i.i.d.normal RV to = pick M particles with
each tracer component of highest weight
each particle’s state m bias particles along a line
(2N particles) toward (& away from) Yj_»
03 »(;.4.5
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Modified particle filters:

At observation instant t;_5 ...

Cloud expansion Directed doubling

= Add i.i.d.normal RV to = pick M particles with
each tracer component of highest weight
each particle’s state m bias particles along a line
(2N particles) toward (& away from) Yj_»
N
0.4 e s
% 05 ﬁ .2:0 5'5 ¥
-06 -;),6
16 1.8 2 0.65
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Backtracking particle filters: some results

Experiment:
m 2,000 truth runs (500x4 IC)

m T4y =60, At=1,6 =0.02,
o =0.02, N = 400 particles

03-06/i|1-06/i|1—j|24-24i

standard PF 7.8% 3.0% | 4.6% 12.0%
standard BPF w/doubling 6.4% 2.6% | 2.6% 9.6%
cloud expanding BPF 0.4% 02% | 0.2% 4.0%
directed doubling BPF 0.4% 0.0% | 0.0% 4.8%
perturbed observation BPF 1.6% 1.6% | 2.0% 7.0%
extended Kalman filter 4.6% 78.2% | 0.6% 2.0%
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Backtracking particle filter: more results

Experiment:
m IC&0)=1-0.6/
m 500 truth runs for each At

m 0.5 <At<12
m Thny =60, At =1,5=0.02, 0 =0.02, N = 400 particles

100 ' ' ! .
EKF
p
;—E 501 Directed Doubling BPF 4
2 Standard PF
Perturbed Observation BPE
‘ Cloud expanding BPF

0 2 4 6 8 10 12
observation period, A t



Another approach to combat PF divergence

Recently proposed by van Leeuwen (preprint, QJRMetSoc, 2010)

“Nudge” model evolution of particles toward next observation
m new to PF for DA in geosciences, but old idea
m effectively just importance sampling on p;(x;j|x;_1)
m rewrite prior distribution
pj(Xj1Xi—1)

T = [ el )
(gl

p; (Xj|Xj—1)m(Xj—1] Yo i—1)dXj—1.

m again, approximate with Monte Carlo
Xj ~ P (Xj1x;—1)m(x; 1] Yo,i1)
m adjust weights to correct for biasing with likelihood ratio

pj(XjXj—1)
p; (Xj1Xj-1)



Choosing how to nudge/bias

Rewrite state evolution:
f deterministic evolution and j3; stochastic model error

Xi=f(Xj—1)+ 8 or  Bi=X—f(Xp-1)

Now, 3; ~ p(x;|X;_1), and we can ‘nudge’ 3; (drawing from
p*(xj|xj—1)) to move H(X;) closer to ;.

Van Leeuwen proposes
Xj = f(Xj-1) + B+ K(Y; = H(X,-1))

but “we have enormous freedom here, we can choose ‘any’
term that forces the model towards the future observations.”

Note — | take this as a word of caution.



“Nudging” for point vortex problem

The scheme we used (for small dimensional problems, most
“reasonable” schemes should work)

Xj = f(Xji—1) + B; + K(Y; — H(f(Xj-1)))

m Find the line between next observation and a particle
location at ¢ if it moved from ;_4 to f; deterministically, Ad

m Evolve particle forward in time biasing Weiner process by
Ad/(2N).

m Update likelihood ratio during evolution

pP(X1Xi-1) o

w; (X))

wi(x;) < R(x;, Y))——"—=
90 2 05 Y0 gl ™



Example sample paths

1

0.9r

0.81

0.7

0.67

0.51

0.4 . . . . . .
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

blue — unbiased
pink — biased
m This choice of biasing is most likely not optimal

m “optimal” choice would be the smallest available (in some
norm)



Movie — PF diverging



Movie — PF with “nudging” model toward observation




Discussion

m PF with importance sampling addresses degeneracy and
loss of support for Lagrangian DA

m Seems this strategy could be useful for high-dimensional
problems

m If done well, IS can vastly reduce number of particles
needed

m requires intelligent biasing
“If an unlikely event occurs, it is very likely to occur in the most
likely way.” —anonymous

m optimization problem on J[b(t)] conditioned on particles
landing near observations, linearization OK

m possibly ideas from Jonathan’s talk



