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Introduction

Began thinking about PF as a postdoc at SAMSI
Been lucky to work with

A. Budhiraja (U NC) , K. Ide (U Maryland), CKRT. Jones (U NC)

and more recently
Amit Apte (Tata Institute), and Sherry Scott (Marquette U)

Brief outline
General background on Lagrangian DA & particle filters
Applied to point-vortex model
Some problems and potential solutions for PFs
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Models and Observations

Model:

x ∈ RN — state vector containing all relevant dynamic info
(e.g. flow velocity, temperate, salinity, etc)

dx = M(x, t)dt + G(x, t)dWt

M — deterministic
model of state evolution

G(Xt , t)dWt — stochastic
component

Note: M is often nonlinear

Observations:

Y o
j = H[xt

j] + εj

H — observation operator

εj — observation error
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Lagrangian ocean observations

Much data in the ocean is Lagrangian in nature

Problem: Lagrangian
observations from drifters and
floats do not give data in terms
of model variables

Solution: Include drifter
coordinates into model

Direct method of assimilating Lagrangian data
(Kuznetsov, Ide, Jones, 2003)
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Bayesian view of sequential DA – estimate flow field
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Point-vortex flows (2 vortices, 1 tracer)

vortices:

dz∗1
dt

=
i

2π
Γ1

z1 − z2

dz∗2
dt

=
i

2π
Γ2

z2 − z1

tracer:

dξ∗

dt
=

i
2π

Γ1

ξ − z1
+

i
2π

Γ2

ξ − z2

x = {z1, z2, ξ} — state variable
Γ — circulation strength

test bed:

complex, nonlinear dynamics
six-dimensional state space
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Tracer paths

Stream function

transformed to
lagrangian coordinates
tracer paths for deterministic flow
focus on four tracer IC

(0.3− 0.6i , 1− 0.6i , 1− i , 2.4− 2.4i)

dXt = M(Xt , t)dt + G(Xt , t)dWt , Wt – standard Wiener process

model noise G(Xt , t)dWt = σdη with η ∼ N(0,dt I)
– unresolved small scale effects & uncertainty
tracers can experience multiple “types" of flow
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Noisy flow examples

( ξ(0) = 1− i ) ( ξ(0) = 1− 0.6i )

experiment:
generate one “truth run”
observe tracer locations periodically (tj = j∆t),
Yj = ξo(tj) = ξt

j + θηj with ηj ∼ N(0, I)
use DA to infer vortex locations
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Bayesian view of sequential DA
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Sequential Monte Carlo

We can rewrite Bayes formula conditioning on all previous
observations

π(xj |Y0,j) ∝ R(Yj |xj)π(xj |Y0,j−1)

where R(Yj |xj) is the likelihood of the j observation and where

π(xj |Y0,j−1) =

∫
pj(xj |xj−1)π(xj−1|Y0,j−1)dxj−1.

transition probability, pj(xj |xj−1), is tricky
PF approximates integral with Monte Carlo
resulting prior is discrete approx of π(xj |Y0,j−1)
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Particle filters: from tj−1 to tj

prediction step:

π(xj |Y0,j−1) = {xj ,w
p
j (xj) : wp

j (xj) = wj−1(xj−1) where xj−1 SDE−−→ xj}

discrete approx:

Particles are the
support of the
discrete
approximations to
these distributions

Each particle is
associated with a
weight, wj(xj)
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Particle filters: update/analysis at t = tj
Know (discrete approximation):

π(xj |Y0,j−1) (from last page)

Bayes:

π(xj |Y0,j) ∝ R(xj ,Yj)π(xj |Y0,j−1)

Likelihood:

R(x ,Y ) = exp[
H(x) · Y

θ2 − |H(x)|2

2θ2 ]

(recall x = {ξ, z1, z2}, but H(x) = ξ)

Update (discrete Bayes):

wj(xj) ∝ R(xj ,Yj)w
p
j (xj)

π(xj |Y0,j) = {xj ,wj(xj)}
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Particle filter algorithm

Sequential Monte-Carlo algorithm

1 Generate the “truth” – one numerical simulation of SDE
2 Generate N “particles”, i.e., N copies of the initial state
3 Evolve the N-particle “cloud” to next observation instant
4 Observe the tracer location (obs = “truth” + “uncertainty”)
5 Calculate R(xj ,Yj) and posterior distribution πj

(posterior cloud is a reweighted estimate of prior cloud)
6 Filter approximates hidden states (vortex locations)

za
(1,2)(tj) = Eπj [z(1,2)(tj)]

7 Posterior cloud is now best estimate of current state,
repeat steps 3-7 until tj = tfinal
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Movie
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Movie

18 / 39



UNIVERSITY-LOGO

The good and bad of particle filters

Benefits
Naturally handles nonlinearity
Don’t need to make Gaussian assumptions on prior or
posterior distributions
– no problem with bi-modal or skew distributions

Drawbacks
degeneracy
– a few particles hold all the weight→ poor MC approx
loss of support
– particle cloud pulls away from observations
poor performance in high dimensional problems

Strategy
some form of importance sampling on the prior

–note, can perturb observations, see
(Houtekamer & Derome, 1995), (Burgers et al 1998)
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Back to the prior

In the most basic sense, importance sampling is sampling from
a distribution that has been biased/nudged/perturbed/altered
somehow and accounting for it.

π(xj |Y0,j−1) =

∫
pj(xj |xj−1)π(xj−1|Y0,j−1)dxj−1.

To do so here, we can alter

π(xj−1|Y0,j−1), posterior from j − 1st observation

or
pj(xj |xj−1), transition probability

Typically, the former is altered when applying PFs to DA
for example...
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PF divergence and resampling

problem: degeneracy
all the weight gets centered on a few particles
well known and studied (Doucet et al)

solution: resampling

idea:
pick subset of “best”
particles k = 1, . . . ,M
make mk copies of each
particle where
mk ∝ wj(x

(k)
j ) where∑

mk = N

reasonable:
doesn’t add sampling error
stochastic evolution to tj+1 “spreads out” cloud
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Application of PF with resampling

Experiment:
run 2,000 truth runs (500 × 4 IC)
use particle filter (PF) & EKF to
approx vortex trajectories
Calculate RMS error between
true vortex locations &
assimilated approximations
Failure if error exceeds threshold

Failure rate:

0.3− 0.6i 1− 0.6i 1− i 2.4− 2.4i
PF 7.8% 3.0 % 4.6% 12.0%

EKF 4.6% 78.2 % 0.6% 2.0%

PF does well in strongly nonlinear case, but we can do better
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When a PF diverges, how else can it fail?

problem: losing support
prior cloud pulls away from observation

notice:
cloud pulls away, but vortex approx OK
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Modified particle filter: monitor cloud

At each observation, calculate discrepancy factor

δj = exp[−rjΣ
−1
j r ′j /2]

where rj = |Yj − µp
j | and Σj covariance matrix

If δj beneath a small threshold (∼ 0.01) employ backtracking
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Modified particle filter: backtracking

idea:
when δj < threshold, back up to observation instant j − 2

reinitialize:
double number of particles that approx π(xj−2|Y0,j−2)

evolve forward to tj+1, assimilating along the way
sometimes different noise realization enough

idea: perturb states in π(xj−2|Y0,j−2)

perturb tracer coordinates (not hidden state)

two schemes:

cloud expansion directed doubling
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Modified particle filters: back up

At observation instant tj−2 ...

Cloud expansion

Add i.i.d.normal RV to
each tracer component of
each particle’s state
(2N particles)

Directed doubling

pick M particles with
highest weight
bias particles along a line
toward (& away from) Yj−2
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Modified particle filters: old initialization

At observation instant tj−2 ...

Cloud expansion

Add i.i.d.normal RV to
each tracer component of
each particle’s state
(2N particles)

Directed doubling

pick M particles with
highest weight
bias particles along a line
toward (& away from) Yj−2
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Modified particle filters: reinitialize

At observation instant tj−2 ...

Cloud expansion

Add i.i.d.normal RV to
each tracer component of
each particle’s state
(2N particles)

Directed doubling

pick M particles with
highest weight
bias particles along a line
toward (& away from) Yj−2
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Backtracking particle filters: some results

Experiment:
2,000 truth runs (500×4 IC)
Tfinal = 60, ∆t = 1, δ = 0.02,
σ = 0.02, N = 400 particles

0.3− 0.6i 1− 0.6i 1− i 2.4− 2.4i
standard PF 7.8% 3.0% 4.6% 12.0%

standard BPF w/doubling 6.4% 2.6% 2.6% 9.6%
cloud expanding BPF 0.4% 0.2% 0.2% 4.0%
directed doubling BPF 0.4% 0.0% 0.0% 4.8%

perturbed observation BPF 1.6% 1.6% 2.0% 7.0%
extended Kalman filter 4.6% 78.2% 0.6% 2.0%
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Backtracking particle filter: more results

Experiment:
IC ξ(0) = 1− 0.6i
500 truth runs for each ∆t
0.5 ≤ ∆t ≤ 12
Tfinal = 60, ∆t = 1, δ = 0.02, σ = 0.02, N = 400 particles
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Another approach to combat PF divergence

Recently proposed by van Leeuwen (preprint, QJRMetSoc, 2010)

“Nudge” model evolution of particles toward next observation
new to PF for DA in geosciences, but old idea
effectively just importance sampling on pj(xj |xj−1)

rewrite prior distribution

π(xj |Y0,j−1) =

∫
pj(xj |xj−1)

p∗j (xj |xj−1)
p∗j (xj |xj−1)π(xj−1|Y0,j−1)dxj−1.

again, approximate with Monte Carlo

Xj ∼ p∗j (xj |xj−1)π(xj−1|Y0,j−1)

adjust weights to correct for biasing with likelihood ratio

pj(xj |xj−1)

p∗j (xj |xj−1)
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Choosing how to nudge/bias

Rewrite state evolution:
f deterministic evolution and βj stochastic model error

Xj = f (Xj−1) + βj or βj = Xj − f (Xj−1)

Now, βj ∼ p(xj |xj−1), and we can ‘nudge’ βj (drawing from
p∗(xj |xj−1)) to move H(Xj) closer to Yj .

Van Leeuwen proposes

Xj = f (Xj−1) + βj + K (Yj − H(Xj−1))

but “we have enormous freedom here, we can choose ‘any’
term that forces the model towards the future observations.”

Note – I take this as a word of caution.
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“Nudging” for point vortex problem

The scheme we used (for small dimensional problems, most
“reasonable” schemes should work)

Xj = f (Xj−1) + βj + K (Yj − H(f (Xj−1)))

Find the line between next observation and a particle
location at tj if it moved from tj−1 to tj deterministically, ∆d
Evolve particle forward in time biasing Weiner process by
∆d/(2N).
Update likelihood ratio during evolution

wj(xj) ∝ R(xj ,Yj)
p(xj |xj−1)

p∗(xj |xj−1)
wp

j (xj)
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Example sample paths

blue – unbiased
pink – biased

This choice of biasing is most likely not optimal
“optimal” choice would be the smallest available (in some
norm)
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Movie – PF diverging
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Movie – PF with “nudging” model toward observation
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Discussion

PF with importance sampling addresses degeneracy and
loss of support for Lagrangian DA
Seems this strategy could be useful for high-dimensional
problems
If done well, IS can vastly reduce number of particles
needed
requires intelligent biasing

“If an unlikely event occurs, it is very likely to occur in the most
likely way.” – anonymous

optimization problem on J[b(t)] conditioned on particles
landing near observations, linearization OK
possibly ideas from Jonathan’s talk
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