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Goals
1 Generate samples of the rare event

2 Accurately estimate their probability

Applications
Device reliability

Options pricing

Chemical reactions

Data assimilation?
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Example: the Kuroshio current

Figure: Top: Mean flow paths in the large meander state. Bottom:
Mean flow paths in the small meander state
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Figure: Projected view of transitions.
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Rare event simulation for diffusions

X ε is the solution of the stochastic differential equation

dX ε(t) = b(X ε(t)) dt +
√
ε σ(X ε(t)) dW (t), X ε(0) = x0

How should we approximate

E
[
e−

1
ε
g(X ε)

]
where g is a functional of the path of X ε?

Or the special case
P (X ε ∈ A)
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If we use the standard Monte Carlo estimator,

δε =
1
M

M∑
j=1

e−
1
ε
g(X ε

j ) X ε
j i.i.d.,

the variance is

Var(δε) =
1√
M

(
E
[
e−

1
ε
2g(X ε)

]
− E

[
e−

1
ε
g(X ε)

]2
)

and the relative error is√
Var(δε)

E
[
e−

1
ε
g(X ε)

] =
1√
M

√
Rε − 1

where

Rε =
E
[
e−

2
ε
g(X ε)

]
E
[
e−

1
ε
g(X ε)

]2
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We’ll focus on

Rε =
E
[
e−

2
ε
g(X ε)

]
E
[
e−

1
ε
g(X ε)

]2

First Notice that Rε ≥ 1 from Jensen’s inequality.

The Laplace Principle for X ε gives us constants γ1 and γ2
such that

E
[
e−

1
ε
g(X ε)

]
= e

−γ1+o(1)

ε and E
[
e−

1
ε
2g(X ε)

]
= e

−γ2+o(1)

ε

Therefore

Rε = exp
(

2γ1 − γ2 + o(1)

ε

)
Since γ2 ≤ 2γ1 this is very bad news. We’ll need exponentially
many samples.
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More precisely

Rε = exp
(

2γ1 − γ2 + o(1)

ε

)
where

γ1 = inf
ϕ∈AC([0,T ]),
ϕ(0)=x0

{∫ T

0

1
2
‖σ−1(ϕ̇− b)‖2 ds + g (ϕ)

}
, (1)

and

γ2 = inf
ϕ∈AC([0,T ]),
ϕ(0)=x0

{∫ T

0

1
2
‖σ−1(ϕ̇− b)‖2 ds + 2g (ϕ)

}
, (2)
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Data assimilation picture:
Suppose for example that the observation model is of the form

Yn = r (Xtn ) +
√
ε ξn,

where the ξn are i.i.d. Gaussian.
For a particle filter the weights for each particle will look like:

w(x) = e−
1
ε
(y−r(x))2

= e−
1
ε
gy (x)

The effective sample size of the ensemble is related to the
quantity

E
[
e−

1
ε
gy (X ε)

]2

E
[
e−

2
ε
gy (X ε)

] =
1

Rε

Other methods suffer related problems.
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Importance sampling.
What’s the problem? We generate a huge number of samples
that result in near zero values of e−

1
ε
g(X ε

j ) and if we’re lucky we
get one sample with a relatively large value of e−

1
ε
g(X ε

j ).

Solution: Try to “pull” the process toward the region where
e−

1
ε
g(X ε

j ) is relatively large.

Instead of sampling the solution, X ε, of

dX ε(t) = b(X ε(t)) dt +
√
ε σ(X ε(t)) dW (t)

sample the solution, X̂ ε, of

dX̂ ε(t) =
(

b(X̂ ε(t)) + σ(X̂ ε(t))v(t , X̂ ε(t))
)

dt+
√
ε σ(X̂ ε(t)) dW (t).

and assign a weight Z ε to each sample so that

E
[
e−

1
ε
g(X̂ ε)Z ε

]
= E

[
e−

1
ε
g(X ε)

]
.
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The importance sampling estimator is:

δε =
1
M

M∑
j=1

e−
1
ε
g(X̂ ε

j )Z ε
j

where (X̂ ε
j ,Wj) are independent samples of (X̂ ε,W ) and, from

Girsanov’s formula,

Z ε
j = exp

(
− 1√

ε

∫ T

0
v(t , X̂ ε

j (t)) dWj(t)−
1
2ε

∫ T

0
v(t , X̂ ε

j (t))2 dt

)
.

Now we have

rel err =
1√
M

√
Rε − 1 and Rε =

E
[
e−

2
ε
g(X̂ ε) (Z ε)2

]
E
[
e−

1
ε
g(X ε)

]2

We want to choose the function v to make Rε ≈ 1.
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Now

Rε ∼ exp
(

2γ1 − γ2 + o(1)

ε

)
where, as before

γ1 = inf
ϕ∈AC([0,T ]),
ϕ(0)=x0

{∫ T

0

1
2
‖σ−1(ϕ̇− b)‖2 ds + g (ϕ)

}
,

and γ2 is now given by (at least when v is smooth),

γ2 = inf
ϕ∈AC([0,T ]),
ϕ(0)=x0

{∫ T

0
L(s, ϕ(s), ϕ̇(s)) ds + 2g (ϕ)

}

where

L(t , x , β) = ‖σ−1(x)(β − b(x))‖2

− 1
2
‖σ−1(x)(β − b(x)− σ(x) v(t , x))‖2

We want to choose the v that makes γ2 as large as possible.
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If we want Rε ≈ 1 we had better have that γ2 = 2γ1.
Such an estimator is called log-efficient.

Note: log-efficiency only implies that Rε ∼ eo(1)/ε.

We’ll see that it is possible to do much better.
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The common “optimal twist” method corresponds to the choice

v(t , x) = σ(x)−1( ˙̂ϕ0,x0(t)− b(x))

where

ϕ̂0,x0 ∈ arg min
ϕ∈AC([0,T ]),
ϕ(0)=x0

{∫ T

0

1
2
‖σ−1(ϕ̇− b)‖2 ds + g (ϕ)

}
.

In this case

X̂ ε(t) = ϕ̂0,x0(t) +
√
ε

∫ t

0
σ(X ε(s)) dW (s),

One can think of ϕ̂0,x0 as the most likely path of X ε (in the small
ε limit) when all possible trajectories are reweighted by e−

1
ε
g(·).

Unfortunately this method is typically not even log-efficient.
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Focusing on the case that g(ϕ) = g(ϕ(T )), consider the
function

Φε(t , x) = Et ,x

[
e−

1
ε
g(X ε(T ))

]
.

It’s easy to see that the importance sampling estimator of
E0,x0

[
e−

1
ε
g(X ε(T ))

]
= Φε(0, x0) with

v ε = −εσ
T Φε

x
Φε

has zero variance, i.e. Rε = 1.

Φε solve a linear second order parabolic PDE with terminal
condition Φε(T , x) = e−

1
ε
g(x).

Of course there’s no hope of finding a global solution of the
PDE in more than a few dimensions.
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Instead we’ll consider the ε→ 0 limit of the log transform of Φε,

Gε = −ε log Φε

which solves the second order Hamilton-Jacobi Equation

−Gε
t − bGε

x +
1
2

(
σT Gε

x

)2
− ε

2
σσT Gε

xx = 0, Gε(T , x) = g(x)

(3)
In terms of Gε

v ε = −σT Gε
x .

So we can set
v0 = −σT Gx

where G is the viscosity solution of

−Gt − bGx +
1
2

(
σT Gx

)2
= 0, G(T , x) = g(x)

and hope for the best.
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G has the control representation

G(t , x) = inf
ϕ∈AC([t ,T ]),
ϕ(t)=x

{∫ T

t

1
2
‖σ−1(ϕ̇− b)‖2 ds + g (ϕ(T ))

}
.

Notice that γ1 = G(0, x0).

G is the rate appearing in the Laplace Principle.

Furthermore, where G is differentiable,

b(t , x) + σ(t , x) v0(t , x) = ˙̂ϕt ,x (t)

where

ϕ̂t ,x = arg min
ϕ∈AC([t ,T ]),
ϕ(t)=x

{∫ T

t

1
2
‖σ−1(ϕ̇− b)‖2 ds + g (ϕ(T ))

}
.
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For v0 we have that

dX̂ ε(t) = ˙̂ϕt ,X̂ ε(t) dt +
√
ε σ(X̂ ε(t)) dW (t).

An analogue of this estimator, in a discrete time setup, first
appears in

DUPUIS, P. and WANG, H. (2004). Importance sampling, large
deviations, and differential games. Stochastics. 76 481–508.

for problems in which one can compute G by hand.

Our approach: Solve the optimization problem for ϕ̂t ,X̂ ε(t)

on-the-fly at each point along the trajectory of X̂ ε.

This procedure can be carried out at reasonable cost and, as
we prove, the estimator has very favorable error properties.
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Illustration of vanishing error :

X ε =
√
εW , x0 = 0.1

Estimate E
[
e−

1
ε
g(X ε(1))

]
where g(x) =

{
1
2(1− x)2, x ≥ 0,
1
2(1 + x)2, x < 0.

ε
standard MC

Rε
optimal twist

Rε
new
Rε

our
estimate E

h
e−

1
ε

g(Xε(1))
i

1 1.0340 1.2564 1.1746 0.8368 0.8369
2−1 1.0800 1.6636 1.3494 0.7225 0.7227
2−2 1.3084 3.5982 1.6971 0.4848 0.4852
2−3 2.2672 25.526 2.2903 0.1983 0.1986
2−4 7.7807 977.66 2.5990 0.3316×10−1 0.3323×10−1

2−5 81.266 – 1.5193 0.1127×10−2 0.1129×10−2

2−6 6008.4 – 1.0200 0.1666×10−5 0.1666×10−5

M = 109
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What happens at the discontinuities of v0?

X ε =
√
εW , x0 = 0

Estimate E
[
e−

1
ε
g(X ε(1))

]
where g(x) =

{
1
2(1− x)2, x ≥ 0,
1
2(1 + x)2, x < 0.

ε
standard MC

Rε
optimal twist

Rε
new
Rε

our
estimate E

h
e−

1
ε

g(Xε(1))
i

1 1.0336 1.3034 1.1762 0.8372 0.8373
2−1 1.0800 1.8775 1.3714 0.7212 0.7217
2−2 1.3110 5.2088 1.7604 0.4805 0.4793
2−3 2.2918 65.397 2.4711 0.1868 0.1870
2−4 8.3531 8805.1 3.3540 0.2607×10−1 0.2584×10−1

2−5 121.08 – 4.7635 0.4715×10−3 0.4744×10−3

2−6 18596 – 5.6141 0.1574×10−6 0.1591×10−6

M = 109
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Theoretical Issues:
For any chosen discretization scheme

relative error ≈
√

statistical
error + relative

bias

For the Euler discretization we prove

Theorem
If G is smooth on [0,T ], then

statistical
error ∼ O

(
4
ε

)
+O (ε) and relative

bias ∼ O
(
4
ε

)
∗If G is smooth on [0,T ), then

statistical
error ∼ C +O

(
4
ε

)
+O (ε) and relative

bias ∼ O
(
4
ε

)
One can decrease the step size 4 algebraically with ε instead
of exponentially.
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A nontrivial test problem:

uεt = νuεxx −
1
ν

V ′(uε) +
√
ε η

where η is a space-time white noise, ν > 0 is a small
parameter, and

V (u) = (1− u2)2.

The deterministic equation has two steady states:

u− ≈ −1 and u+ ≈ +1

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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We’ll try to approximate

pε = P

(∫ 1

0
uε(T , x) dx ≥ 0

)

A classic paper by Faris and Jona-Lasinio shows that the Large
Deviations action functional for uε is

I(u) =

∫ T

0

∫ 1

0

(
ut − νuxx +

1
ν

V ′(u)

)2

dxdt ,

i.e. that
−ε log pε −→ inf

u: u(0,·)=u−R 1
0 u(T ,x) dx≥0

I(u).
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Outline of a continuation strategy:

1 Compute the first few local minimizers of I(u) for the initial
state X̂ ε(0) = u− with time horizon T .

2 Compute v0(0, X̂ ε(0)) using the local minimizer with lowest
value of I(u).

3 Compute X̂ ε(4).

4 Using the local minimizers computed in step 1 as initial
conditions find new local minimizers given the state X̂ ε(4)
and a time horizon of T −4.

5 ...
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We track each local min by continuation and assume that the
global minimizer is one of these local min.

number of local
min tracked

relative error our estimate

2 0.28 9.509× 10−9

3 0.28 9.346× 10−9

4 0.28 9.462× 10−9

M = 100, ν = 0.05, and ε = 0.1
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Revisiting the optimal twist
If we assume that the initial condition is N

(
a, 1

εΓΓT ) , the Large
Deviations rate functional becomes

F(ϕ) =
1
2
‖Γ−1(ϕ(0)− a)‖2 +

∫ T

0

1
2
‖σ−1(ϕ̇− b(ϕ))‖2 ds + g (ϕ)

If F is convex then the optimal twist is log-efficient.

Is this convexity reasonable for weather/climate data
assimilation problems?

Note that this doesn’t require that the predictive distribution is
log-convex.
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Incorporating optimal twist in ensemble
schemes
For example we could

1 Approximate the current posterior distribution by an
N(a, ΓΓT ).

2 Minimize F .
3 Generate samples using the control found in step 2 and

calculate the first few moments of the next posterior.
4 Weight and resample (as in a particle filter) or transform

the samples (as in an ensemble Kalman filter).
5 Set a to be the new posterior mean and ΓΓT to be the new

covariance matrix... repeat.
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