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Motivation for data assimilation on climate timescales

Data assimilation in meteorology and for 20th century reanalyses

Data assimilation for reconstructing the climate of the last millennium

- choosing from ensemble members (Hugues Goosse et al.)

- prescribing large-scale circulation with Forcing Singular Vectors
(Gerard van der Schrier et al.)

- prescribing large-scale circulation with Pattern Nudging
(Martin Widmann et al.)

Challenges (version 1)

Content



Proxy-based estimates of climate variability still contain 
considerable uncertainties  

Motivation for DA for the climate of the last millennium

(IPCC AR4, chap 6)

Issues:

seasonal 
representativity

influence of methods

stationarity of 
statistical 
relationships used to  
estimate large-scale 
climate from sparse 
proxies

incomplete error 
estimates
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- some, but not all proxy-based reconstructions provide spatial fields 

- uncertianties on regional scales may be even larger  

- large areas for which nothing is know, for instance in the SH

Motivation for DA for the climate of the last millennium

(IPCC AR4, chap 6)



Estimates for past climate 
can also be obtained from 
simulations

- process understanding

- spatially complete

- independent estimate that  
can be checked for    
consistency with proxies
(on large- or regional  
scale) 

There are only a few 
attempts until now to 
combine paleosimulations 
and observations through 
data assimilation.

Sophisticated data 
assimilation methods are 
used in meteorology and 
oceanography.

Motivation for DA for the climate of the last millennium

(IPCC AR4, chap 6)



Global mean temperature in transient GCM simulations

Aims of data assimilation (state estimation): 

- capture random, non-forced variability in a simulation

- provide information for variables (types and locations) for which 
no empirical estimates exist

- provide error estimates

Motivation for DA for the climate of the last millennium

Interannual to decadal 
temperature variations 
have a large chaotic 
(non-forced) 
component and thus 
agreement of simulations 
and observations is very 
unlikely.



DA in weather forecasting and for atmospheric reanalyses

Observations assimilated at ECMWF 
over 24 hours on 13 Feb. 2006

(courtesy ECMWF)

DA used to 

- define the initial conditions for  
weather forecast

- reconstruct atmospheric states  
for second half of 20th century  
(NCEP and ERA40 reanalyses)
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- Observations
- Observation operator (or forward model, can be non-linear)
- Background error covariance matrix
- Observation error covariance matrix

The optimal analysis xa is defined by the 
nonlinear least squares problem

Variational DA in meteorology
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(true states follow model equations S)

Solved using adjoints, needs good linear approximation of dynamical system 



Sequential data assimilation and Kalman Filter

If we base the analysis xk
a at time k only on observations at time k 

and on background fields xk
b at this time the analysis solves

(following Swinbank et al. 2002)

Approximate solution (exact for linear system) is given by
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The 20th century reanalysis project 

locations of surface and sea level pressure observations 

(courtesy G. Compo)

An international collaborative project led by NOAA 
(Gil Compo, Jeff Whitaker, Prashant Shardeshmuk) 

Tropospheric reanalyses for last 100 years using only surface observations

Shown to work with 4D-Var and Ensemble Kalman Filter, but not with 3D-Var 
(as used in NCEP/NCAR and ERA40 reanalyses)
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Analysis xa is a weighted average of the first guess xb and observation yo

Using 56 member ensemble 

HadISST monthly boundary conditions (Rayner et al. 2003)
Version 1 (1908-1958): T62, 28 level NCEP CFS03 atmospheric model
Version 2 (1871-2008): T62, 28 level NCEP GFS08ex model 

- time-varying CO2, solar and volcanic radiative forcing

Algorithm uses an ensemble to produce the weight K  that 
varies with the atmospheric flow and the observation network

yo is only surface pressure, 
Hxb is guess surface pressure
x is pressure, air temperature, winds, humidity, etc. at all levels and 
gridpoints.

Ensemble Kalman Filter Algorithm
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(courtesy 
G. Compo)



Whitaker, Compo, Thepaut (2009)

Full NCEP 
Operational
(>1,000,000 obs)

Ensemble Filter
(~3800 surface
pressure obs)
RMS = 31 m

ECMWF “Surface”
4D-Var
(~3800 surface
pressure obs)
RMS = 31 m

ECWMF “Surface”
3D-Var
(~3800 surface
pressure obs)
RMS = 142 m

Surface pressure network 
reduced to ~1930’s

500 hPA Height Analyses for 20 Feb 2005 12Z



Motivation for data assimilation (state estimation) 
in paleoclimatology

Assimilation could substantially improve paleo simulations

- account for internally generated, random variability 

whose temporal evolution can not be simulated in forced simulations 

or whose statistical properties are unrealistically simulated

- account for unrealistic and/or incomplete forcings 

- account for unrealistic responses to forcings 

and through the combination of empirical data and simulations/physics lead 
to better estimates for past climate states (needs to be shown through 
validation).



Data assimilation for the climate of the last millennium 

Challenge because empirical estimates  
constrain only 

- a few locations or large-scale patterns
(i.e. a low-dimensional subspace)

- seasonal and longer variability

Using standard assimilation methods is  
not straightforward, because

- methods need to be efficient enough  
for long simulations

- model and proxy errors unknown

- technical/mathematical problems with
observations integrated over long  
periods (e.g. linearisations and  
adjoints)

Few attempts have been undertaken

Proxy sites back to 1000/1500/1750 AD



Approach 1

Use EMIC ensemble simulations and chose ensemble members 
consistent with proxy evidence for temperature

(H. Goosse, M. Mann, H. Renssen and A. Timmermann)

Approach 2

Prescribe atmospheric circulation with target states 
based on proxy evidence or idealized states

- use EMIC and forcing singular vectors

(G. van der Schrier, J. Barkmeijer)

- use GCM and pattern nudging

(M. Widmann, H. von Storch, R. Schnur, I. Kichner, T. Kleinen)

(Widmann, Goosse, van der Schrier, Schnur and Barkmeijer, 2010,
Climate of the Past, in press)

Data assimilation for the climate of the last millennium



Both approaches attempt to bring certain aspects of 
a simulation in agreement with either proxy-based evidence 
or idealized situations.

They thus 

- do not formally attempt to provide optimal state estimates 
based on taking into account model and observation error,

- are not formulated within the standard framework of 
classical data assimilation.

Data assimilation for the climate of the last millennium



Simulation of the climate of the last 1000 years : selecting 
among a relatively large ensemble of simulations the one that 
is the closest to the observed climate.

The experiment selected is the one that minimise a cost 
function CF for a particular period :

Using paleoclimate proxy-data to select the best 
realisation in an ensemble
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Where n is the number of reconstructions used in the model/data comparison. Fobs is the 
reconstruction of a variable F, while Fmod is the simulated value of the corresponding 
variable. wi is a weight factor.

Goosse et al. 2006



Example using 5 ensemble members and two constraints (observations, in 
red). The best member selected is displayed in bold while the other ones 
are dashed

Using paleoclimate proxy-data to select the best 
realisation in an ensemble

Goosse et al. 2006
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Description of LOVECLIM

LOVECLIM (3D)

ECBilt
(atmosphere)

AGISM
(ice sheets)

CLIO
(sea ice-ocean)

VECODE
(terr. biosphere)

LOCH
(oceanic carbon cycle)

ECBilt (Opsteegh et al., 1998)
Quasi-geostrophic atmospheric model (prescribed 
cloudiness; T21, L3).

CLIO (Goosse and Fichefet, 1999)
Ocean general circulation model coupled to a 
thermodynamic-dynamic sea ice model (3 x 3, L20).

VECODE (Brovkin et al., 2002)
Reduced-form model of the vegetation dynamics and of the 
terrestrial carbon cycle (same resolution as ECBilt).

LOCH (Mouchet and François, 1996)
Comprehensive oceanic carbon cycle model (same 
resolution as CLIO).

AGISM (Huybrechts, 2002)
Thermomechanical model of the ice sheet flow + visco-
elastic bedrock model + model of the mass balance at the 
ice-atmosphere and ice-ocean interfaces (10 km x 10 km, 
L31).

(courtesy H. Goosse)



Correlation proxies with HadCRUT3 (decadal filter)

Correlation proxies with simulation (1400-1995, averaged over types)

(Goosse et al., 2010)

Reconstructing temperature using 56 proxy records,
96 ensemble members and 11 combinations of cost 
function and model parameters (types)



Simulated and proxy-based temperatures

Reconstructing temperature using 56 proxy records,
96 ensemble members and 11 types

(Goosse et al., 2010)



HadCRUT3 and simulated temperatures

Reconstructing temperature using 56 proxy records,
96 ensemble members and 11 types

(Goosse et al., 
2010)



Keep more than one ensemble member.

Number of similar members in next step proportional to weight.

The weight is proportional to the likelihood of the model state, knowing the 
observations. derived from comparing simulation with observations.

Time

Extension of ensemble member selection to particle filter

(courtesy H. Goosse)



Determined from twin experiments (pseudo reality, lower complexity).

Levels off after about 30 members.

Skill as a function of ensemble members

(courtesy H. Goosse)



Assimilation of large-scale circulation states 

General comments

- large-scale circulation has a strong internally 
generated random component 

- forced component difficult to simulate

- circulation influences regional temperatures

Approach 

rely on model to estimate hemispheric temperature 
response  to forcings and on empirical estimates to 
constrain aspects of the large-scale circulation

estimated large-scale circulation are based on 
statistical upscaling and stability assumptions



Forcing singular vectors (van der Schrier and Barkmeijer) 

Aim: keep circulation anomaly close to target pattern

reconstructed state

simulated state



Forcing singular vectors

- add extra forcing such that target state is reached

- used with ECBILT-CLIO 

change = linearized model + perturbation

difference between original and 
perturbed simulation 

chose forcing such that 
target state is reached, minimize: 

(van der Schrier and Barkmeijer 2005)



Forcing singular vectors

Winter streamfunction anomaly 1790-1820 

simulated 

reconstructed 

(Van der Schrier and Barkmeijer, 2005, 2007)

- good (but not perfect) 
agreement in this case

- if the target pattern is not
within the set of patterns
produced by the model,
the target state is not
well approximated



Simulated and reconstructed temperature anomaly 
using circulation forcing singular vectors

simulation reconstruction

DJF

JJA



Pattern Nudging

field expansion

additional nudging term

- push simulated amplitude of given pattern towards prescribed  
values without directly affecting orthogonal or suppressing variability

- no adjoints or ensembles needed

- simulation of the response of small scales, synoptic-scale
variability, and non-nudged variables 



ECHO-G
ECHAM4 coupled with HOPE-G

ECHAM4
- 19 atmospheric levels
- T30, approx. 3.8 x 3.8 degrees

HOPE-G
- 20 ocean levels
- approx. 2.8 x 2.8 degrees
- dynamic-thermodynamic sea-ice 

Model is flux corrected, with prescribed vegetation and land ice.

Simulation speed of ~500 years/month on NEC SX6 8 processors.



Pattern nudging test runs: definition of target pattern

EOF1 of monthly 
NH SLP from
NCEP reanalysis

we assume that the 
amplitude of these 
patterns can be 
estimated from proxies

(Widmann et al., 2010)



Definition of target pattern

regression of monthly
relative vorticity on 
model level 14 (850 hPa)
on SLP PC1 based on NCEP

these are the target patterns

we nudge levels 3-10
950 hPa – 500 hPa

we don‘t want to estimate 
this from proxies



Pattern nudging towards the monthly NCEP AO Index 

t_relax = 24 h



SLP response and EOF1

response (target AOI = 2) SLP EOF1 (AOI = 1)

potential reasons for differences: 
vorticity nudging is not perfect, EOF not situation, 
sampling, model bias



SLP and temperature response 

Nudging towards negative NAM index

Winter SLP EOF1 Simulated SLP and temp. anomaly (NAM index -2)

(Widmann et al., 2010)



Stormtracks (DJF) with and without nudging
7y,  t_relax = 12 h, mean TEC = 1.8
variance of 2.5d-6d bandpass filtered Z500

no nudging with nudging



Summary for the 3 methods presented

Methods for assimilation of palaeodata exist for EMICs and GCMs, 
results are encouraging.

They are simpler and less mathematically rigorous than standard DA 
methods and do neither provide optimal state estimates nor 
uncertainties.

Forcing Singular Vectors and Pattern Nudging deal with 
time-averaged empirical information in an unclean way.

Ensemble Member Selection and particle filter are closest to the 
standard framework.

Unrealistic model mean and variability causes problems.

No systematic method intercomparison yet.



Challenges and questions (version 1)

Can EnKF be adapted to assimilate time-averaged information?
(talk by Greg Hakim) 

Is EnKF or particle filter preferable for assimilation of time-averaged 
information (non-linear dynamical system)?

Is particle filter feasible with full-complexity GCMs?

How well is the observation operator known and how stable 
is it in time?

Is DA based on forward modelling always preferable to assimilating 
information from upscaling/inverse modelling?
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