Data → Models NCAR Summer School, Mathematics & Climate July 14, 2010

Christopher M. Danforth

Department of Mathematics & Statistics Complex Systems Center Vermont Advanced Computing Center

> University of Vermont

4 日 > 4 日 > 4 日 > 4 日 > 1 日 > 9 4 0

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Data ---- Models

Model Error Another Toy Global Models

Outline

Lyapunov Exponents

Atmosphere Solar System

Data Assimilation

Toy Climate Models

Model Error

Another Toy Global Models Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 2/39

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト 三臣 -

日 うへで

Lorenz, Tellus, 1960

"If we should observe a hurricane, we might ask ourselves, 'Why did this hurricane form?' If we could determine the exact initial conditions at an earlier time, and if we should feed these conditions, together with a program for integrating the exact equations, into an electronic computer, we should in due time receive a forecast from the computer, which would show the presence of a hurricane. $\text{Data} \rightarrow \text{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 3/39

< ロ > < 母 > < 臣 > < 臣 > 臣 の < @</p>

₽ ୬९୯

Lorenz, Tellus, 1960

- "If we should observe a hurricane, we might ask ourselves, 'Why did this hurricane form?' If we could determine the exact initial conditions at an earlier time, and if we should feed these conditions, together with a program for integrating the exact equations, into an electronic computer, we should in due time receive a forecast from the computer, which would show the presence of a hurricane.
- We then might still be justified in asking why the hurricane formed. The answer that the physical laws required a hurricane to form from the given antecedent conditions might not satisfy us, since we were aware of that fact even before integrating the equations."

 $\text{Data} \rightarrow \text{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 3/39

Outline

Lyapunov Exponents Atmosphere

Solar System

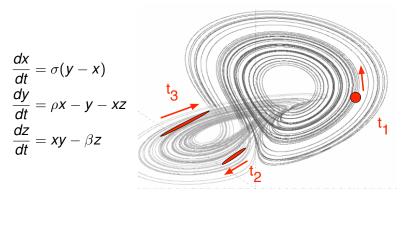
Data Assimilation Toy Climate Models

Model Error

Another Toy Global Models $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models


Model Error Another Toy Global Models

Frame 4/39

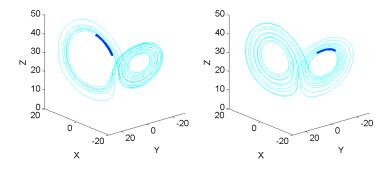
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣○

日 うくぐ

Lorenz (1963) System

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System


Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 5/39

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

Lorenz (1963) System

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

æ

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 6/39

Lorenz (1963) System

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

(Loading Movie)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Patil et. al., PRL, 2001

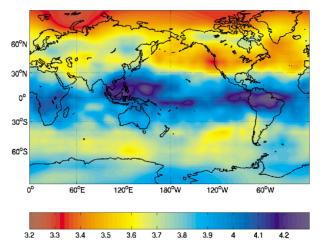


FIG. 3 (color). Average locations of regions with low BV dimensions are shown through the pointwise time average of the BV dimension calculated from ensemble forecasts every 12 h from 10 February 2000 to 30 July 2000. Red (blue) depicts regions in which the BV dimension tends to be low (high).

$\text{Data} \rightarrow \text{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 8/39 日 つへへ

▲□▶★舂▶★≧▶★≧▶ 差 のの

Outline

Lyapunov Exponents Atmosphere Solar System

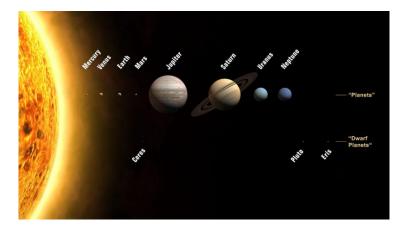
Data Assimilation Toy Climate Models

Model Error

Another Toy Global Models $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models


Model Error Another Toy Global Models

Frame 9/39

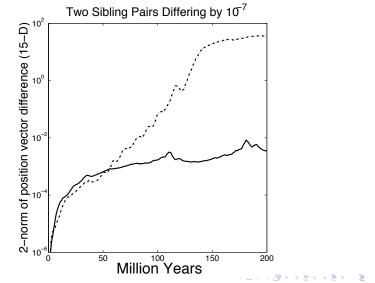
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣○

日 うくぐ

Question: Is our Solar System Chaotic?

ヘロト 人間 トイヨト イヨト

$\text{Data} \rightarrow \text{Models}$


Lyapunov Exponents Atmosphere Solar System

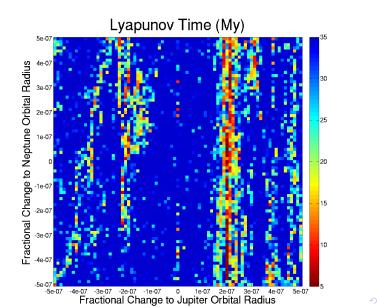
Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 10/39 日 のへへ

Answer: Chaos/Order Separatrix Passes Directly Through the Current Observational Error Ball

 $\mathsf{Data} \to \mathsf{Models}$

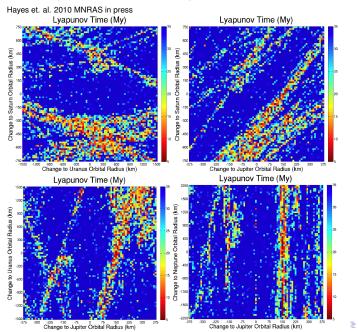

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Stability of the Solar System

Hayes et. al. 2010 MNRAS in press

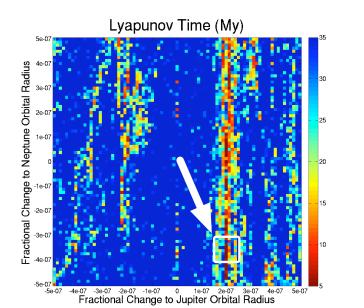

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Stability of the Solar System


 $\mathsf{Data} \to \mathsf{Models}$

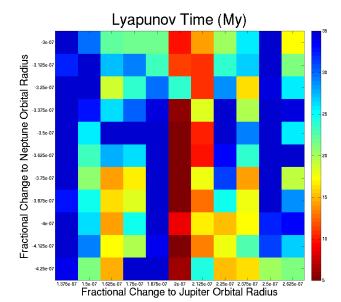
Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Hayes et. al. 2010 MNRAS in press

$\mathsf{Data} \to \mathsf{Models}$


Lyapunov Exponents Atmosphere Solar System

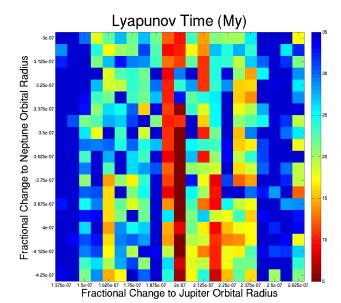
Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 13/39 - 日 つへへ

Hayes et. al. 2010 MNRAS in press

$\mathsf{Data} \to \mathsf{Models}$

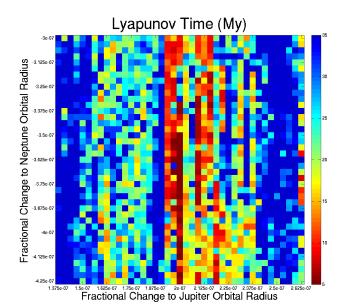

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 13/39 日 つへで

Hayes et. al. 2010 MNRAS in press


$\mathsf{Data} \to \mathsf{Models}$

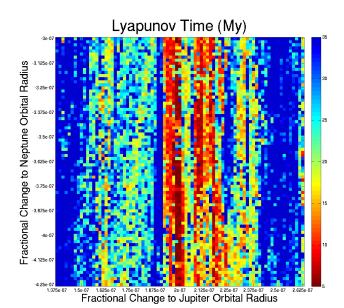
Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Hayes et. al. 2010 MNRAS in press

$\mathsf{Data} \to \mathsf{Models}$


Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 13/39 日 クへへ

Hayes et. al. 2010 MNRAS in press

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 13/39 日 つくへ

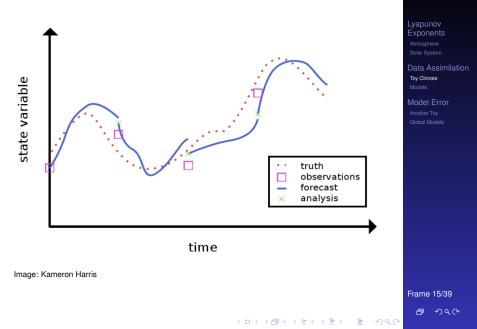
Outline

Lyapunov Exponents Atmosphere Solar System

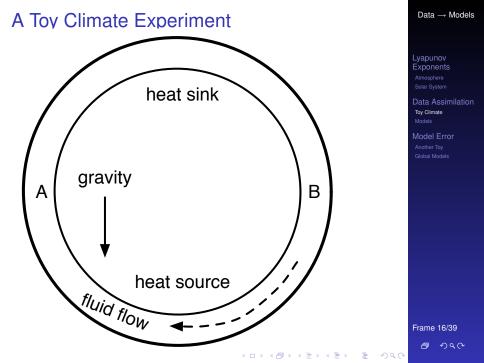
Data Assimilation Toy Climate Models

Model Error

Another Toy Global Models $\mathsf{Data} \to \mathsf{Models}$


Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models


Model Error Another Toy Global Models

Frame 14/39

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣○

$\mathsf{Data} \to \mathsf{Models}$

A Toy Climate Experiment

$\text{Data} \to \text{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

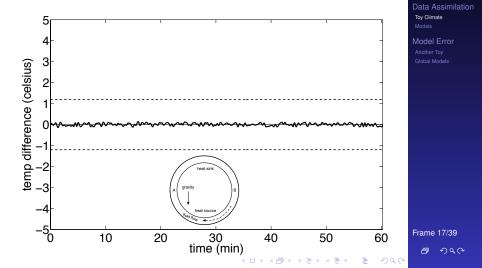
Model Error Another Toy Global Models

A Toy Climate Experiment

$Data \rightarrow Models$

Exponents

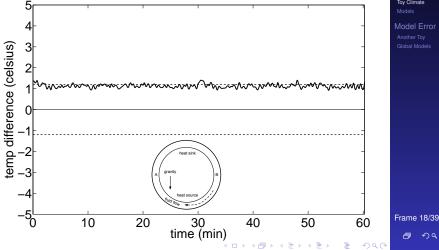
Data Assimilation Toy Climate


Model Error

Credit: Glenn Russell

Frame 16/39 ð

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

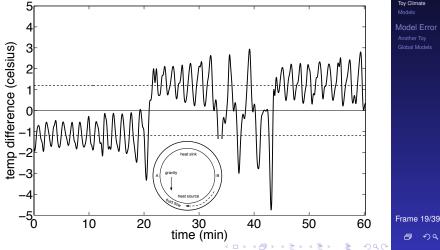

Typical Observations of Delta Temp (A-B) Forcing: Small Stable Conduction

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Typical Observations of Delta Temp (A-B) Forcing: Medium Stable Convection

 $Data \rightarrow Models$


Lyapunov Exponents

Data Assimilation Toy Climate

Sac

Model Error

Typical Observations of Delta Temp (A-B) Forcing: Large **Chaotic Convection**

 $Data \rightarrow Models$

Lyapunov Exponents

Data Assimilation Toy Climate

JAC.

Model Error

Outline

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error

Another Toy Global Models $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

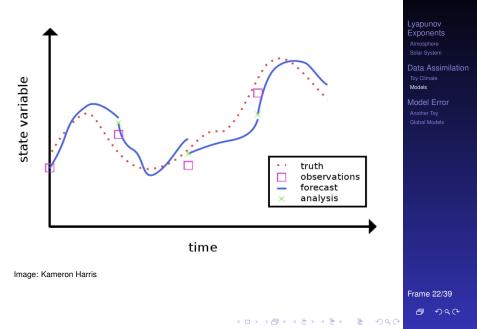
Frame 20/39

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣○

日 うくで

CFD Simulation

Lyapunov Exponents Atmosphere Solar System


Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

(Loading Movie)

Ridouane et. al. International Journal of Heat & Mass Transfer 2010

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\mathsf{Data} \to \mathsf{Models}$

$\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 22/39

Image: Kameron Harris

▲□▶ ▲□▶ ▲□▶ ★□▶ ▲□ ● の

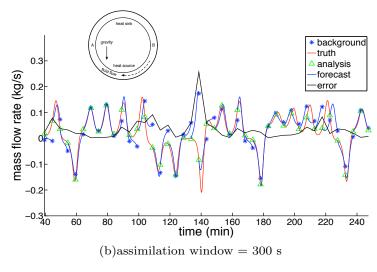


Image: Kameron Harris

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 22/39 ළ රාදු ර

<□ > < @ > < E > < E > E のQ

Toy Climate Storm

Exponents 0.72 200 100、 0.7 Models 0、 Model Error -100 0.68 ×ຶ -200 -300 0.66 -400 0.64 -500 20 10 heat sinl 0.62 0 -10 gravity 10 5 -20 0 -5 0.6 -10 -30 -15 -20 x₂ heat sour х, Image: Kameron Harris Frame 23/39 ð ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $\mathsf{Data} \to \mathsf{Models}$

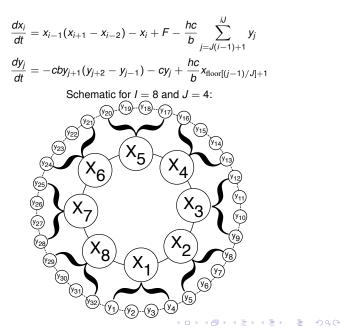
Outline

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

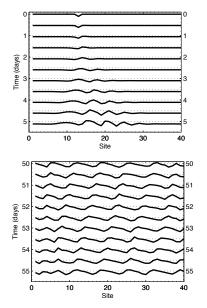

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 24/39

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣○

Lorenz and Emanuel, 1996



 $\text{Data} \rightarrow \text{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

 $\text{Data} \rightarrow \text{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

System

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F - \frac{hc}{b} \sum_{j=J(i-1)+1}^{iJ} y_j$$
$$\frac{dy_j}{dt} = -cby_{j+1}(y_{j+2} - y_{j-1}) - cy_j + \frac{hc}{b} x_{\text{floor}[(j-1)/J]+1}$$

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 27/39 ඕ නඉල

▲□▶▲□▶▲□▶▲□▶ = のへぐ

System

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F - \frac{hc}{b} \sum_{j=J(i-1)+1}^{iJ} y_j$$
$$\frac{dy_j}{dt} = -cby_{j+1}(y_{j+2} - y_{j-1}) - cy_j + \frac{hc}{b} x_{\text{floor}[(j-1)/J]+1}$$

Model

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F$$

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 27/39 ඕ නඉල

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Model Dynamics

Credit: Ross Lieb-Lappen

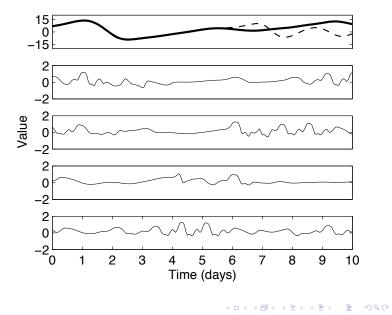
$\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

15

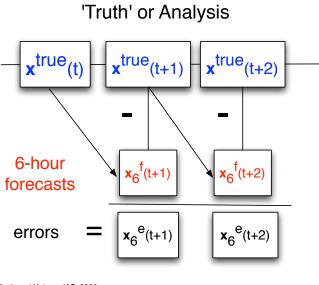

15

Frame 28/39

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Model Dynamics

Credit: Ross Lieb-Lappen


$\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

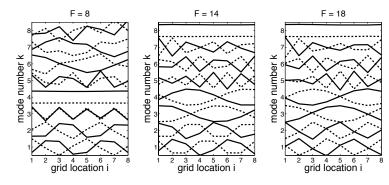
Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Model Error Estimation

Danforth and Kalnay, JAS, 2008

 $\text{Data} \to \text{Models}$


Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Model Error Estimation

Exponents Atmosphere Solar System Data Assimilation

Toy Climate Models

Model Error Another Toy Global Models

Frame 29/39

Danforth and Kalnay, JAS, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○④

System

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F - \frac{hc}{b} \sum_{j=J(i-1)+1}^{iJ} y_j$$

$$\frac{dy_j}{dt} = -cby_{j+1}(y_{j+2} - y_{j-1}) - cy_j + \frac{hc}{b}x_{\text{floor}[(j-1)/J]+1}$$

Model

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F$$

$\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

System

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F - \frac{hc}{b} \sum_{j=J(i-1)+1}^{iJ} y_j$$

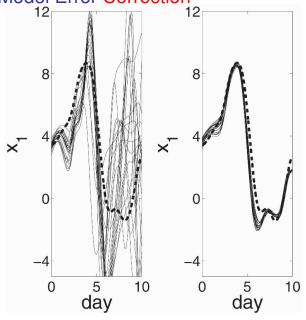
$$\frac{dy_j}{dt} = -cby_{j+1}(y_{j+2} - y_{j-1}) - cy_j + \frac{hc}{b}x_{\text{floor}[(j-1)/J]+1}$$

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F$$

Model Error Correction

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F + G(\vec{x})$$

(ロ)、


 $\text{Data} \rightarrow \text{Models}$

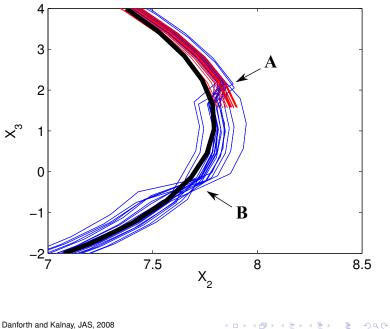
Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Model Error Correction

 $\text{Data} \to \text{Models}$


Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Danforth and Kalnay, JAS, 2008

Model Error Correction

$\text{Data} \rightarrow \text{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 31/39

Outline

Atmosphere

Toy Climate Models

Model Error Another Toy **Global Models** $Data \rightarrow Models$

Exponents

Data Assimilation

Model Error Global Models

Frame 32/39 ~ ~ ~ ~

P

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣○

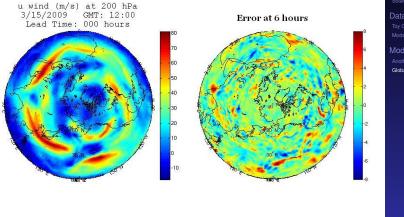
National Center for Environmental Prediction Global Forecast Model

(Loading Movie)

Credit: Nicholas Allgaier

 $\text{Data} \to \text{Models}$

Lyapunov Exponents Atmosphere Solar System


Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 33/39

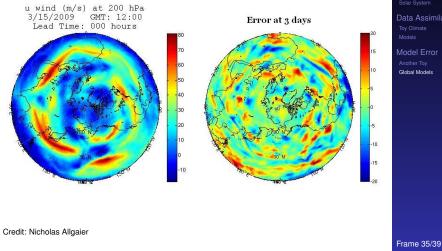
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Forecast Error

Credit: Nicholas Allgaier

$\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

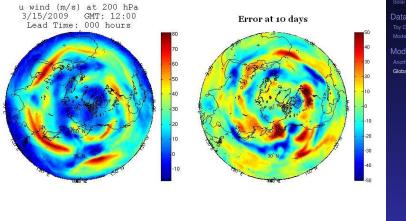

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 34/39 日 つへで

ふりっつ 前 (中国)(中国)(中国)

Forecast Error



$Data \rightarrow Models$

Exponents

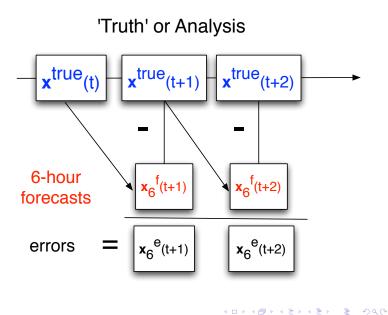
ð

Forecast Error

Credit: Nicholas Allgaier

$\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

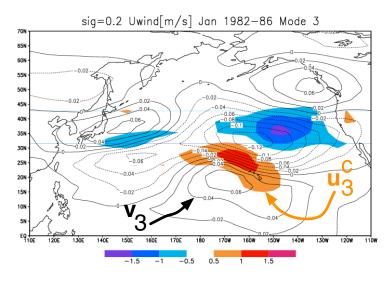

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 36/39 日 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Estimating Model Error


$\text{Data} \rightarrow \text{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

SVD Modes for Regression

Danforth, Kalnay, Miyoshi, MWR 2007

 $\mathsf{Data} \to \mathsf{Models}$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models

Frame 38/39

・ロト・西ト・山田・山田・山下

Acknowledgements

Thanks to ... 🖉

University of Maryland

Eugenia Kalnay, James A. Yorke Robert F. Cahalan, NASA GFSC Takemasa Miyoshi, JMO, Hong Li, Chaos group (Hunt, Kalnay, Kostelich, Ott, Patil, Sauer, Szunyogh, Yorke) <u>Bates College</u>

Chip Ross & Bonnie Shulman, Math Mark Semon & George Ruff, Physics <u>University of Vermont</u>

Darren Hitt, Mechanical Engineering Floyd Vilmont, Lab Students

El Hassan Ridouane, Postdoc Nicholas Allgaier, MS Ross Lieb-Lappen, MS Kameron D. Harris, MS

National Aeronautics and Space Administration

tional Science Foundation

EPSCOR Experimental Program to Stimulate Competitive Research

VERVINT AUWARED COMPUTING CENTER UNIVERSITY OF VERMONT

$Data \rightarrow Models$

Lyapunov Exponents Atmosphere Solar System

Data Assimilation Toy Climate Models

Model Error Another Toy Global Models