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Lorenz, Tellus, 1960

I “If we should observe a hurricane, we might ask
ourselves, ‘Why did this hurricane form?’ If we could
determine the exact initial conditions at an earlier
time, and if we should feed these conditions,
together with a program for integrating the exact
equations, into an electronic computer, we should in
due time receive a forecast from the computer, which
would show the presence of a hurricane.

I We then might still be justified in asking why the
hurricane formed. The answer that the physical laws
required a hurricane to form from the given
antecedent conditions might not satisfy us, since we
were aware of that fact even before integrating the
equations.”
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I “If we should observe a hurricane, we might ask
ourselves, ‘Why did this hurricane form?’ If we could
determine the exact initial conditions at an earlier
time, and if we should feed these conditions,
together with a program for integrating the exact
equations, into an electronic computer, we should in
due time receive a forecast from the computer, which
would show the presence of a hurricane.

I We then might still be justified in asking why the
hurricane formed. The answer that the physical laws
required a hurricane to form from the given
antecedent conditions might not satisfy us, since we
were aware of that fact even before integrating the
equations.”
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Lorenz (1963) System

dx
dt

= σ(y − x)

dy
dt

= ρx − y − xz

dz
dt

= xy − βz
t1

t2

t3
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Lorenz (1963) System
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FIG. 3 (color). Average locations of regions with low BV di-
mensions are shown through the pointwise time average of the
BV dimension calculated from ensemble forecasts every 12 h
from 10 February 2000 to 30 July 2000. Red (blue) depicts re-
gions in which the BV dimension tends to be low (high).

effort in forecasting is devoted to the process of data
assimilation, whereby measurements are used to adjust
the representation of the atmosphere in the computer
model so as to make it more closely conform to the actual
current state of the atmosphere. The data assimilation is
the primary means to establish the initial conditions for
the forecast computations. Clearly, this is key to weather
forecasting, since the quality of the forecasts depends on
the accuracy of the initial conditions. On the other hand,
the full atmospheric state is not measured, but rather only
field variables at a finite number of measurement loca-
tions. Furthermore, these measurements have errors. At
any given time t0, there is inevitably a discrepancy !D!t0"
between the true atmospheric state and its representation
in the computer model. Now consider a later time t1 . t0,
and suppose that in a region of interest there is a low BV
dimension at time t1. This implies that any local discrep-
ancy !D!t1" between the true state and its representation in
the computer model lies predominantly in the “unstable
subspace,” the space spanned by the few vectors that
contribute most strongly to the low BV dimension [9]. We
conjecture that in many cases this information can yield a
substantial improvement in forecasting. In particular, the
implication is that the data assimilation algorithm should
correct the computer model state by moving it closer to
the observations along the direction of the unstable sub-
space since that is where the true state most likely lies
[10]. Current data assimilation techniques (e.g., that used
by the NWS) do not take this into account. Furthermore,
we suggest the need to study the results if the number of
forecasts in the ensemble is substantially increased. This
would give more bred vectors. For example, with 100 bred
vectors it might result that a very large fraction of the

time the local BV dimension is six or less. If so, then our
remarks above on data assimilation would apply to this
larger (but still relatively low) dimensional case. (With
the current smaller ensemble of five bred vectors available
from the NWS, such a question cannot be resolved.)

In conclusion, our main result is a means of establish-
ing local low-dimensional behavior (the BV dimension)
of a spatiotemporally chaotic system, and the demonstra-
tion that the Earth’s atmosphere exhibits locally low-
dimensional behavior [11]. Furthermore, we conjecture
that this finding can be used as a basis for improving data
assimilation techniques for weather forecasting.
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Question: Is our Solar System Chaotic?
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Answer: Chaos/Order Separatrix Passes
Directly Through the Current Observational
Error Ball
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Stability of the Solar System
Hayes et. al. 2010 MNRAS in press
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Fractal Basin Boundaries
Hayes et. al. 2010 MNRAS in press
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Image: Kameron Harris
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A Toy Climate Experiment
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A Toy Climate Experiment

Credit: Glenn Russell
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Typical Observations of Delta Temp (A-B)
Forcing: Small
Stable Conduction
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Typical Observations of Delta Temp (A-B)
Forcing: Medium
Stable Convection

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

3

4

5

time (min)

te
m

p 
di

ffe
re

nc
e 

(c
el

si
us

)

A B

fluid flow

gravity

heat sink

heat source



Data→ Models

Lyapunov
Exponents
Atmosphere

Solar System

Data Assimilation
Toy Climate

Models

Model Error
Another Toy

Global Models

Frame 19/39

Typical Observations of Delta Temp (A-B)
Forcing: Large
Chaotic Convection
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CFD Simulation

(Loading Movie)

Ridouane et. al. International Journal of Heat & Mass Transfer 2010
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Data Assimilation
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Figure 4: Two views of the 2D thermosyphon’s attractor.
In (a), a time-delay reconstruction, with τ = 60 s, is used
to plot the FLUENT system attractor using the monitored
mass flow rate. In (b), data points show x1 and x2 of the EM
analyses generated by EKF with an assimilation window of
30 s. Each is colored by the bred vector growth rate over the
prior window. Note how trajectories that move through the
far edge of either lobe create distinctive loops near the center
of the opposite lobe after a regime change.

analysis and background errors of 0.000506 and 0.0703
kg/s, respectively. The analysis error is less than the
observational noise, but the background error is on the
order of the climatological mean (RMS) mass flow rate√
〈q2〉 ≈ 0.076 kg/s. In other words, background fore-

casts are practically meaningless, but the filter “knows”
this and weights the observations heavily over the back-
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(a)assimilation window = 120 s
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(b)assimilation window = 300 s
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(c)assimilation window = 600 s

Figure 5: Results of 3D-Var assimilating the same data are
shown for three different assimilation windows. In (a), ob-
servations are made frequently enough to keep the forecast
close to the truth. In (b), the filter has satisfactory overall
performance (RMSE ≈ 35% of

p
〈q2〉); note the error spike

around 8×103 s when the forecast and truth end up in differ-
ent regimes. With the largest window (c), DA is incapable of
keeping the forecast in the correct regime. The largest errors
tend to occur at regime changes.

ground forecasts. The unobserved model state variables
are still poor predictions.

Model errors further complicate the implementation
of DA in realistic forecasting scenarios. For instance, to
test the effect of model errors on different DA schemes,
Kalnay et al. [24] created a Lorenz truth with r = 28
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analyses generated by EKF with an assimilation window of
30 s. Each is colored by the bred vector growth rate over the
prior window. Note how trajectories that move through the
far edge of either lobe create distinctive loops near the center
of the opposite lobe after a regime change.

analysis and background errors of 0.000506 and 0.0703
kg/s, respectively. The analysis error is less than the
observational noise, but the background error is on the
order of the climatological mean (RMS) mass flow rate√
〈q2〉 ≈ 0.076 kg/s. In other words, background fore-

casts are practically meaningless, but the filter “knows”
this and weights the observations heavily over the back-
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(c)assimilation window = 600 s

Figure 5: Results of 3D-Var assimilating the same data are
shown for three different assimilation windows. In (a), ob-
servations are made frequently enough to keep the forecast
close to the truth. In (b), the filter has satisfactory overall
performance (RMSE ≈ 35% of

p
〈q2〉); note the error spike

around 8×103 s when the forecast and truth end up in differ-
ent regimes. With the largest window (c), DA is incapable of
keeping the forecast in the correct regime. The largest errors
tend to occur at regime changes.

ground forecasts. The unobserved model state variables
are still poor predictions.

Model errors further complicate the implementation
of DA in realistic forecasting scenarios. For instance, to
test the effect of model errors on different DA schemes,
Kalnay et al. [24] created a Lorenz truth with r = 28
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Toy Climate Storm
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Figure 8: The EKF-assimilated trajectory during the largest-oscillation regime change, corresponding to the bottom right-most
point of Fig. 7. The system starts in the negative (counterclockwise) regime and stalls near the convecting state for a long
time, causing fluid in the bottom to heat up, manifesting in a highly negative x3. The fluid turns over one more time, the wide
swing in the trajectory to the left of the figure, then begins to rotate clockwise before quickly returning to the counterclockwise
regime. Color indicates the 30 s assimilation window BV growth rate.

Figure 9: FLUENT simulation showing the temperature pro-
file, units of K, of steady counterclockwise convecting flow.
The loop parameters are Ra = 1.2× 104 and R/r = 3 (for vi-
sualization). In the chaotic case, opposite anomalous regions
of warmer and cooler fluid are superimposed on this tempera-
ture profile. As these pass through the loop, the “tongues” of
warm and cool fluid extending into the top and bottom halves
of the loop will grow and shrink simultaneously until the hot
tongue visible near 2 o’clock reaches the opposite side of the
loop. The flow then stalls and reverses direction.

study will use DA and breeding to qualitatively predict
regime changes and new regime duration. Besides in-
forming when regime changes will occur, the evident gra-
dient of bred vector growth rates up the “steps” in Fig.
7 should be useful in determining the duration of the
upcoming regime. In the more distant future, the im-
perfect model experiment we have devised could be used
to compare the relative performance of other DA algo-
rithms (4D-Var, ETKF) or synchronization approaches
(adaptive nudging, see [2]).

A laboratory thermosyphon device is in construction;
in the next stage of this research, we will attempt to
forecast the regime changes of the physical experiment.
[ADD MORE]

Although the thermosyphon is far from representing
anything as complex and vast as Earth’s weather and
climate, there are many characteristics our toy climate
shares with global atmospheric models. Both are, at
best, only an approximate representation of the numer-
ous processes that govern the Earth’s climate. Global
models and the EM model both parameterize fine-scale
processes that determine large-scale behavior. For exam-
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Lorenz and Emanuel, 1996

dxi

dt
= xi−1(xi+1 − xi−2)− xi + F −

hc
b

iJX
j=J(i−1)+1

yj

dyj

dt
= −cbyj+1(yj+2 − yj−1)− cyj +

hc
b

xfloor[(j−1)/J]+1

Schematic for I = 8 and J = 4:
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Dynamics
Credit: Ross Lieb-Lappen
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FIG. 2.2. System perturbation time series. The effect of a five unit perturbation is observed
over a 5 day time series. After 5 days, the perturbation effects half of the locations,
indicating advection to the east and more slowly to the west (I = 40, J = 16).

0 10 20 30 40

50

51

52

53

54

55

Site

Ti
m

e 
(d

ay
s)

0 10 20 30 40

50

51

52

53

54

55

FIG. 2.3. Extended perturbation time series. The initial state of Fig. 2.2 is observed over a
5 day time series beginning at day 50. Particular perturbations can be traced throughout
the time series (I = 40, J = 16).

time intervals as in Fig. 2.3 can differ greatly.

Adjusting the parameters of the system and examining the time series at a single

site illustrates the dependence of the slow variables upon coupling to the fast variables.

The relative significance of the fast modes can be observed by varying h as shown

in Fig. 2.4 (I = 6, J = 16). For h = 1, a regular pattern emerges as an energy

equilibrium is achieved between external forcing and dissipation. However, as the

significance of the fast modes is reduced, the time series becomes more complex.
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FIG. 2.2. System perturbation time series. The effect of a five unit perturbation is observed
over a 5 day time series. After 5 days, the perturbation effects half of the locations,
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FIG. 2.3. Extended perturbation time series. The initial state of Fig. 2.2 is observed over a
5 day time series beginning at day 50. Particular perturbations can be traced throughout
the time series (I = 40, J = 16).

time intervals as in Fig. 2.3 can differ greatly.

Adjusting the parameters of the system and examining the time series at a single

site illustrates the dependence of the slow variables upon coupling to the fast variables.

The relative significance of the fast modes can be observed by varying h as shown

in Fig. 2.4 (I = 6, J = 16). For h = 1, a regular pattern emerges as an energy

equilibrium is achieved between external forcing and dissipation. However, as the

significance of the fast modes is reduced, the time series becomes more complex.
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III. METHODS

From a given initial condition, the trajectory of the truth (za
) is created by

integration of the system (i.e. using both the slow and fast variables in Equations (1)

and (2)). A two and three dimensional view of this attractor is shown in Fig. 3.8.

The forecast for each ensemble member is then completed by setting h = 0.5 in the

governing equations (hereafter referred to as the ‘model ’). In other words, the model

is rendered imperfect by dampening the effect of the fast modes in Equation (2)

by 50%. The same two and three dimensional slices can be seen in Fig. 3.9, now

for the model. This particular experimental design was chosen as it is typical for

global atmospheric models to attempt to parameterize sub-grid scale behavior, e.g.

for phenomena occurring on a finer temporal/spatial scale. For both the truth and

model forecasts, integration of the differential equations is completed using the fourth

order Runge-Kutta method with a time step of 0.01. Rigorous shadowing attempts

would be made using far more advanced methods of integration, with much smaller

time steps. However, for the purpose of this study of short forecasts, the difference

is negligible.
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FIG. 3.8. System Attractor. The left panel shows a two-dimensional view of the system
attractor looking at x1 vs x3. The right panel shows a three-dimensional view using x1, x2,
and x4 (I = 4, J = 16).
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FIG. 3.9. Model attractor. The left frame shows a two-dimensional view of a typical forecast
looking at x1 vs x3. The right frame shows a three-dimensional view of the forecast using
x1, x2, and x4 ( I = 4, J = 16).

Ensemble Creation

Long integrations of the system on randomized initial values were performed to

establish the shape of the attractor. A set of 500 different I-dimensional points were

then chosen at 250-day intervals. This spacing was chosen to ensure that the initial

states sampled different regions of the system attractor, and neighboring states were

uncorrelated. A ‘true’ trajectory from each of these states was determined using a

50-day integration of the system. The goal is then to use the model to shadow these

trajectories with an ensemble of 20 members.

At each of the 500 initial states, an I-dimensional hypersphere was constructed

encompassing 100 neighboring states from the system attractor. A neighboring state

is defined to be one within 5% of the climatological span of xi in the ith dimension.

At each hypersphere, the covariance for the 100 neighboring states is calculated,

yielding a I × I matrix C. This distribution is then scaled to ensure that the average

standard deviation is 5% of the climatological span of the system attractor. Thus,

for each of the 500 hyperspheres, 20 initial ensemble members are chosen based on

the distribution:

C init =
0.052σ2

clim

λ
C (3)
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that the fast variables all vary differently throughout the forecast, with amplitudes

on the order of 10% those of the slow variables. Disturbances tend to propagate in

about 4 days.
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terms described by (31), are shown in Fig. 4. Forecasts
empirically corrected by the observed bias of model
(29), D(2), perform slightly better than forecasts not
corrected at all, D(1). Ensemble divergence is typically
significant by day 5 for both D(1) and D(2). State-depen-
dent empirical correction significantly improves fore-
casts. Ensemble spread is weak for both Leith’s empiri-

cal correction D(3) and the SVD correction D(4) with
mode truncation K ! 5. However, small spread is seen
for perfect model forecasts D(5), and the effect is less
evident for F ! 8 and F ! 18. Since the ensemble
spread represents the uncertainty in the forecast and
since the forecast skill is clearly improved by the Leith
and SVD empirical corrections, this result should be
expected.

Figure 5 shows the average anomaly correlation and
rms error (RMSE) of the ensemble mean of 10 000
independent 20-member ensemble forecasts. The state-
independent correction adds approximately 1 time unit
(5 days) to the usefulness of F ! 8 forecasts, and 0.1
time units (12 h) to the usefulness of F ! 14 and F ! 18
forecasts. For F ! 14, Leith’s operator improves fore-
casts by 710% (27.2 days), and the SVD correction re-
sults in an improvement of 1176% (45 days). The SVD
correction term D(4)(x) is chosen to have K ! 7, 5, and
2 modes for forcings F ! 18, 14, and 8, respectively; the
truncation was chosen to explain 95% of the variance in
the cross-covariance matrix C!x 12

a x 12
f (see Fig. 3). Table

1 summarizes the improvement in AC scores. While we
present results for Ne ! 20, AC scores for Ne ! 1 and
Ne ! 50 are qualitatively similar, indicating that the
performance of the SVD method is insensitive to en-
semble size.

Wilks (2005) used differences between the tenden-
cies of the resolved variables in model (29), with " ! 0,
F ! 18, and the actual tendencies of system (27), (28),
to approximate model error. The collection of tendency

FIG. 3. The explained variance (21) for the spectrum of singular
values of the cross-covariance matrix C!x 12

a x 12
f shows how much of

the empirically estimated state-dependent model error can be
captured with the leading modes. To explain 95% of the variance
K ! 7, 5, and 2 modes are required for the Lorenz ’96 model with
forcings F ! 18, 14, and 8, respectively. Steep spectrums, like that
seen for F ! 8, indicate that the SVD representation is likely to be
able to capture the relevant model error information with very
few degrees of freedom.

FIG. 4. Typical 10-day ensemble forecasts of x1 using model (30), F ! 14, with empirical correction terms
described by (31). The dashed curve is a true solution of system (27), (28). The solid curves are a 20-member
ensemble forecast of model (30), initialized according to Eq. (34). Forecasts empirically corrected by the observed
bias of model (29)—namely, D(2)—perform slightly better than forecasts not corrected at all, D(1). Ensemble
divergence is typically significant by day 5 for both D(1) and D(2). Ensemble spread is weak for both Leith’s
empirical correction D(3) and the SVD correction D(4) with mode truncation K ! 5. However, small spread is seen
for perfect model forecasts D(5), and the effect is less evident for F ! 8 and F ! 18.
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