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Math & ClimateChange Nexus

* Model parameter estimation and
calibration for predictions

—Prediction: Time-scales? Spatial scales?Variables! Model
errors!

* D&A Issues: Variability on long time-scales,

Attribution of climate change

* Dynamics v. Response - What are we
learning from data analysis?
(properties v. parameters?)

* Tools for Uncertainty Estimation
-Sampling, Parameters, Structure, ...




Assessing Uncertainty in Regional
Climate Change Projections

* Factors affecting regional climate

—Large-scale response of atmospheric
circulation

—Topography, tropical SSTs, local and global
environment, etc.

e Motivation

—Need to characterize differences in climate
models by building simplified models to
capture uncertainty




Getting from global to regional scales

Prediction Time Scales
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Overview

* Other Simple Models

— 0D climate model
— Stommel Box model (hot discussed)

 Introduction to Earth/Climate Models

of Intermediate Complexity (EMICs)
* Intro to MIT IGSM

* Uses of the MIT IGSM
— Reproducing 20th century record

— Future Climate Change
— Understanding AOGCM behavior
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Is the atmosphere transparent to
Solar wavelengths?

Solar Radiation Spectrum
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Radiation Transmitted by the Atmosphere
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OD Climate Model

* Incoming absorbed solar = outgoing IR

Qo = 2= = 0T

4.

* where T. = Effective blackbody
temperature of Earth required to
balance incoming radiation




Simplest Greenhouse Model
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Figure 2.7: The simplest greenhouse model, comprising a surface at temperature

1. and an atmospheric layer at temperature /,. subject to incoming solar radi-
ation % The terrestrial radiation upwelling from the ground 1s assumed to be

completely absorbed by the atmospheric layer.

Marshall and Plumb: AOCD



Simplest Greenhouse Model
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Simple 1D climate model
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Figure 2.8: A leaky greenhouse In contrast to Fig.2.7, the atmosphere now
absorbs only a fraction, £, of the terrestrial radiation upwelling from the ground.

Marshall and Plumb: AOCD




Simple 1D climate model
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Simple 1D climate model
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Figure 2.9: An ‘opaque’ greenhouse made up of two layers of atmosphere. Each .
layer completely absorbs the IR radiation impinging on it. Figure 2.10: Schematic of radiative transfer model with many layers.

Marshall and Plumb: AOCD




Introducing Climate Sensitivity

Climate sensitivity was introduced to measure the
global response of the climate system to a change in
the radiative forcing inputs to the system.

“To make progress on a problem with the
intimidating complexity of climate change, the
proper response of a scientist is to begin by
considering simple questions and then add
complexity as understanding is gained. The lessons
drawn from these simple models must be taken
seriously, but with full realization that they may not
be a faithful representation of nature.”

Quote from Hartmann, GPC, Chapter 9, p. 229




A Quick Estimate of
Climate Sensitivity

® Defined as: dTS — 8TS | aTS dyz
: — |
dQ  0Q  OJy; dQ
* This is the response in surface temperature to a
change in the energy increase.
* Now let’s return to the “leaky’” atmosphere model
and consider the sensitivity to the emissivity.

pe=—5(1—¢/2)7

* Suppose emissivity decreases by |% (e.g., doubled
[CO-]), this implies a temperature change of 2.4 K




A Hierarchy of Climate Models

« “Horses for Courses” - Jake Jacoby
— Models suited for specific purposes

 Energy Balance Models
— great for concepts, good for uncertainty
— okay for feedbacks with other components

e Global Climate Models

— great for processes/feedbacks, good for
predictions, but poor for uncertainty (just
too expensive)

* Need for Intermediate Complexity
— Difficult to define these days...




The 16th slide
(via Google Images search)




EMICs: A History

Clhimate Dynamics (2002) 18: 579-586
DOI 10.1007/s00382-001-0200-1

M. Claussen - L. A. Mysak - A. J. Weaver - M. Crucifix
T. Fichefet - M.-F. Loutre - S. L. Weber - J. Alcamo

V. A. Alexeev - A. Berger - R. Calov - A. Ganopolski

H. Goosse - . Lohmann - F. Lunkeit - I. I. Mokhov

V. Petoukhov - P. Stone - Z. Wang

Earth system models of intermediate complexity: closing
the gap in the spectrum of climate system models




EMICs: A History

integration

Conceptual Models

Processes

Detail of Description

Fig. 1. Pictorial definition of EMICs. Adapted from Claussen
(2000)

Claussen et al (2002)




EMICs: A History

Table 1. References to EMICs

Model Short list of references

1: Bern 2.5D Stocker et al. (1992), Marchal et al. (1998)
2: CLIMBER-2  Petoukhov et al. (2000),
Ganopolski et al. (2000)

3: EcBilt Opsteegh et al. (1998)
4: EcBilt-CLIO Goosse et al. (2000)
5: AP RAS Petoukhov et al. (1998), Handorf et al. (1999),
Mokhov et al. (2000)
6: MPM Wang and Mysak (2000),
Mysak and Wang (2000)
7: MIT Prinn et al. (1999), Kamenkovich et al. (2000)
8: MoBi1diC Crucifix et al. (2000a)(2000b)
9: PUMA Fraedrich et al. (1998),
Maier-Reimer et al. (1993)
10: Uvic Weaver et al. (2000)
11: IMAGE 2 Alcamo (1994), Alcamo et al. (1996)

Claussen et al (2002)




EMICs: A History

Table 2. Interactive components of the climate system being implemented into EMICs (for explana

Model  Atmosphere Ocean Biosphere

EMBM, 1-D(¢) -D(¢, z), 3 basins B,. Bt
SDM, 2-D(¢, A)-mL -D(¢, z) 3 basins B,. Bt, By
QG, 3-D, T21, L3 -D, 5.6°x5.6°, L12
QG, 3-D, T21-L3 -D, 3°x3° Br. By
SDM, 3-D 4.5°x6°, L8 DM, 2- D(¢p, A) 4.5°x6°, L3

fixed salinity

(¢, z), 3 basins
4°x1.25° to 3.75°, L15

EMBM, 1-D(¢), land/ocean boxes

SDM, 2-D(¢, z)/atmospheric
chemistry

QG, 2-D(o, z)-L2 (¢, z), 3 basins

DEMBM., 2-D(¢, 4)

DEMBM, 2-D(¢. 4)/atmospheric
chemistry

, 3.6°<1.8°, L 19
(¢, z), 2 basins

-D
-D,
-D
GCM, 3-D, T21, L5 -D, 5°%5°, L11
-D
-D

Claussen et al (2002)




MIT Integrated Global System Model
(IGSM2)

Emissions Model

1 T Output
Earth System Model »

Sokolov et al. (2005, JP-Report 124)




MIT Integrated Global System Model
(IGSM2)
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MIT Integrated Global System Model
(IGSM2)
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MIT Integrated Global System Model

(IGSM2)
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Sokolov et al. (2005, JP-Report 124)




MIT IGSM Overview

Atmospheric Model (latitude-height)

— Statistical Dynamic Model
— Physical and Chemical Model

Ocean/Sea Ice Model (2D or 3D)

— Physical, Biogeochemical, Biological Models

Land Model

— Physical, Biological, Biogeochemical

— Terrestrial Ecosystem Model (Melillo et al.)

MIT EPPA - Economic Model
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IGSM Pressure Levels (9 levels)

Number of boxes:
24x36x9 = 7776

Current models:
~107
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FIG. 2. Global-mean pressure levels (mb) for 7-layer Model 1

and 9-layer Model II. Layer edges are solid lines, and interior levels
are dotted.
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Hansen et al. (1983)




GISS/IGSM Model Grid Box
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GISS Model Equations
(needed to include eddy fluxes)

‘TABLE 2. Approximate form of fundamental equations Additional notation
employed in computations.

U horizontal velocity in ¢ coordinates, with components
Dependent (u, v)
varniable Equation V.7xUU vector with components [V - (#Uu), V- (zUv)]

] (6Au N dAv cos¢)]
d cosp \ oA d¢

horizontal gradient [: 1 ( 1 94 BA)]
° a \cos¢ o’ 3¢

6‘;{U e V.erUU - 61;6U V.AU horizontal divergence [=
o

—(f+mu)k><1rU—1rV<I>

a

o mean planetary radius

— — Vx + «F, latitude in radians

longitude in radians

vertical coordinate [=(p — p,)/~]

rate of evaporation

do/dt

p. — P, where p; is the surface pressure and p, the
constant pressure at the model’s upper boundary

potential temperature [=7(poo/p), where « = R/c,
and py, = 1000 mb]

geopotential [=gz, where z is height above sea level]

Coriolis parameter [=22 sing]

specific heat at constant pressure

horizontal frictional force

water vapor mixing ratio

rate of condensation.

Hansen et al. (1983)




Development of 2D MIT Model
required Eddy Flux parameterization

Development of a Two-Dimensional Zonally Averaged Statistical-Dynamical Model. Part
I: The Parameterization of Moist Convection and its Role in the General Circulation

Development of a Two-Dimensional Zonally Averaged Statistical-Dynamical Model.
| Part II: The Role of Eddy Momentum Fluxes in the General Circulation
and their Parameterization

Development of a Two-Dimensional Zonally Averaged Statistical-Dynamical Model.
Part III: The Parameterization of the Eddy Fluxes of Heat and Moisture

PETER H. STONE

Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, Massachusetts and NASA/
Goddard Space Flight Center, Institute for Space Studies, New York, New York

MAO-SUNG YAO
Centel Federal Services Corporation, NASA /Goddard Space Flight Center, Institute for Space Studies, New York, New York
(Manuscript received 25 May 1989, in final form 16 November 1989)




MIT 2D Climate Model Description

* 2D statistical-dynamical atmospheric model
derived from 3D GISS 1| AGCM (Sokolov and

Stone, 1998) 46xI| | (lat-height)

* Q-flux mixed layer ocean model where
temperature anomalies are mixed into deep-
ocean. Q-flux held fixed in transient runs.

* Adjustable model properties:

—Climate Sensitivity (via adjustable cloud feedback)
—Rate of deep-ocean heat uptake (via diffusivity)

—Net Aerosol Forcing (via scattering cross-section or




wWind fields from IGSM
(Sokolov & Stor0|e, 1998)
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LUNCH BREAK



POST LUNCH BREAK

* Using the IGSM

— Uncertainty Analysis
— Parameter/Property Estimation
— Climate Model Evaluations

— Scenario Analyses

— Feedbacks and Response




MIT Integrated Global System Model
(IGSM2)

Emissions Model

1 T Output
Earth System Model »

Sokolov et al. (2005, JP-Report 124)




MIT Integrated Global System Model
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MIT Integrated Global System Model
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MIT Integrated Global System Model
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The Greenhouse Gamble

http://globalchange.mit.edu/resources/gamble/




The Greenhouse Gamble

http://globalchange.mit.edu/resources/gamble/




Major Climate Projection Uncertainties

Consider the energy balance equation for the global-mean
surface temperature anomaly (47):

o, "5 — B - AAT() - ,(K,)




Major Climate Projection Uncertainties

Consider the energy balance equation for the global-mean
surface temperature anomaly (47):

o, "5 — B - AAT() - ,(K,)

Change in global
mean heat content




Major Climate Projection Uncertainties

Consider the energy balance equation for the global-mean
surface temperature anomaly (47):

o, "5 — B - AAT() - ,(K,)

Change in global Future
mean heat content Forcings




Major Climate Projection Uncertainties

Consider the energy balance equation for the global-mean
surface temperature anomaly (47):

o, "5 — B - AAT() - ,(K,)

Change in global Future
mean heat content Forcings

Net Feedbacks
A= 1/S




Major Climate Projection Uncertainties

Consider the energy balance equation for the global-mean
surface temperature anomaly (47):

o, "5 — B - AAT() - ,(K,)

Change in global Future Flux of heat

mean heat content Forcings NetKF:ee;i/l)Sat cks into deep-
ocean




Major Climate Projection Uncertainties

Consider the energy balance equation for the global-mean
surface temperature anomaly (47):

p T = F(t) = AAT (1) — ®o(K,)

Change in global Future Flux of heat

mean heat content Forcings NetKF:ee;i/t)Szt cks into deep-
ocean

Conceptually: This is a good framework for organizing where
the uncertainty exists.

In practice: For state-of-the-art models, each uncertainty is an
aggregate quantity and cannot be identified with any one specific
model component or process.




Global Climate System Energy Fluxes
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Global Climate System Energy Fluxes
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Global Climate System Energy Fluxes
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Global Climate System Energy Fluxes
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Historical Climate Forcing Factors
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Historical Climate Forcing Factors

GLoBAL MeaN RapiATIVE FORCINGS
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Historical Climate Forcing Factors

GLoBAL MeaN RapiATIVE FORCINGS
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Historical Climate Forcing Factors

GLoBAL MeaN RapiATIVE FORCINGS
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Historical Climate Forcing Factors

Estimated Time-series of Radiative Forcings
Total Uncertainty = +/- 1 W/m?
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From NASA GISS: http://data.giss.nasa.gov/modelforce/




Major concern is getting the forcings right.

14.0 Surface Temperature: With and Without Volcanoes

Two Simulations with
Anthropogenic + Natural
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Climate Sensitivity (K)

8

Latin Hypercube Sample (n=250)

P(S,K,): IGSM2 Uncertainty Sample

NB: Climate Model Evaluation via model properties
(see black diamonds)

Transient Climate Response (95,
50, 90%): (1.5, 1.9, 2.3K)
Thermal SLR: (4, 8,13 cm)

at time of CO2 doubling

(1%/yr increasing CO2 conc.)

Rate of Ocean Heat Uptake [Sqrt(K,), (Sqrt(cm?/s))]




Included Uncertainties
* Emissions Uncertainty from MIT EPPA4

* Population: 6-13 billion, Energy Resources, Efficiency/
Technology

* Climate System Response
(Calibrated in Forest et al. 2008)

— Climate Sensitivity
— Rate of Heat uptake by Deep Ocean
— Radiative Forcing Strength of Aerosols

« Carbon Cycle Uncertainty:

— CO2 Fertilization Effect on Ecosystem
— Rate of Carbon Uptake by Deep-Ocean

* Trends in Precip. Freq. on CHs + N2O
(Statistics scaled using by AR4 model trends)




The Greenhouse Gamble

http://globalchange.mit.edu/resources/gamble/




The Greenhouse Gamble

http://globalchange.mit.edu/resources/gamble/




Risks of Global Mean Temperature
Increase 1990-2100

AT >2°C | AT >4°C | AT > 6°C
No Policy 400 in 400 17 in 20 1in4
Stabilize at 750 | 400 in 400 1in4 1in 400

Stabilize at 650 | 97 in 100 7 in 100 <1in 400

Stabilize at 550 | 81in 10 1IN 400 | <11in 400

Stabilize at 450 1in4 <1in 400 | <1in 400

Sources: Sokolov et al. (2009, J. Climate); Webster et al. (2009, MIT JP Report 180)




Cumulative Probability of Ts in 2100
above Pre-industrial Temperature

Cumulative Probability
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Stabilization Scenario Example
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From: Sokolov et al. (2003, |. Climate)
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FIG. 2. Changes of annual mean global mean surface air temperature and sea level (thermal expansion) in simulations
with the (a), (b) MRI1 and (c), (d) ECHAM3/LSG AOGCMs and in simulations with the versions of the MIT 2D climate
model with effective (thin solid lines) and equilibrium (dashed lines) climate sensitivities. Data from CMIP2 simulations
with AOGCMs are shown by thick solid line (SAT) and by asterisks (sea level). Unfortunately, while changes in SAT
from these simulations are available on an annual basis, sea level rise due to thermal expansion of the ocean is not. The
data required to calculate thermal expansion were saved as a 20-yr mean for four consecutive segments of the simulations.
In this study we used data on sea level rise for these four periods provided by S. Raper (Raper et al. 2002).




From: Sgkqlpy et al. (2003, J. Climate)
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FIG. 3. As 1n Fig. 2 but for the (a), (b) CSIRO and (c), (d) GFDL R15 AOGCMs.




Climate Change Observations and

Climate Model Hindcasts
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Climate Change Observations and

Temperature anomaly (°C)
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Temperature anomaly (°C)

Climate Model Hindcasts

GLoBAL AND CoONTINENTAL TEMPERATURE CHANGE
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sSurface Temperature Records

«+==+=s2+ The reality of warming 1998
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Global Surface Temperature Over the Last Fifty Years

The year 1998 was particularly warm and has been used to falsely claim that the following
decade has seen little change or a cooling in temperature. Red shows the correct trend from
1960 through 2008, blue is an erroneous trend over ten years resulting from “cherry-picking” the
start and finish dates. Source: NOAA/NCDC data1, design idea K. Hayhoe.

From http://www.ucsusa.org/climatescienceupdate




sSurface Temperature Records

Global Land—Ocean Temperature Index
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