

0.5cm

$5\,\mu m$

Reconstructing past climate

Talk outline: A trip through geologic time

Take away points:Climate change through time

• What past climate change adds to the climate story

 What type of "archives" and data do we have

Ţ

Causes of climate change: natural forcings

• Changes in plate tectonics and the related changes in carbon dioxide (100,000's to millions of years)

• Changes in the earth's orbit, "Milankovitch" cycles (10,000's to 100,000's years)

Changes in the sun's strength (very short... to very long)

Timescales of climate variability

Climate archives: what records do we have?

Climate archives: what information do we need?

Biosphere

Climate archives: what records do we have?

Geologic Time

Geologic Time: "Deep time problems"

• The Faint Young Sun (and climate homeostasis

• Snowball Earth

Geologic Time: "Snow ball earth"

" Setting the stage: "different boundary conditions"

Neoproterozoic, 750 to 550 ma (ma = million years ago)
faint young sun, ~6% fainter

• more continents at low latitudes

• no multicellular life, no land plants: precedes the Cambrian explosion

Geologic Time: "Snow ball earth"

Paleo-data

Geologic Time: "Snow ball earth"

Paleo-data

Geologic Time: "Deep time problems"

• Warm ("Equable) climates

0 HOLOCENE QUATERNARY CENOZOIC PLEISTOCENE PLIOCENE 1.65 **TERTIARY** NEOGENE MIOCENE OLIGOCENE 23.8 PALEOGENE EOCENE PALEOCENE 65 MESOZOIC CRETACEOUS 144.8 ma JURASSIC PHANEROZOIC ago 200 TRIASSIC Willions of years 251 PERMIAN 300 CARBONIFEROUS PALEOZOIC 355 DEVONIAN 418 SILURIAN 441 ORDOVICIAN 490 CAMBRIAN 544 **EDIACARAN** PREC, MBRIAN 570 4000+

Geologic Time: "Warm climates"

"Setting the stage: "different boundary conditions"

• Paleozoic, Mesozoic, start of the Cenozic

• Often modeling focuses on: Late Cretaceous and Early Paleogene (~100-35 MaYr)

• continents migrated so there are now polar continents

An example of an equable climate: Eocene Temperature

- Modern land temp.
- Eocene sea surface temp.
- 🔨 Eocene Mode
 - Eocene Mode

[Greenwood and Wing, 1995]

I

An example of an equable climate: Global warming?

- Modern land temp.
- Eocene sea surface temp.
- riangle Eocene Model
 - Eocene Mode

Global Warming Predictions

[sorry no ref!]

Geologic Time: "Cenozoic"

- Equable climates
- Tipping points
- Glacial cyclicity
- Abrupt climate

	ZOIC		QUATERNARY	0		HOLOCENE
		Ł	NEOGENE	1.65		PLIOCENE
	CENC	TERTIA	PALEOGENE	23.8		OLIGOCENE EOCENE PALEOCENE
PHANEROZOIC	MESOZOIC	CRI	TACEOUS	65		
		JUF	RASSIC	144.8	(ma)	
		TR	IASSIC	200	s ago	
	PALEOZOIC	PE	RMIAN	251	year	
		CA	RBONIFEROUS	300	Is of	
		DE	VONIAN	355	Allior	
		SIL	URIAN	418		
		OR	DOVICIAN	441		
		CA	MBRIAN	490		
AN		EDI	ACARAN	544		
MBRI				570		2
EC			\sim			
ЧЧ				4000+		

Climate archives: what records do we have?

Ocean sediment-core locations

Ocean Drilling

Ţ

Deep sea cores

Ocean Plankton: live near surface

Foraminifera

Oxygen isotopes

Forams.

THREE OXYGEN ISOTOPES

oxygen 18

Die and Settle To Bottom

oxygen 16

Mud!

Ice volume changes the water composition

Climate data: A 65 million year ("Cenozoic") environmental record from deep sea sediments

				(em)	Millions of years ago (ma								
0	1.65	23.8	85	144.8	200	251	300	355	418	441	490	544	570
QUATERNARY	NEOGENE	PALEOGENE	ETACEOUS	RASSIC	IASSIC	RMIAN	RBONIFEROUS	VONIAN	URIAN	DOVICIAN	MBRIAN	ACARAN	
	YAA	пяат	ß	3	¥	Щ	S	B	SIL	R	হ		
OIC	ozo	CEN	OIC	EVERCEDIC WESOS									
PHANEROZOIC									NA	РЯЕСАМВРИ			

Climate data: A 65 million year ("Cenozoic") environmental record from deep sea sediments

Climate data: A 65 million year ("Cenozoic") environmental record from deep sea sediments

Climate data: A 65 million year ("Cenozoic") environmental record from deep sea sediments

Tempe

Age (Ma)

Glacial-interglacial cycles

Earth orbitals

-24000 yr -23000 yr -22000 yr -25000 yr -21000 yr -20000 yr –19000 yr -18000 yr -17000 yr -16000 yr -14000 yr -15000 yr -11000 yr -10000 yr -13000 yr -12000 yr Reproduction is permitted Daily Total Solar Radiation (M J m²) Reproduction is permitted with proper attribution: with proper attribution: ASU Depts of Geography & June Solstice ASU Depts of Geography & Computer Science, 1996 Computer Science, 1996

-3.78

-2.72

-1.65

-0.59

0.48

1.54

2.60

3.67

4.73

5.80

6.86

Visualization of Milankovitch Climate Change Theory

Glacialintergla cial cycles

Glacial-interglacial cycles

Glacial climate in ice cores

Drilling into the ice

Air trapped as bubbles...

Snow Accumulation Rates

How does this manifest in the climate records?

North Pole: Shorter, high resolution records

South Pole: Longer, low resolution records

atmospheric CO record varies with

a¹⁸O of ocean

"EPICA"... the oldest ice core records so far

Epica... the raw records

Atmospheric gases...

Air temperature and glaciers

Comparison of climate records

Tempe

Age (Ma)

Abrupt climate oscillations

Abrupt climate change recorded in greenland...

Grootes et al. (1993)

Where else?

Voelker et al (2002)

Abrupt events recorded in ice cores

A record of temperature change....

Trees that get really old....

- Intermountain bristlecone pine 4,844 yrs
- Alerce 3,620
- Giant sequoia 3,300
- Rocky Mountain bristlecone pine 2,425
- Coast redwood 2,200
- Foxtail pine 2,110
- Rocky Mountain juniper 1,889
- Limber pine 1,670
- Alaska yellow-cedar 1,636
- Baldcypress 1,622
- Western juniper 1,288
- Douglas-fir 1,275
- Himalayan Hemlock 1,011

How do we go older? Correlation and Crossdating

Correlation and Crossdating

some principles applied in dendro studies.. 'replication'

Reconstructing temperature change... the controversy

Talk outline: A trip through geologic time

Take away points:Climate change through time

• What past climate change adds to the climate story

 What type of "archives" and data do we have

