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Outline
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• Monthly SSTs
• The building blocks: basis functions and coefficients
• Where do the basis functions come from?
• Reconstructing a time slice
• Interpreting the principle modes.
• What can go wrong.

Big Idea:
Geophysical fields collected over time are difficult to visualize.
EOFs can provide a few variables (coefficents) over time that
summarize how the fields vary.

The mysterious aspect is where the basis functions come from
...



Sea Surface Temperatures (SST)
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A snapshot of SST anomalies for a single month ( JAN 1970)
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Sea Surface Temperatures (SST)
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Two monthly time series from two grid boxes
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The Emipirical Orthogonal Function Decomposi-
tion

Two parts:

• basis functions – actually spatial fields

• coefficients for each time point – actually time series

Basis functions determined in an optimal (least squares) way
from the same data. Thus they are empirical.

Coefficients found by least squares.



The problem
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How we capture the dynamics seen in the animation using
statistics?

Expand the fields in basis functions and coefficients

T (x, t) =
∑
j

aj(t)φj(x)

If these were 1-d polynomials then

Temperature at location x and time t
= a1 + a2x + a3x2 + ...

• The a’s are the coefficients ( or amplitudes) and 1 x x2 are
the three basis functions.
• We want these for many time points – so a different set of
a’s for each time.



My quirky slide
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The basis functions (EOFs) are
building blocks:

• Individually they don’t have to
look like the geophysical process

• The fact they are orthogonal
is not particularly important.

• Try to interpret them be-
ing combined with specific sizes
coefficients.



EOFS: singular value decomposition
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T is a big matrix , M rows are spatial locations and N columns
are time.

T = UDV T

U : M × N matrix with orthonormal columns, V : M × M
orthogonal martix
and D: is a diagonal matrix with positive elements sorted
from largest to smallest.

• M Columns of U are the EOFs.

• M Columns of VD are the time series of coefficients

Centering and scaling
It is usually a good idea to subtract off the mean – i.e. work
with anomoalies. Standardizing is sometimes done but more
difficult to interpret.



Another way using regression:

10

By a series of regressions
Find the single field that best explains the different times.

min
a,E

∑
t,x

(T (x, t)− atE(x))2

→ first basis function and coefficients

1) regress the data on E – to get the updated a
2) regress data on normalized a to get the updated E.

Repeat until convergence.

→ second basis function and coefficients.
Subtract this estimate from the data and repeat algorithm.

Keep on going ... until there are as many basis functions as
time points.
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NOTE:
These basis functions will not be orthogonal and the coeffi-
cients are not the standard time series.

• Use the Gram-Schmidt technique to get an orthogonal set.

• Recompute all the coefficients by regressing the data on
each EOF.



Basis functions for the SST data
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We use a standard ”EOF” decomposition to get these.



How much stuff should we look at?
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Full EOF decomposition:
• as many basis functions as time points
• a time series of coefficients for each basis function.

This is as much information as the original data!

The decomposition is successful if we only have to look at a
few basis functions and their time series of coefficients.
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Strategy:

T (x, t) ≈ a1(t)EOF1(x) + a2(t)EOF2(x)

Then we can interpret the whole data set by just two time
series and looking at two basis functions. Typically the basis
function have some spatial/geophysical interpretation.

What is ≈ ? We want the approximation to explain as much
of the variance in the original data as possible.

Usually if more than a few EOFs are required to approximate
the data – we try something else!



Simplicity vs. accuracy
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How much of the data is explained by the EOFs?
EOFs are ordered by their ability to explain the data – usually
from the best EOF to the less important.

Log variance explained individually and cumulatively
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Focus on first three EOFs
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EOF1 The classic
ENSO pattern.

EOF2 A modula-
tion of the center.

EOF3 Messing with the
coast of SA and the
Northern Pacific.

Note: All the EOFs are scaled to have same range ( MSE).



How EOF 1 and 2 interact
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Four different cases of adding together EOF1 an EOF2. Us-
ing ”small” and ”large” coefficients.

Small/ Small Small/Large

Large/ Small Large/Large



Coefficients for EOF 1 and 2
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A pair of coefficients for all 399 monthly time points
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Coefficients over time
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Interaction of the three coefficients suggests how pattern
changes.



How good is it?
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An example in 1983

EOF3 seems to add important features for this time but the
match is not perfect.



What can go wrong.
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Nature does feel limited to a few basis functions!
– and probably does not care about orthogonality either.

• Features such as a traveling pulse may not be captured by
a few EOFs

• Basis functions typically selected based on mean squared
error. The MSE criterion can be deceptive in capturing fea-
tures.

• EOFs are sensitive to outliers in the data and also to the
exact spatial domain chosen.

• Seeing an illustration of EOFs where they work well and
expecting this method to always be successful!



Thank you!
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