

Structure and Chemistry of the Atmosphere

Laura F. Voss Department of Chemistry Bowdoin College

The Structure of the Atmosphere

http://www.cartage.org.lb/en/themes/sciences/astronomy/Solarsys tem/TheSolarsystem/theearth/TheEarth'sAtmosphere/TheEarth'sA tmosphere.htm

The Atmosphere: 1.8 x 10²⁰ mole gas

http://www.chs.k12.nf.ca/science/b3201/WebCT-Copy/images/lesson-images/lesson01/atmosphere.gif

A Mole of Gas: 6.023 x 10²³ atoms/molecules

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source: *Chemistry* by Cheng

Composition of Atmosphere

Composition of Dry Air at Sea Level

Gas	Composition (% by Volume)
N_2	78.03
O_2	20.99
Ar	0.94
CO_2	0.039204*
Ne	0.0015
He	0.000524
Kr	0.00014
Xe	0.000006

* ftp://ftpcmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt

Source: Chemistry by Chang

Temperature versus Altitude

Pressure versus Altitude

Adiabatic Cooling

Adiabatic Cooling

Adiabatic Cooling

(a)

Temperature versus Altitude

Source: *Chemistry* by Chang

Solar Radiation

http://msis.jsc.nasa.gov/sections/section05.htm

http://www.haystack.mit.edu/edu/pcr/Atmospheric/spaceweath er/webpagetheionosphere.html

Photolytic Cleavage and Ionization

$O_2 + hv (\lambda < 242 \text{ nm}) \rightarrow O^* + O^*$

and

$O^* + hv (\lambda < 92 \text{ nm}) \rightarrow O^+ + e^-$

Temperature versus Altitude

In the unperturbed stratosphere ozone is produced by

$$O_2 + h\nu (\lambda < 242 \text{ nm}) \rightarrow O^* + O^*$$
(I)

$$O^* + M + O_2 \rightarrow O_3 + M + \text{energy}$$
(II)

and then subsequently destroyed by

$$O_3 + hv (200 \text{ nm} < \lambda < 300 \text{ nm}) \rightarrow O + O_2$$
(III)
$$O + O_3 \rightarrow O_2 + O_2 + \text{energy}$$
(IV)

Temperature versus Altitude

1D Radiative Convective Model

Source: *Chemistry* by Chang

The global mean radiative forcing of the climate system for the year 2000, relative to 1750

Source: IPCC TAR

Source: IPCC TAR

Composition of Atmosphere

at Sea Level	
Gas	Composition (% by Volume)
N_2	78.03
O ₂	20.99
Ar	0.94
CO_2	0.039204
Ne	0.0015
He	0.000524
Kr	0.00014
Xe	0.000006

Composition of Dry Air

 CO_2

 CF_3CI

Vibrational Modes

Source: Chemical Principles by Atkins and Jones

CARBON DIOXIDE

Data compilation copyrightby the U.S. Secretary of Commerce on behalf of the U.S.A. Data compiled by: Coblentz Society, Inc.

INFRARED SPECTRUM

http://webbook.nist.gov/

METHANE

OZONE

Temperature versus Altitude

Trends in CO₂

http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo

Trends in CO₂

http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo

$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

