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Overview
1-D case

Motivation

@ Why do we need a new climate model?
@ Because, the existing models have serious limitations to
satisfy all of the following properties:
© Local and global conservation
@ High-order accuracy
© High parallel efficiency
Q@ Geometric flexibility (“Local” method)
© Monotonic (non-oscillatory) advection
@ Discontinuous Galerkin Method (DGM) based model has the
potential to address all of the above issues

@ Recently, the Spectral Element (SE) model in HOMME shown
to efficiently scale O (32, 000) processors on IBM BG/L.
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Overview
1-D case

Discontinuous Galerkin Method (DGM) in 1D

@ 1D scalar conservation law:

ou OoF(U) ,
E_'— . 0 in Qx(0,T),

Uo(x) = U(x,t=0), VxeQ

@ The domain Q (periodic) is partitioned into Ny
non-overlapping elements (intervals) /; = [xj_1/2, Xj11/2],
J=1,..., Ny, and Ax; = (Xj11/2 — Xj—1/2
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1-D case

Overview
DGM-1D: Weak Formulation

obtained by multiplying the PDE by a test function ¢p(x) and integrating
over an element /;:

[ 25

A weak formulation of the problem for the approximate solution Uy, is

Ox =0,

Un, on € Vi
Integrating the second term by parts —

[P0 o [ Fnin

Ph
J I dx +
F(Uh(Xj+1/2v t)) ‘rQh(X;q/z) - F(Uh(Xj—1/27 t)) 97/1()(]'71/2) =0,

where p(x7) and ¢(xT) denote "left” and "right” limits
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1-D case

DGM-1D: Flux term (“Gluing” the discontinuous element edges)

j
Xi1/2 Xir1/2
® Flux function F(Up) is discontinuous at the interfaces xj41/»

@ F(Up) is replaced by a numerical flux function F(Uj), dependent on
the left and right limits of the discontinuous function U. At the
interface xjy1/2,

’E(Uh)j+1/2(t) = 'E(Uh(sz.l/zv t), Uh()ﬂ'il/ga t))

@ Typical flux formulae (Approx. Reimann Solvers): Gudunov,
Lax-Friedrichs, Roe, HLLC, etc.

=} F = E = DAl
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Overview
1-D case

DGM-1D: Space Discretization

@ Choose an orthogonal basis set B spanning the space V/, s.t.,
approx. solution U, and ¢ are in V.

@ Use a high-order Gaussian quadrature such as the
Gauss-Lobatto-Legendre (GLL) quadrature rule

@ Map every element /; onto the reference element [—1,+1] by
introducing a local coordinate € € [—1,+1] s.t.,

2(x — x; 0
f—(TjJ)MQ‘—(le/2+Xj+1/2)/2:> Ix eyl

Regular Element ReferenceElement
¥ d
—+—o ° o—+— SN, —+—o ° 0—+—
Xii1r2 -1 GLL Grid +1

o = = = T 9ac
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Overview

1-D case
DGM-1D: Orthogonal Basis Set (Modal Vs Nodal)

@ The model basis set consists of Legendre polynomials,
B = {PZ(§)7e:O717’k}

k
Uet) = D U(8)Pe(§) for
£=0
Ul (1)

—1<6<1,
1
= %;1/IM@QW@N§€:QLHWK

@ The nodal basis set B is constructed using Lagrange-Legendre polynomials h;(€)
with roots at Gauss-Lobatto quadrature points.

k

Ui(§) = D Uih(§) for —1<¢<1,
=0

hi(€)

(& —1) Pi(9)

k(k +1) Pi(&) (€ = &)
@ In any case, the mass matrix is diagonal
=) =] = = BINe




Overview
1-D case

DGM: Basis Functions

Proposed Shallow Water Solver

Introduction Applications of 2D Transport
00000000000008000 000000000000000000000000000000 000

Spatial Discretization
@ Gaussian Quadrature: f}lw(x)p(x)dx = > "o wip(xi)
GLL: w(x)=1,x%=-1,x,=1

@ Interpolation: two options for basis functions

Legendre Polynomials (Degree <=4)

4th Degree Lagrange Basis Functions

- b
- 05 0 0.5 1 - 05 0 0.5 1
X X

Nodal expansion: Lagrange basis Modal expansion: Legendre basis
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Overview
1-D case

DGM: Explicit Time Integration

@ Final Semi-discretized form —

dtU L(U;) in (0,7)

@ Strong Stability Preserving third-order Runge-Kutta (SSP-RK)
scheme (Gottlieb et al., 2001)

vt = U”+At£(U”)
3 1
@ — 2yn M4 A
U 4U+4U +32 tL(UW)
Un+1

1 2 2, 2
—_yn A
JUT+ 35U+ 3 tL(U®@),

where the superscripts n and n+ 1 denote time levels t and t 4+ At,
respectively
@ Note: The Courant number for the DG scheme is estimated to be
1/(2k + 1), where k is the degree of the polynomial, however, no
theoretical proof exists when k > 1 (Cockburn and Shu, 1989).
[m] = = =
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1-D case

2D Scalar conservation law
ou
T HVRU) =S(U),

in Qx(0,T);V(x,x*)eQ
where U = U(x},x%,t), V =
flux function, and S is the source term

(0/0x*,0/0x?), F = (F, G) is the

Overview
DG-2D Spatial Discretization for an Element 2

@ Weak Galerkin formulation: Multiplication of the basic equation by a test
function @, € V}j and integration over an element Q

where Uy, is an approximate solution in V

8t/ Up op d2 — / Uh) Ve, dQ -I-/ Uh n¢hdF_/S(Uh g&th

@ Can be extended to a system of equations

=} F = E A
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Overview
1-D case

DG-2D: The Flux Term

Element (Left)

Element (Right) Element (Left) Element (Right)
B [ ] ®
Uh\"/uh*- uh\“/%
® ®

After Num. Flux Operation

@ Along the boundaries (I') of an element the solution U is discontinuous (U,
and U;" are the left and right limits).

@ Therefore, the analytic flux F(Uy) - i must be replaced by a numerical flux such
as the Lax-Friedrichs Flux:

F(Un) - = 5 [(F(U;) + F(U) - = a(uf - U;)]

@ For the SW system, « is the upper bound on the absolute value of eigenvalues
of the flux Jacobian F/(U); (Nair et al., 2005)

al = max (|u1| + \/W) ,  a?=max (\uz\ + \/W)

[m] = = =
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1-D case

The DG, SE & FV Methods

]
P oo &
Boundary Discontinuity CO Continuous

FvV

DGM is a hybrid approach (DG <« SE + FV)

@ The domain D is partitioned into non-overlapping elements Q;; such
that the element boundaries are discontinuous.

@ Based on conservation laws but exploits the spectral expansion of
SE method and treats the element boundaries using FV “tricks.”

B SNG4
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1-D case

DG-2D: Spatial Discretization

High-order nodal basis set

hi(§) =

@ The nodal basis set is constructed using a tensor-product of
Lagrange-Legendre polynomials (h;(£)) with roots at
Gauss-Lobatto quadrature points
(6% — 1) Pp(8) / '
N(N +1) Pn(&) (€ — &)’
Gauss quadrature.

hi(€)h;(€)
-1
where Pp(€) is the N order Legendre polynomial, and w; weights associated with the

W;0jj
of nodal basis set

@ The approximate solution (Up) and test function (@) are represented in terms
N N
U(é 77

=D Ujhi(§) hi(n) for —1<&n<1,
i=0 j=0

@ The nodal version was shown to be more computationally efficient than the
modal in (Dennis et al., 2006).
=} = = = DA
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1-D case

DG-3D Model: Explicit Time Integration

Final form for the nodal discretization leads to the ODE:
d 4

_i't:—/r /x Iorcea
dtUJ() Ax,-leJ?w,-vvj[Gad+ Flux + Isource]

For a system of conservation laws, solve the ODE system:

%U:L(U) in (0,T)xQ

Time integration: Explicit third-order Runge-Kutta (SSP)
scheme (Gottlieb et al., 2001)

Options for explicit diffusion (V2 or V4).
Boyd-Vandeevan spatial Filter

(]

(]

Optional Monotonic Limiter (for scalar fields)

=] F = = pPLN G4
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SW model

Results 2D results

DG-2D Gaussin Hill Advection (Levy, Nair & Tufo, 2007)

Introduction Applications of 2D Transport Proposed Shallow Water Solver
0000000000000 0000 0008000000000 00000000000000000 000
Scaling Plots
Strong Scaling 100 Elements per process, 6 x 6 GLL grid
—Linear speed-up 500] <>
-x-Ne = 6400, Ng =6 .,
00’5 Ne - 400, Ng - 3 Baoo| 0:0-0-0000:0:0-0
8 300
5
2 200
2
=100
o 0
124 8 16 32 1 4 6 64 256 1024
Number of Processes Number of Processes (log scale)
Strong scaling is measured by Weak scaling is measured by
increasing the number of processes scaling the problem along with the
running while keeping the problem number of processes, so that work
size constant. per process is constant.

E DAC

Development of a Petascale Conservative Dynamical Core for
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Results 2D results

HOMME (High-Order Method Modeling Environment)

@ The Discontinuous Galerkin (DG) model is the conservative
option in the HOMME framework
® HOMME Grid: The sphere is decomposed into 6 identical
regions, using the equiangular projection (Sadourny, 1972)
¢ Local coordinate systems are free of singularities
o Creates a non-orthogonal curvilinear coordinate system
Cubed Sphere Geometry:  Logical cube-face orientation

(Bottom)

v
[m] = = =

= DAl
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SW model

HOMME Grid System

2D results

Metric Tensor Gy,

R2

B 1+ tan?x!
p* cos? x1 cos? x2

—tan x! tanx?
where p? =1 +tan®x! +tan?x?, i,j € {1,2}

[Cubed-Sphere = Sphere| Transform
Central angles x1, x? € [—7/4,7/4] are the independent variables
Gjj

—tanx! tan x

2
1 + tan? x2 ]

@ Metric tensor in terms of longitude-latitude (), 6):
AT [ Rcosf0N/0xt Rcosh N Ox?
Gr=AA A= { R96/0x!

R 96 /0x? ]
@ The matrix A is used for transforming spherical velocity (u, v) to
the covariant (uy, u2) and contravariant (ul, u?) vectors.
=] F = E A



SW model

Results 2D results

Hydrostatic Prognostic Equations in Flux Form (Curvilinear coordinates)

%+vc-El+ﬁ%—f: = \/Euz(f—i—é)—RT%(lnp)

%+VC-E2+7'7%—L: = - Gul(f+C)—RT%(Inp)
%(m)+vc-(u"m)+% =0
%(me)+vc-(ufem)+0(rgize) =0

d(mn q)

9 j
gz (M@ + Ve (Ugm) + =

ot

9 o
Ox1’ 9x2

o0 RT dp

) ,y = 77(P7 Ps), G = det(Gl'j)v a = T T A

op
=vG—,V E( .
" on’ " © an p O

Where m is the mass function, © is the potential temperature and q is the moisture
variable. U = (u',u?), E; = (E,0), E2 = (0, E); E =&+ 1 (u1u! + tpu?) is the
energy term. @ is the geopotential, ( is the relative vorticity, and f is the Coriolis term.
o = = = T 9ac
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SW model

2D results
Vertical Lagrangian Coordinates (Starr, 1945)

A ‘“vanishing trick” for vertical advection terms!

@ Terrain-following Eulerian surfaces are treated as material surfaces
direction.

@ The resulting Lagrangian surfaces are free to move up or down

Vertically Moving Lagrangian Surfaces

top

LT

k=172

k+1/2
e
= - Ai\\\‘
@ | — Topography ———— n,
=} F = E A
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SW model
2D results

Results

3D Prognostic Equations with Vertical Lagrangian Coordinates

@ Lagrangian treatment of the Vertical coordinates results in 7 = 0
and the mass function m = v/ Gdp = Ap (pressure thickness).

@ Contravariant formulation preserves the familiar “vector invariant”
form for the momentum equations.

Momentum Equations: No explicit vertical advection terms

8U1 . /~ 2 _ 0

—8t +V- B = Gu (f+C) RTaxl(lnp)
Ous _ VG _r72

ot +Ve B = Gu (f+C) RT8X2(|n,D)

CE( 0 9 ), E: =(E,0), E; = (0, E),

X1’ 9x?

1 1 2
E:¢+§(U1U+U2U)D & - = = wac
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Results 2D results

3D Prognostic Equations: Flux-Form Continuity Equations

Temperature field is advected with the mass variable Ap

%(Ap)-l-vc-(UiAp) =0

% (©Ap)+ V.- (U'©Ap) =0

0 .
a(qu)ﬁLVc-(U’qu) =0

where U’ = (u?, u?), Ap = v/Gdp, dp is the pressure thickness, and © is
the potential temperature.

Vertical layers are coupled with the hydrostatic relations:

AP =—-C,0Al, A®=—-RTAInp

where [1 = (p/po)”® and T Denotes the layer mean temperature.

[ =] = = = Qe
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Results 2D results

The Remapping of Lagrangian Variables

Vertically moving Lagrangian Surfaces

@ Over time, Lagrangian surfaces deform and thus must be remapped.

@ The velocity fields (u1, u2), and total energy (I'g) are remapped onto the
reference coordinates using the 1-D conservative cell-integrated semi-Lagrangian
(CISL) method (Nair & Machenhauer, 2002)

‘ AP= Pressure thickness ‘ ‘ Lagrangian Surface

! i ; L\ tHAt

Lo |

Lol E.

Ly— —

N
o

Topography — N

Terrain—following Lagrangian control-volume coordinates

=} F = E = DAl
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Computational Grid Structure for DG-3D Model

(%P} 10

(u,v,8,0,3p),

@ P,

GLL- Grid box

@ The prognostic variables uy, u, dp, © and g are staggered w.r.t p and ¢.
@ The remapping frequency is O(10) x At

Fe=cpT+ 222 1 ke

=} F = E = DAl
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@ Potential temperature © is retrieved from the remapped total energy
3(po)



SW model

Results 2D results

The Vertical Lagrangian Dynamics

The hydrostatic pressure at Lagrangian surface, Lin (MWR, 2004)

4
Pe=pPeop+ > 0pk, =123, N
k=1
where pyo, represents the pressure at the model top, p, denotes
the pressure at each Lagrangian surface. There are total N 4 1
Lagrangian surfaces span N layers.

| A

The geopotential height at Lagrangian surface:

¢
Oy =+ Y Ad, (=NN-1,..,1
k=N
where @, represents the surface geopotential height at the model
bottom and ®, denotes the geopotential height at each Lagrangian
surface.

< Ha
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Results 2D results

DG-3D Model Horizontal Aspects: Shallow Water Model

Flux-form SW equations (Vector invariant form)
Nair et al. (MWR, 2005)

ou 9
ot Oxt
Ou, 9

ot T ox2

) ) . )
a(x/Eh) + ﬁ(\/au h) + W(\/E u’h)

VG A(f +¢)

—VGu(f+¢)

0

where G = det(Gj;), h is the height, f Coriolis term; energy term and
vorticity are defined as

B 1 1 5 1 Ou, Ouy
E—d>+2(u1u +wu), (= G[@Xl 52|
o & - =  ® 9Hac
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Results SW model

2D results

DG-3D Model: Computational Domain

Cubed—Sphere (Ne=5, Nv=8)

i GLL Grid (8x8) @y

(-1,-1)
Cubed-Sphere (Ne = 5) with 8 X 8 GLL points

Flux is the only “communicator” at the element edges

Each face of the cubed-sphere is partitioned into N x Ne
rectangular non-overlapping elements (i.e., total 6 x N2).

Each element is mapped onto the Gauss-Lobatto-Legendre
(GLL) grid defined by —1 < ¢, < 1, for integration.

)

=} F = E = DAl
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Results

Horizontal Advection: Moving Vortices on the Sphere

DG: Moving Vortex on the Sphere (HOMME/Nair)

DG: Moving Vortex on the Sphere (HOMME/Nair)

Initial field and DG solution after 12 days. Max error is O(107°)

Deformational Flow Test: MNair & Jablonowski (MWR, 2007)

@ The vortices are located at diametrically opposite sides of the
sphere, the vortices deform as they move along a prescribed
trajectory.

@ Analytical solution is known and the trajectory is chosen to be a
great circle along the NE direction (o = 7/4).

= R PN
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Results

SW Test-2: Geostrophic Flow  (Nair et al., MWR 2005)

@ High-order accuracy and spectral convergence

(a) DG 150x8x8: Geostrophic Flow (Day-5)

22 T
DGM: SW Test-2, Convergence
T T
074t -
n 10780 E
|4
S
£ ]
&
< 1078} 4
(b) Height Difference (Num — Exact) e
.T': 10 |
8 107101 4
S
z 4
10—12 L |
10714 ‘ ‘ ‘
0 12 16
Degree of the Legendre Polynomial

= = DAl
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Steady state geostrophic flow (ov = 7 /4). Max height error is O(105:6) m.
o =



Results

SW model
SW Test-5: Flow over a Mountain

2D results

(Dennis et al. 2006)

90°N

@ No “spectral ringing” for the height fields

DGAM: Zonal Flow Over An Isolated Mountain (Initial Conditions)

DGAM: Zonal Flow Over An Isolated Mountain (Ne=32, Nv=6, Day=15)

180° o 0°
Geopotential height (m)
5000 5200 5400 5600 5800 6000

90°W
5000 5200 5400
Flow over a mountain (& 0.5°). Initial height field (left) initial and after 15 days of integration (right)

o
5600 5800 6000
=] F = E A
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3D-Results

DG-3D: Baroclinic Instability Test
(JW-Test) Jablonowski & Williamson (QJRMS, 2006)

@ To assess the evolution of an idealized baroclinic wave in the
Northern Hemisphere.

@ The initial conditions are quasi-realistic and defined by analytic
expressions. Analytic solutions do not exist.

eta levels

0.0

0.2

0.4

0.6

0.8

1.0
90S

JW-Test: Initial Zonal Wind (m/s)

JW-Test: Initial Zonal Temperature (K)

0.0

0.2

0.6

0.8

P I R R A
eta levels

1.0
90N 908 60S 308 EQ 30N 60N 90N

Initial Conditions
o = = = z 9ace
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3D-Results

JW-Test: Evolution of Surface Pressure over the NH

DG [Ne=8,Nv=8,NI=26], Ps(hPa) 1H
.

@ This test case recommends up to 30 days of model simulation
@ Ne = Nv = 8 (approx. 1.6°) with 26 vertical levels and At = 30 Sec.

@ Baroclinic waves are triggered by perturbing the velocity field at (20°E, 40°N)

DG [Ne=8,Nv=8,NI=26], Ps(hPa) 24H

s(hPa) Day 6 (NH)

HOMME/DG: P

s

9992 9995 9998 10001 10004  1000.7

1001

oW
9992

H [T [ [ [ N 0T [ [ [
@95 o8 10001 10004 10007 1000 @5 w5 o w5 joor 10025 1004

= & = E DA
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3D-Results

DG-3D Model Vs. NCAR Spectral Model

HOMME-DG/Ne12Nv6, Day 8

K

@ The HOMME-DG dynamical core successfully simulates
baroclinic instability.

HOMME-DG/Ne12Nv6, Day 8
Surface pressure

NCAR/T85L26 (Day 8)
hPa  Surface pressure

hPa

970

990

1000 1010

970
Simulated temperature (K) and surface pressure (hPa) at day 8 for a baroclinic instability test with the

| I N I ———
980 990 1000 1010
HOMME-DG model and the NCAR global spectral model (right). The horizontal resolution is approximately 1.4°.
Note that the DG solution is free of “spectral ringing”.
=] F = E A
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3D-Results

Ps: Ne=3,Nv=10,NI=18 Day 9

Jablonowski-Williamson Baroclinic Test (Convergence)

Ps: Ne=4,Nv=10,NI=18 Day 9

Ps: Ne=6,Nv=10,NI=18 Day 9

952505 998752 994999 100125 1007.49 1013.74

T@850mb: Ne=3, Nv=10, Day 9

93439 99099 997606 100421 1010.82

T@850mb: Ne=4, Nv=10, Day 9

963762 990456 99715 100384 101054

T@850mb: Ne=6, Nv=10, Day 9

pPLN G4
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3D-Results

DG Model Vs. NCAR Climate Models (Nair & Tufo, 2007)

HOMME-DG/Ne26Nv6 NCAR-T170 Fv 576x361

Surface pressure (Day 11) hPa  Surface pressure (Day 11)

Surface pressure (Day 11)

92 o0 958 o6 994 1012 1030 92 0 9 a76 94 1012 1030 92 o0 96 o769 1012 1030

Simulated surface pressure at day 11 for a baroclinic instability test with DG model, and NCAR global spectral
model and a FV model. The models use 26 vertical levels and with approximate horizontal resolution of 0.7°.

JW-Test (Min Ps)

1000 . L L
o 0] —noarTio |-
g —— DeNezevel
S 0] — Fuszexet |
2
8 040 £
@
3
8 =] E
@ 900 J E

880 T T T T T

o s s 5 1 s =
Time (Days) =} = = XN
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3D-Results

Parallel Performance (3D) - Frost [IBM BG/L]

@ DG-3D parallel performance: Sustained Mflops on IBM BG/L
(1024 DP nodes, 700 MHz PPC 440s): Approx. 9% peak

@ Held-Suarez (preliminary) test: 800 days idealized climate
simulation (1° resolution, 26 vertical levels, At = 10 Sec)

Sustaind FLOP Per Processor

- %~ Held-Suarez using DG-HOMME 1° (Ne=18, np=6)|
. 25
2 -~
3 e
32 Jad
3 .
z -
Q 5 s
<] 215 e
2 150 2 o
S g el
T, -
100 £ -~
g .
£
—6—1944 elements: 1 task/node (CO) P45
50 - B -1944 elements: 2 task/node (VN) -
-6 -7776 elements: 1 tasks/node (CO)
—- 7776 elements: 2 tasks/node (VN)
o . . .
32 64 128 256 512 1024 2048 0 512 1024 1536 2048
Processor Processors
Parallel performance (strong scaling) results for JW-Test Held-Suarez test (800 days) .
o = = = = 9DAC¢
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Summary

® The DG-3D model successfully simulates the Baroclinic instability
test and the results are comparable with that of the NCAR global
spectral model.

@ The preliminary scaling results are impressive and comparable to the
SE version in HOMME.

@ The explicit R-K time integration scheme is robust for the DG-3D
model, but very time-step restrictive.

@ More efficient time integration schemes are required for practical
climate simulations. Possible approaches: Semi-implicit, IMEX-RK,
Rosenbrock with optimized Schwarz, etc..

@ Future Work: Coupling of the CAM/CCSM physics for the real
climate simulations in HOMME. Targeting for large-scale parallelism
with O(100K) processors.

o = = = T 9ac
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