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Motivation

Why do we need a new climate model?

Because, the existing models have serious limitations to
satisfy all of the following properties:

1 Local and global conservation
2 High-order accuracy
3 High parallel efficiency
4 Geometric flexibility (“Local” method)
5 Monotonic (non-oscillatory) advection

Discontinuous Galerkin Method (DGM) based model has the
potential to address all of the above issues

Recently, the Spectral Element (SE) model in HOMME shown
to efficiently scale O (32, 000) processors on IBM BG/L.
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Discontinuous Galerkin Method (DGM) in 1D

1D scalar conservation law:

∂U

∂t
+

∂F (U)

∂x
= 0 in Ω × (0,T ),

U0(x) = U(x , t = 0), ∀x ∈ Ω

The domain Ω (periodic) is partitioned into Nx

non-overlapping elements (intervals) Ij = [xj−1/2, xj+1/2],
j = 1, . . . ,Nx , and ∆xj = (xj+1/2 − xj−1/2)

j−1

x x x xj+1/2j−1/2 j+3/2j−3/2

j+1IjII
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DGM-1D: Weak Formulation

A weak formulation of the problem for the approximate solution Uh is
obtained by multiplying the PDE by a test function ϕh(x) and integrating
over an element Ij :

∫

Ij

[

∂Uh

∂t
+

∂F (Uh)

∂x

]

ϕh(x)dx = 0, Uh, ϕh ∈ Vh

Integrating the second term by parts =⇒
∫

Ij

∂Uh(x , t)

∂t
ϕh(x)dx −

∫

Ij

F (Uh(x , t))
∂ϕh

∂x
dx +

F (Uh(xj+1/2, t))ϕh(x
−

j+1/2) − F (Uh(xj−1/2, t))ϕh(x
+
j−1/2) = 0,

where ϕ(x−) and ϕ(x+) denote ”left” and ”right” limits
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DGM-1D: Flux term (“Gluing” the discontinuous element edges)

R

x j−1/2 x j+1/2

I j

+ +_ (    )(    )(    ) _(    )

L L R

Flux function F (Uh) is discontinuous at the interfaces xj±1/2

F (Uh) is replaced by a numerical flux function F̂ (Uh), dependent on
the left and right limits of the discontinuous function U. At the
interface xj+1/2,

F̂ (Uh)j+1/2(t) = F̂ (Uh(x
−

j+1/2, t), Uh(x
+
j+1/2, t))

Typical flux formulae (Approx. Reimann Solvers): Gudunov,
Lax-Friedrichs, Roe, HLLC, etc.
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DGM-1D: Space Discretization

Choose an orthogonal basis set B spanning the space V k
h , s.t.,

approx. solution Uh and ϕh are in V k
h .

Use a high-order Gaussian quadrature such as the
Gauss-Lobatto-Legendre (GLL) quadrature rule

Map every element Ij onto the reference element [−1, +1] by
introducing a local coordinate ξ ∈ [−1, +1] s.t.,

ξ =
2 (x − xj)

∆xj

, xj = (xj−1/2 + xj+1/2)/2 ⇒ ∂

∂x
=

2

∆xj

∂

∂ξ
.

Regular 

x j−1/2 x
j+1/2

jI

+1− 1

ξ

GLL   Grid 

Reference ElementElement
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DGM-1D: Orthogonal Basis Set (Modal Vs Nodal)

The model basis set consists of Legendre polynomials,
B = {Pℓ(ξ), ℓ = 0, 1, . . . , k}

Uj (ξ, t) =
k

X

ℓ=0

Uℓ
j (t) Pℓ(ξ) for − 1 ≤ ξ ≤ 1, where

Uℓ
j (t) =

2ℓ + 1

2

Z 1

−1
Uj (ξ, t)Pℓ(ξ) dξ ℓ = 0, 1, . . . , k.

The nodal basis set B is constructed using Lagrange-Legendre polynomials hi (ξ)
with roots at Gauss-Lobatto quadrature points.

Uj (ξ) =
k

X

j=0

Uj hj (ξ) for − 1 ≤ ξ ≤ 1,

hj (ξ) =
(ξ2 − 1) P′

k
(ξ)

k(k + 1)Pk(ξj ) (ξ − ξj )
.

In any case, the mass matrix is diagonal
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DGM: Basis Functions
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DGM: Explicit Time Integration

Final Semi-discretized form =⇒
d

dt
Uj = L(Uj) in (0, T )

Strong Stability Preserving third-order Runge-Kutta (SSP-RK)
scheme (Gottlieb et al., 2001)

U(1) = Un + ∆tL(Un)

U(2) =
3

4
Un +

1

4
U(1) +

1

4
∆tL(U(1))

Un+1 =
1

3
Un +

2

3
U(2) +

2

3
∆tL(U(2)).

where the superscripts n and n + 1 denote time levels t and t + ∆t,
respectively

Note: The Courant number for the DG scheme is estimated to be
1/(2k + 1), where k is the degree of the polynomial, however, no
theoretical proof exists when k > 1 (Cockburn and Shu, 1989).

Ram Nair Development of a Petascale Conservative Dynamical Core for Climate



DGM
Results

3D-Results

Overview
1-D case

DG-2D Spatial Discretization for an Element Ω

2D Scalar conservation law

∂U

∂t
+ ∇ · F(U) = S(U), in Ω × (0,T ); ∀ (x1, x2) ∈ Ω

where U = U(x1, x2, t), ∇ ≡ (∂/∂x1, ∂/∂x2), F = (F ,G ) is the
flux function, and S is the source term.

Weak Galerkin formulation: Multiplication of the basic equation by a test

function ϕh ∈ Vh and integration over an element Ω.

∂

∂t

Z

Ω
Uh ϕh dΩ −

Z

Ω
F(Uh) · ∇ϕh dΩ +

Z

Γ
F(Uh) · ~n ϕh dΓ =

Z

Ω
S(Uh) ϕhdΩ

where Uh is an approximate solution in Vh.

Can be extended to a system of equations
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DG-2D: The Flux Term

U +
hU
_

Uh Uhh

After Num. Flux Operation

Element (Left) Element (Right)Element (Right)Element (Left)

Along the boundaries (Γ) of an element the solution Uh is discontinuous (U−

h

and U+
h

are the left and right limits).

Therefore, the analytic flux F(Uh) · ~n must be replaced by a numerical flux such
as the Lax-Friedrichs Flux:

F(Uh) · ~n =
1

2

h

(F(U−

h
) + F(U+

h
)) · ~n − α(U+

h
− U−

h
)
i

.

For the SW system, α is the upper bound on the absolute value of eigenvalues
of the flux Jacobian F′(U); (Nair et al., 2005)

α1 = max
“

|u1| +
√

Φ G 11
”

, α2 = max
“

|u2| +
√

Φ G 22
”
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The DG, SE & FV Methods

C

DG SE

FV
Boundary Discontinuity   Continuous 0

DGM is a hybrid approach (DG ⇐ SE + FV)

The domain D is partitioned into non-overlapping elements Ωij such
that the element boundaries are discontinuous.

Based on conservation laws but exploits the spectral expansion of
SE method and treats the element boundaries using FV “tricks.”
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DG-2D: Spatial Discretization

High-order nodal basis set

The nodal basis set is constructed using a tensor-product of
Lagrange-Legendre polynomials (hi (ξ)) with roots at
Gauss-Lobatto quadrature points.

hi (ξ) =
(ξ2 − 1)P ′

N(ξ)

N(N + 1)PN (ξi) (ξ − ξi )
;

∫ 1

−1
hi (ξ)hj(ξ) = wiδij .

where PN(ξ) is the Nth order Legendre polynomial, and wi weights associated with the
Gauss quadrature.

The approximate solution (Uh) and test function (ϕh) are represented in terms
of nodal basis set.

Uij (ξ, η) =
N

X

i=0

N
X

j=0

Uij hi (ξ) hj (η) for − 1 ≤ ξ, η ≤ 1,

The nodal version was shown to be more computationally efficient than the
modal in (Dennis et al., 2006).
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DG-3D Model: Explicit Time Integration

Final form for the nodal discretization leads to the ODE:
d

dt
Uij(t) =

4

∆x1
i ∆x2

j wiwj

[IGrad + IFlux + ISource ] ,

For a system of conservation laws, solve the ODE system:

d

dt
U = L(U) in (0,T ) × Ω

Time integration: Explicit third-order Runge-Kutta (SSP)
scheme (Gottlieb et al., 2001)

Options for explicit diffusion (∇2 or ∇4).

Boyd-Vandeevan spatial Filter

Optional Monotonic Limiter (for scalar fields)
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DG-2D Gaussin Hill Advection (Levy, Nair & Tufo, 2007)
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HOMME (High-Order Method Modeling Environment)

The Discontinuous Galerkin (DG) model is the conservative
option in the HOMME framework

HOMME Grid: The sphere is decomposed into 6 identical
regions, using the equiangular projection (Sadourny, 1972)

Local coordinate systems are free of singularities
Creates a non-orthogonal curvilinear coordinate system

Cubed Sphere Geometry: Logical cube-face orientation

z

 4 F 2 F 3F 1

F 6

F 5
(Top)

F 1

(Bottom)

x

yF
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HOMME Grid System

Metric Tensor Gij , [Cubed-Sphere ⇋ Sphere] Transform

Central angles x1, x2 ∈ [−π/4, π/4] are the independent variables.

Gij =
R2

ρ4 cos2 x1 cos2 x2

[

1 + tan2 x1 − tan x1 tan x2

− tan x1 tan x2 1 + tan2 x2

]

where ρ2 = 1 + tan2 x1 + tan2 x2, i , j ∈ {1, 2}

Metric tensor in terms of longitude-latitude (λ, θ):

Gij = AT A; A =

[

R cos θ ∂λ/∂x1 R cos θ ∂λ/∂x2

R ∂θ/∂x1 R ∂θ/∂x2

]

The matrix A is used for transforming spherical velocity (u, v) to
the covariant (u1, u2) and contravariant (u1, u2) vectors.
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Hydrostatic Prognostic Equations in Flux Form (Curvilinear coordinates)

∂u1

∂t
+ ∇c · E1 + η̇

∂u1

∂η
=

√
Gu2 (f + ζ) − R T

∂

∂x1
(ln p)

∂u2

∂t
+ ∇c · E2 + η̇

∂u2

∂η
= −

√
Gu1 (f + ζ) − R T

∂

∂x2
(ln p)

∂

∂t
(m) + ∇c ·

(

Ui m
)

+
∂(mη̇)

∂η
= 0

∂

∂t
(mΘ) + ∇c ·

(

Ui Θ m
)

+
∂(mη̇ Θ)

∂η
= 0

∂

∂t
(mq) + ∇c ·

(

Ui q m
)

+
∂(mη̇ q)

∂η
= 0

m ≡
√

G
∂p

∂η
,∇c ≡

„

∂

∂x1
,

∂

∂x2

«

, η = η(p, ps ), G = det(Gij ),
∂Φ

∂η
= −R T

p

∂p

∂η
.

Where m is the mass function, Θ is the potential temperature and q is the moisture
variable. Ui = (u1, u2), E1 = (E , 0), E2 = (0, E); E = Φ + 1

2

`

u1u
1 + u2u

2
´

is the
energy term. Φ is the geopotential, ζ is the relative vorticity, and f is the Coriolis term.
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Vertical Lagrangian Coordinates (Starr, 1945)

A “vanishing trick” for vertical advection terms!

Terrain-following Eulerian surfaces are treated as material surfaces.

The resulting Lagrangian surfaces are free to move up or down
direction.

top

Topography

δp

k 

k

p
s

p
Vertically Moving Lagrangian Surfaces

Φs

−1/2

+1/2

k

Ram Nair Development of a Petascale Conservative Dynamical Core for Climate



DGM
Results

3D-Results

SW model
2D results

3D Prognostic Equations with Vertical Lagrangian Coordinates

Lagrangian treatment of the Vertical coordinates results in η̇ = 0
and the mass function m =

√
Gδp = ∆p (pressure thickness).

Contravariant formulation preserves the familiar “vector invariant”
form for the momentum equations.

Momentum Equations: No explicit vertical advection terms

∂u1

∂t
+ ∇c · E1 =

√
Gu2 (f + ζ) − R T

∂

∂x1
(ln p)

∂u2

∂t
+ ∇c · E2 = −

√
Gu1 (f + ζ) − R T

∂

∂x2
(ln p)

∇c ≡
(

∂

∂x1
,

∂

∂x2

)

, E1 = (E , 0), E2 = (0, E ),

E = Φ +
1

2

(

u1u
1 + u2u

2
)
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3D Prognostic Equations: Flux-Form Continuity Equations

Temperature field is advected with the mass variable ∆p

∂

∂t
(∆p) + ∇c ·

(

Ui ∆p
)

= 0

∂

∂t
(Θ∆p) + ∇c ·

(

Ui Θ ∆p
)

= 0

∂

∂t
(q ∆p) + ∇c ·

(

Ui q ∆p
)

= 0

where Ui =
(

u1, u2
)

, ∆p =
√

Gδp, δp is the pressure thickness, and Θ is
the potential temperature.

Vertical layers are coupled with the hydrostatic relations:

∆Φ = −CpΘ∆Π, ∆Φ = −RT∆ ln p

where Π = (p/p0)
κ and T Denotes the layer mean temperature.
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The Remapping of Lagrangian Variables

Vertically moving Lagrangian Surfaces

Over time, Lagrangian surfaces deform and thus must be remapped.

The velocity fields (u1, u2), and total energy (ΓE ) are remapped onto the
reference coordinates using the 1-D conservative cell-integrated semi-Lagrangian
(CISL) method (Nair & Machenhauer, 2002)

E

E

∆P
∆P

t

= Pressure thicknessP∆ Lagrangian Surface

Terrain−following Lagrangian control−volume coordinates

L 2

L 1

1

2

t +∆t

Topography
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Computational Grid Structure for DG-3D Model

k+1/2

k − 1/2

(  φ p

(  φ,p)

k (  u, v, θ, , δp )
k

GLL− Grid box

q

, )
k+1/2

k − 1/2

The prognostic variables u1, u2, δp, Θ and q are staggered w.r.t p and φ.

The remapping frequency is O(10) × ∆t

Potential temperature Θ is retrieved from the remapped total energy

ΓE = cpT + δ(pφ)
δp

+ KE
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The Vertical Lagrangian Dynamics

The hydrostatic pressure at Lagrangian surface, Lin (MWR, 2004)

pℓ = ptop +

ℓ
∑

k=1

δpk , ℓ = 1, 2, 3, ...,N

where ptop represents the pressure at the model top, pℓ denotes
the pressure at each Lagrangian surface. There are total N + 1
Lagrangian surfaces span N layers.

The geopotential height at Lagrangian surface:

Φℓ = Φs +
ℓ

∑

k=N

∆Φk , ℓ = N,N − 1, ..., 1

where Φs represents the surface geopotential height at the model
bottom and Φℓ denotes the geopotential height at each Lagrangian
surface.

Ram Nair Development of a Petascale Conservative Dynamical Core for Climate



DGM
Results

3D-Results

SW model
2D results

DG-3D Model Horizontal Aspects: Shallow Water Model

Flux-form SW equations (Vector invariant form)

Nair et al. (MWR, 2005)

∂u1

∂t
+

∂

∂x1
E =

√
G u2(f + ζ)

∂u2

∂t
+

∂

∂x2
E = −

√
G u1(f + ζ)

∂

∂t
(
√

G h) +
∂

∂x1
(
√

G u1h) +
∂

∂x2
(
√

G u2h) = 0

where G = det(Gij ), h is the height, f Coriolis term; energy term and
vorticity are defined as

E = Φ +
1

2
(u1 u1 + u2 u2), ζ =

1√
G

[

∂u2

∂x1
− ∂u1

∂x2

]

.
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DG-3D Model: Computational Domain

(8x8)

(1, −1)

(1, 1)(−1, 1)

(−1, −1)

η

ξ

 GLL Grid 

Cubed-Sphere (Ne = 5) with 8 × 8 GLL points

Flux is the only “communicator” at the element edges

Each face of the cubed-sphere is partitioned into Ne × Ne

rectangular non-overlapping elements (i.e., total 6 × N2
e ).

Each element is mapped onto the Gauss-Lobatto-Legendre
(GLL) grid defined by −1 ≤ ξ, η ≤ 1, for integration.
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Horizontal Advection: Moving Vortices on the Sphere

Initial field and DG solution after 12 days. Max error is O(10−5)

Deformational Flow Test: Nair & Jablonowski (MWR, 2007)

The vortices are located at diametrically opposite sides of the
sphere, the vortices deform as they move along a prescribed
trajectory.

Analytical solution is known and the trajectory is chosen to be a
great circle along the NE direction (α = π/4).
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SW Test-2: Geostrophic Flow (Nair et al., MWR 2005)

High-order accuracy and spectral convergence

Steady state geostrophic flow (α = π/4). Max height error is O(10−6) m.
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SW Test-5: Flow over a Mountain (Dennis et al. 2006)

No “spectral ringing” for the height fields

Flow over a mountain (≈ 0.5o ). Initial height field (left) initial and after 15 days of integration (right)

Ram Nair Development of a Petascale Conservative Dynamical Core for Climate



DGM
Results

3D-Results

DG-3D: Baroclinic Instability Test

(JW-Test) Jablonowski & Williamson (QJRMS, 2006)

To assess the evolution of an idealized baroclinic wave in the
Northern Hemisphere.

The initial conditions are quasi-realistic and defined by analytic
expressions. Analytic solutions do not exist.

Initial Conditions

Ram Nair Development of a Petascale Conservative Dynamical Core for Climate



DGM
Results

3D-Results

JW-Test: Evolution of Surface Pressure over the NH

Baroclinic waves are triggered by perturbing the velocity field at (20◦E, 40◦N)

This test case recommends up to 30 days of model simulation

Ne = Nv = 8 (approx. 1.6◦) with 26 vertical levels and ∆t = 30 Sec.
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DG-3D Model Vs. NCAR Spectral Model
The HOMME-DG dynamical core successfully simulates
baroclinic instability.

Simulated temperature (K) and surface pressure (hPa) at day 8 for a baroclinic instability test with the

HOMME-DG model and the NCAR global spectral model (right). The horizontal resolution is approximately 1.4◦ .

Note that the DG solution is free of “spectral ringing”.
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Jablonowski-Williamson Baroclinic Test (Convergence)
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DG Model Vs. NCAR Climate Models (Nair & Tufo, 2007)

Simulated surface pressure at day 11 for a baroclinic instability test with DG model, and NCAR global spectral

model and a FV model. The models use 26 vertical levels and with approximate horizontal resolution of 0.7◦ .
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Parallel Performance (3D) - Frost [IBM BG/L]

DG-3D parallel performance: Sustained Mflops on IBM BG/L
(1024 DP nodes, 700 MHz PPC 440s): Approx. 9% peak

Held-Suarez (preliminary) test: 800 days idealized climate
simulation (1◦ resolution, 26 vertical levels, ∆t = 10 Sec)

32 64 128 256 512 1024 2048
0

50

100

150

200

250

300

Processor

M
F

LO
P

Sustaind FLOP Per Processor

 

 

1944 elements: 1 task/node (CO)
1944 elements: 2 task/node (VN)
7776 elements: 1 tasks/node (CO)
7776 elements: 2 tasks/node (VN)

Parallel performance (strong scaling) results for JW-Test Held-Suarez test (800 days) .
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Summary

The DG-3D model successfully simulates the Baroclinic instability
test and the results are comparable with that of the NCAR global
spectral model.

The preliminary scaling results are impressive and comparable to the
SE version in HOMME.

The explicit R-K time integration scheme is robust for the DG-3D
model, but very time-step restrictive.

More efficient time integration schemes are required for practical
climate simulations. Possible approaches: Semi-implicit, IMEX-RK,
Rosenbrock with optimized Schwarz, etc..

Future Work: Coupling of the CAM/CCSM physics for the real
climate simulations in HOMME. Targeting for large-scale parallelism
with O(100K ) processors.
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