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WHAT IS A PETASCALE
MACHINE?

To follow Moore’s law, computers need more CGPUs
O(10000) to O(100000) processors
Access to 10-20 times more processors: optimization not an option

‘Tradeofts: cache/heat/space/$

Clock speed max out: burden 1s on parallel algorithms
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BASIC DD METHODS

* (Overlapping) Schwarz (1870): existence of elliptic

problems on non trivial domains

* (Non-overlapping) Schur / sub-structuring methods

Przemieniecki (63)

2 classes of methods: overlapping and non-overlapping




MESH PARTITIONING: DECOMPOSE
THE DOMAIN

*Geometric Based Algorithms
eCoordinate bisection
e]nertia bisection

*Graph Theory Based Algorithms
eGraph bisection
eGreedy algorithm
eSpectral bisection
eK-L algorithm

*Other Partitioning Algorithms
*Global optimization algorithms
eReducing the bandwidth of the matrix
e]Index based algorithms

*The State of the Art
e Hybrid approach
e Multilevel approach
eParallel partitioning algorithms
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CLASSICAL SCHWARZ

Suppose we need to solve:

i in §), DBu=g9 onld®

Partition the original domain into 2 domains:

£u717“+1 = f n Ql, LuSH = f 1n QQ,
B — g onoQ, Bl = g ond@s
u"fH =i on F o, ugﬂ = u? endiE-p
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SCHWARZ WITH LARGE
OVERLAP
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SCHWARZ WITH LARGE
OVERLAP
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SCHWARZ WITH LARGE
OVERLAP

Overlap
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THE ROBIN METHOD

Lions (1990)

Used to accelerate convergence of Schwarz

Free positive parameter: how to find its correct value?

: 0
DU = puf - 81:;1 on 0§2; N 0§ for [ € N(

kH—u on 0€); N Of)

;)

18



FOURIER ANALYSIS

Study simple 2D problem
Only 2 subdomains

Fourier transtorm in the tangent direction to the separating
interface between domains

Solve the remaining ODE

Obtain convergence rate of the algorithm

19



Fourier analysis
Problem

. Overlap
setting: 0 E 0
1 )
=
o= T
0 L

(77 5 A)u(xa y) e Ov on {)
Boundary conditions: solution decays at
infinity
Subdomains:

)y = [—00,L] x Rand Q5 = [0,00] x R




Fourier analysis

'ITwo subproblem:s:

= Au™t = 0 in 9, (7 — A s in o,
uPH(Ly) = wf(Ly) onTp  wT(0y) = uf(0,y) onTa.
Fourier transforming in the y direction:
B 20, )0t = 0 I e =t = O in s,
RN = DL, k) on I'p, a2t1(0,k) = 4%(0,k) on B

Solving 1n the x direction:
if(ek) = @7NLRe VIO, ap@ k) = a0 KV

Convergence rate of classical Schwarz

(Gander 2006 SINUM):

Pcla — pcla(ka T, L) =€ Al

21



OPTIMIZED APPROACH

* Inspired by the Robin problem:

(77 A) fa in Ql, (77 A) fag in QQ,
(8 —|—Sl) n—i—l (5’ —|—SQ) on Fgl.

0 0
We are looking for the best possible forms of 1n Fourier space

Proceeding as before leads to the solutions: (or(k) = F(S:))

A P O']_(k)—1/kj2—+—fr, e /k:2—|—77(£c L)sn—1 A el 0’2(’{3)—|—\/k‘2—|—fr] I /]{32—|—’I’]CL‘ n 1
at(z, k) = 01(k:)+\/m iy~ (L, k), a3 (z, k) = JQ(k)_m (0, k)

New convergence rate:

Popt — IOOPt(kanaL) =

22



OPTIMIZED APPROACH

'T'he choice

o1(k) = VK2 +n, o2(k) = —/k2 + 1

leads to thefconver ¢ of the algorithm in 2 iterations

Popt — 0

T'’he operators are not local operators in physical space!

An approximation 1s sought such that all frequencies have an
optimal decay rate:

23



VARIOUS CHOICES (ONE
SIDED)

Taylor zeroth order: o017 (k) = v/n
Taylor second order: of*P(k) = /7 + —\/_kZ

VL(2p+ L(p*> — 1))
L

pOOO(kminaLanap ) o pOOO(k(p*)aLanap*)

Zeroth order optimized: k(L,n,p) =

N

Zeroth order optimized (no overlap): p* = (k2 + n) (k2 + 1))

Second order optimized: very long and complex formulas for

pandq ... '

Details see Gander (SINUM 20006)

24



CONVERGENCE RATES

Classical Schwarz

1.
0.81 0.81
0.6 0.6
0.4 0.4-
0.2 0-2M\
NN
0 20 40 60 80 100 20 40 60 80 100

k e k
Taylor zeroth order and second Optimized zeroth and second order
order with two-sided zeroth order
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CONVERGENCE RATES

Classical Schwarz

1 |
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OPTIMIZED SCHWARZ: ALGEBRAIC RESULTS

* SG'T 2007: show how to modity existing Schwarz

algorithm to yield optimized versions

» The augmented or “enhanced” system 1is rediscovered

» Spectral elements are natural candidates:

~& Overlapping grids are cumbersome to construct
~& Block preconditioning costly: FDM when possible

~& Optimal preconditioner 1s known (SD Kim 2006)

¥ Ql—%sed problem costly to invert does not scale:

use MG or other solver (opt Schwarz?)to invert

26



OPTIMIZED SCHWARZ: ALGEBRAIC RESULTS

J
: R ] | >
Inverting: Wi — AR AR Bk
k=1

J

At convergence: (I —A;")  Bjp)u, = A'f;
k=1

Apply restriction extension operators:

J J
{I- ) RIA'BjpRplu=) RTARf

7,k=1 g=1

MxV operation: M tAu= M"'f
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OPTIMIZING OPTIMIZED SCHWARZ!!

* Schwarz for SEM: ethicient implementation (Fischer

97,+Miller and 'luto 98, + 'luto 99) (3D)

 Constraints imposed by new architectures
* Loosing symmetry: 2 MxV 1nstead of 1

* OS no overlapping region to construct

e FDM lost?

28



OPTIMIZING FOR CACHE

J
z; = Y Bjruj
k=1
Suppose a non-overlapping domain in 2D: N* unknowns

)
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OPTIMIZING FOR CACHE

J
e ol )
A E :Bjkuk
k=1

Suppose a non-overlapping domain in 2D: N* unknowns

Z;j 2N Boundary nodes

-

(oo )|

29
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(oo )|

OPTIMIZING FOR CACHE

J
e D
A E :Bjkuk
k=1

Suppose a non-overlapping domain in 2D: N* unknowns

2N Boundary nodes

T

Size:
MxV cost:

J
mn
E , Jkuk

Normal Op:tlmlzed
N% x N?|N? x 2N
O(N%) | O(N?)

<= Rectangular

29



OPTIMIZING FOR CACHE

J
e D
A E :Bjkuk
k=1

Suppose a non-overlapping domain in 2D: N* unknowns

Z;j 2N Boundary nodes

S Normal Op:tlmlzed < Rectangular
Size: IN? x N2|N? x 2N

MxV cost: | O(N?) O(N?)
Cost 1dentical to 2D FDM or “interface” system approach

29



CREATING THE AUGMENTED
SYSTEM FROM A WEAK FORM

e The normal derivative can be written 1n terms of the

original bilinear operator (loselli, Widlund 2005)

 Avoids the difhicult duality pairing for functions on
the edges of the subdomains
T(wi, ¢) = | Ve Vol + [ ¢Awk

= [, Vo, vutt - [ ot — fi(0)
= a7 S n) = ey

Where we pick ¢; € H'(89;)

30



CREATING THE AUGMENTED
SYSTEM FROM A WEAK FORM

Boundary condition 1s:

Tj(warl? ¢]) Z TJ (wk+17 ¢J ‘ng)

leN(Q;)
— i k+1 N ey
PR qug wy L(wr', d5lr,,) }
leN(Q;)
= - /Qpabj b S () pouf = Tt 05l )}
J leN(Q

where a sum on neighbors appears.
Leads to the relaxed form required by the algorithm

ab(uit, ¢)+ > < i TWithpg,r) > I, = fF8)+ Y fleilr,)

LEN(Q;) leEN(2;)

e Z a?(u?aqb”rﬂ) + Z < ¢Z7T(u?apa q, T) > |Fjl (|

lEN(2;) LEN(95)

31



SEM SIMPLE PROBLEM

Lu

0.8

0.6

0.4

0.2

Gander 2006
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Lu

SEM SIMPLE PROBLEM

GMRES iterations

10

Gander 2()'06

—f— TOO0

—— TO2

—tt— (000

—g— 002

—g&— Classical Schwarz
N2

R _N1/4
- ==N

10'
Polynomial order
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GMRES iterations

COARSE SOLVER?

T T —T T T

[| —4— (002) °
|- e -H# - |

- —@- - Classical Schwarz

Total number of elements

in and Xu 2006 SINUM

GMRES iterations

40

35

30

25

20

15

10

u T LA—
- —B- - Classical Schwarz
—*— (002)

________ - — = —— ——————— . —. O B
o- - "7
e b e
% o A
L L L Il L L L L L L L L Il
1 2
10 10

Total number of elements

Scaling 7] as 2 (5 )4
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PRIMITIVE EQUATIONS

d
Momentum: d—Z+fk><V—|—V<I>+RTV1np:O
™ i s dT_/ﬁ:Tw_O
ermodynamic: 7 b

s 0 0 0 %, 0
@ontinuity: £ [ 2 . op O [ Ca
4 3t(3n>+v <V377>+077<77377> 1

HOMME: high order multiscale modeling environment

34



PRIMITIVE EQUATIONS: Sl

00  RT dp

Hydrostatic assumption: 2= |
n p I

Linearization (barotropic state): 7" = 300K, p. = 1000hPa
Semi-Implicit:

dX
— = MX)
Add zero: Cil_)t( = M(X)+LX - LX =N(X)-LX
S 1 +1 1l 1 +1 i
SN = S L(X"T + X7 ) = M(X")+HLX" L
2At 2 2
Xn—l—l o Xn—l

1 . : .
2At = M(X") — sAulX “T'ime diffusion™

35



PE: VERTICAL STRUCTURE
MATRIX

Results of hydrostatic assumption
and vertical coordinate choice: p(1,ps) = A(n)po + B(n)ps

N El R P
G" — At?’AV?G" = B — AtAV -V

Solve for each k: Backsub:
] D =  AfprAnEE
Ve [ =0
( AtQAk) - " In ps = PSS
. €——Time dependance T — T _A+tTD
Series of 2D Helmholtz v = V_ALVGT

Barotropic eigenmodes of atmosphere  (Thomas and Loft 2005)

36



PE: VERTICAL STRUCTURE

MATRIX
Results of hydrostatic assumption
and vertical coordinate choice: p(n, ps) = A(m)po + B(n)ps
NGBS R P < Diagonalize
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CUBED SPHERE

» Equiangular projection

* Sadourny (72), Rancic
(96), Ronchi (96)

* Most models moving
towards this approach

 SFC: Dennis 2003

Metric tensor

¥ 1 1 + tan? 21 —tanz; tan zo
9 = L o2 ricos2x, | —tanzitanzy 1+ tan®xz, :

Rewrite div and vorticity

0 ; ou
. = — ] = .. —‘7
g v v 8x‘7 ( g w )7 g C Elj aﬂf’l’ k
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» Equiangular projection
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* Most models moving
towards this approach

 SFC: Dennis 2003

Metric tensor

¥ 1 1 + tan? 21 —tanz; tan zo
9 = L o2 ricos2x, | —tanzitanzy 1+ tan®xz, :

Rewrite div and vorticity

0 - ou;
. - — --7 e .. —'7
g v v 8%7 ( g w )7 g C EZ] aﬂf’l’ k
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MESH PARTITIONING

Space filling curves (Dennis 2003):

Hilbert SFC:
ST
Cubed sphere: :] E _Il""ll__? i‘:{,d_
- HTY




20

15

10

CONVERGENCE PER MODE

B DiAGONAL B OPT SCHWARZ

« Communication cost identical

» Twice the cost of GG per iteration
3
 Diagonal O(N) while OS 1s O(N )

 Best strategy: use OS on first few
barotropic modes and diagonal
elsewhere

e« No coarse solver needed: because of
time dependance

39



NEW APPROACH

ll DiacGONAL Bl OPT SCHWARZ

20

15

10




NEW APPROACH

ll DiacGONAL Bl OPT SCHWARZ

20
15

10

(o)

el o e T SR St e T e s )
(_)

OANS
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NEW APPROACH

ll DiacGONAL Bl OPT SCHWARZ

20
15

10

(o)

1 2EE 8 Se Al Sl Gl /ael LSS

- ST >

OANS Diagonal




SI VS EXP: RED STORM

Acceleration Factor
L I L L

5r
al
v
=2 3t
o
4
(W]
u
251
v
seee Ne=8, h~156km
1+ Ne=16, h~80km
Ne=32, h~40km
. : Ne=64, h~20km
o T eee Ne=128, h~10km

e . *, L L L L L L | |
— — 2 4 8 16 32 64 128 256
Number of Processors

W. Spotz : Sandia National Labs




Sl VS EXP: BLUE GENE

T T T T T T T T I,
2000 = = = |deal speedup P N
—©6— Explicit coprocessor mode ’
—»— Semi-implicit coprocessor mode (002) , s
18001 4 Explicit virtual node mode Pid _
—&— Semi-implicit virtual node mode (002) Pad

Speedup

1 1 1 1 1
400 600 800 1000 1200 1400 1600 1800 2000

Number of processors

ne=32,
40km
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Speedup

Sl VS EXP: BLUE GENE

2000 = = = |deal speedup

—©6— Explicit coprocessor mode

—»— Semi-implicit coprocessor mode (002)
18001 4 Explicit virtual node mode

—&— Semi-implicit virtual node mode (002)

1600

1400

1200

400 600 800 1000
Number ¢

Speedup

[ T T T T T T T I,_
20001 = = = |deal speedup Pid
—%¥— Explicit virtual node mode ’

| | —B8— Semi-implicit virtual node mode (002) ’ _
1800 P

1600

1400

1200

1000

800

600

400

200

400 600 800 1000 1200 1400 1600 1800 2000
Number of processors
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BITE THE BULLET




STRATIFIED
COMPRESSIBLE EULER

Conservation law: U, +V - -F(U) = S(U)
With: (0, pu, pw, ©)" = (p,U, W, 0)"
(F,G)

p PR
UW WW W .

9 +p7 —)
9 p
S(U) = (0,0,—gp,0)"
RO

= gl —"
(po)

'\(_:"/lcj

P

(W,

Remove hydrostatic state:
p=p(z) +p
p=p+p

0 =5(2)0(2) + O

44



DG FORMULATION:

Integrate over control volume Q using:

dU, .
/ @hﬁ df) = / pnS(Up) d2 + / F(U,) - Vir dQ — / opF - nds

Lax-Friedrich numerical flux:

F(U,Uy) - == [(F(US) + F(Uy)) -2 — a(Uf - Uy)]

Galerkin based on GLL pomts + exact integration

ZZ“ZJ

1=0 5=0

Leads to semi- dlscrete problem solved using ROW:
Uy,
— = Lu(Up)

Filtering 1s applied: Boyd-Vandeven

45



CHEAP IMPLICITNESS:
ROSENBROCK METHODS

The Jacobian matrix 1s included in the DIRK order

conditions

Each stage requires solution to linear problem only
Viewed as one Newton iteration per RK stage

Used for stiff chemical reaction problems in the
geosciences with success

Used traditionally for parabolic PDEs

46



ROSENBROCK

=

Start with DIRK: le = i o Z gk

ol LDIRK:
n+1 n
e Z bik; ki = Atf(g;) + Atﬁ aiiki
=il ou gi
1—1
. - ] = 12 ik
Linearize around: u™ + > aiiky i gl ;a 3%

Replace Jacobian at gyith J = %

un

i=1
Gl

Bosenbrocks . ..., . < \
e . Z_; i MxV products

47



AVOIDING

MULTIPLICATIONS
Suppose h; = > ik then k= L S el

11 j:1

The modified Rosenbrock 1s

( 1
AN

=1 p=1l

— Jh; = f(u™ + ) aiihs) + Z(%)hj

7j=1 qi=1l

S S
utt =™+ > Cmyhy AT =47+ ) gy
J:]_ ]:]_

Where: B (’Yij) and \

Free error esttimation!

e = QRO ooy o ) = I
G =@ e
m? =pIT 1.

Solving the linear system might not be the cheapest thing...

48



IMPLICIT VS EXPLICIT

* Suppose matrix-vector and the RHS evaluation of the
ODE have unit cost

* Suppose a s-stages explicit RK and s-stages SDIRK or
Rosenbrock

 Find the total number of Krylov iterations one can
atford to see some acceleration

49



IMPLICIT VS EXPLICIT

* Suppose matrix-vector and the RHS evaluation of the
ODE have unit cost

* Suppose a s-stages explicit RK and s-stages SDIRK or
Rosenbrock

 Find the total number of Krylov iterations one can
afford to see some acceleration
Rosenbrock:

CFL—-1
prod X accel

Newton-Krylov (SDIRK):

Gl

prod X accel

iter <

iter X newton <

49



IMPLICIT VS EXPLICIT

* Suppose matrix-vector and the RHS evaluation of the
ODZE have unit cost

* Suppose a s-stages explicit RK and s-stages SDIRK or
Rosenbrock

 Find the total number of Krylov iterations one can
atford to see some acceleration

Rosenbrock: (BiCGGStab) prod=2
S CFL -1 CFL / accel 1 2 4
wter <
prod X accel 10 4.5 2 1
, 20 9.5 G ). 4|
Newton-Krylov (SDIRK): = s
T i 2 e 100 49,5, [E 775 o
prod x accel 500 249.5 | 124.75 | 62.4
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ROSENBROCK-W: ROW

 Stethaug and Woltbrandt 1979

» Rosenbrock-W: suppose Jacobian 1s not exact

* Same stability region as SDIRK if Jacobian 1s exact

* If not ... stability very hard to study
» Never used with high-order methods

* We need L-stability for PDEs...

» Dense output + error estimator 1s available
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L-STABLE ROSENBROCK-W

e More order conditions for ROW methods

p=s (p > 2) for ROW to be L-stable: impossible

¢ p<swe can get L-stable + W

Stiffly accurate: no error reduction in RK stages

Embedded method: error control

Combining ideas in
Hairer and Wanner (II)

we get an [-stable

~ = 0.435866
ag1 = 2.0000

asy — 1.41921
azg — —0.259
aq1 — 4.1847

aq9 — —0.285
ay43 — 2.2942

my = 0.24212
mo = —1.223
ms3 = 1.54526

mya = 0.43586
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L-STABLE ROSENBROCK-W

« More order conditions for ROW methods

« p=s(p > 2) for ROW to be L-stable: impossible
e p<swe can get L-stable + W

 Stiffly accurate: no error reduction in RK stages
¢ Embedded method: error control

Combining ideas in

, 7 = 0.435866
Hairer and Wanner (1) az1 = 2.0000
we get an L-stable Rt e
aq1 — 4.1847
aq9 — —0.285
ay43 — 2.2942
Error control my = 0.24212
mo = —1.223
ms = 1.54526
ma = 0.43586
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STRATIFIED COMPRESSIBLE
EULER

Close to incompressible flows: boundary eftects

At high resolutions the nonhydrostatic eftects need to be
considered: hydrostatic GCM can run at 10 km resolutions

now (e.2. HOMME)
Global next generation GCGM will be nonhydrostatic

High-order: ideally suited for wave propagation
phenomena not well suited for shocks and steep gradients:
limiting HOMs 1s research...
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NUMERICAL EXPERIMENT:
RISING BUBBLE

Hydrostatically balanced flow

Potential temperature perturbed

Domain 1.0 km x 1.5 km resolution: 6m

Robert (1993): slow moving large scale bubble with fast acoustic waves reflected
Integrate for 1800 secs: bubble crashes onto top lid

Block Jacobi preconditioning + Guillard and Viozat diffusive term (1998)

dt fixed to 1 secs, acceleration observed ~6-8: compared to an SSP with CFL=2
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Initial condition (t=0)
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t=360 seconds
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t=1080 seconds
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t=1800 seconds




CONCLUSIONS AND
FUTURE WORK

Petascale computing imposes constraints!
The barotropic problem i1s solved optimally by OAS

A very cache friendly OAS version was derived: compares to FDM

A cheap way of achieving implicit time integration for PDEs was derived
Possible to attain high-order in time: error control

Stiffer problems will be considered: mountains and gravity waves in a
channel

Preconditioning ... + projections using lower polynomial degrees to
construct better starting estimates

ROW + SSP: L-stable Rosenbrock-W method with explicit part SSP (Joint
with Prof. Sandu and E. Constantinescu: Virginia Tech)
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