
A High-Order Optimized
Schwarz algorithm for

Massively Parallel
Climate Modeling

Amik St-Cyr

Institute for the Mathematics Applied to Geosciences (IMAGe)
Computational & Information Systems Laboratory (CISL)

National Center for Atmospheric Research

Turbulence & Dynamos at Petaspeed Boulder, CO 15-19 October 2007

1

Outline
• Constraints for petascale computing

• Spectral element method

• (Very short) introduction to DDM

• Optimized Schwarz (OS) at the algebraic level

• Transforming OS into an efficient algorithm

• Application to high-order SEM: the simple case

• Application: SEM based climate modeling

• Biting the bullet: “compressible solver”

• Conclusions

2

Outline
• Constraints for petascale computing

• Spectral element method

• (Very short) introduction to DDM

• Optimized Schwarz (OS) at the algebraic level

• Transforming OS into an efficient algorithm

• Application to high-order SEM: the simple case

• Application: SEM based climate modeling

• Biting the bullet: “compressible solver”

• Conclusions

2

What is a petascale
machine?

• To follow Moore’s law, computers need more CPUs

• O(10000) to O(100000) processors

• Access to 10-20 times more processors: optimization not an option

• Tradeoffs: cache/heat/space/$

• Clock speed max out: burden is on parallel algorithms

3

What is a petascale
machine?

• To follow Moore’s law, computers need more CPUs

• O(10000) to O(100000) processors

• Access to 10-20 times more processors: optimization not an option

• Tradeoffs: cache/heat/space/$

• Clock speed max out: burden is on parallel algorithms

3

Basic DD methods

• (Overlapping) Schwarz (1870): existence of elliptic
problems on non trivial domains

• (Non-overlapping) Schur / sub-structuring methods

2 classes of methods: overlapping and non-overlapping

Kron (53) Przemieniecki (63)

4

Mesh partitioning: decompose
the domain

•Geometric Based Algorithms
•Coordinate bisection
•Inertia bisection

•Graph Theory Based Algorithms
•Graph bisection
•Greedy algorithm
•Spectral bisection
•K-L algorithm

•Other Partitioning Algorithms
•Global optimization algorithms
•Reducing the bandwidth of the matrix
•Index based algorithms

•The State of the Art
•Hybrid approach
•Multilevel approach
•Parallel partitioning algorithms

5

Mesh partitioning: decompose
the domain

•Geometric Based Algorithms
•Coordinate bisection
•Inertia bisection

•Graph Theory Based Algorithms
•Graph bisection
•Greedy algorithm
•Spectral bisection
•K-L algorithm

•Other Partitioning Algorithms
•Global optimization algorithms
•Reducing the bandwidth of the matrix
•Index based algorithms

•The State of the Art
•Hybrid approach
•Multilevel approach
•Parallel partitioning algorithms

5

Classical Schwarz

Lu = f in Ω, Bu = g on ∂Ω

Suppose we need to solve:

Partition the original domain into 2 domains:
Lun+1

1 = f in Ω1, Lun+1
2 = f in Ω2,

B(un+1
1) = g on ∂Ω1, B(un+1

2) = g on ∂Ω2,

un+1
1 = un

2 on Γ12, un+1
2 = un

1 on Γ21.

Ω1 Ω2

Γ21 Γ12

6

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
0

1 u
0

2

-1 1

7

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
0

1 u
0

2

-1 1

Ω1 Ω2

7

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap
-1 1

8

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
1

2(−h) = u
0

1(−h)

-1 1

8

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
1

1(h) = u
0

2(h)u
1

2(−h) = u
0

1(−h)

-1 1

8

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
1

1(h) = u
0

2(h)u
1

2(−h) = u
0

1(−h)

-1 1

8

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
1

1(h) = u
0

2(h)u
1

2(−h) = u
0

1(−h)

-1 1

8

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap
-1 1

9

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
2

1(h) = u
1

2(h)u
2

2(−h) = u
1

1(−h)

-1 1

10

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap
-1 1

11

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
3

1(h) = u
2

2(h)u
3

2(−h) = u
2

1(−h)

-1 1

12

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap
-1 1

13

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
4
1(h) = u

3
2(h)u

4
2(−h) = u

3
1(−h)

-1 1

14

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap
-1 1

15

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap
-1 1

.

.

.

.

.

.

16

Schwarz with large
overlap

∆u = 0, on [−1, 1] with u(−1) = u(1) = 0

Overlap

u
1

1(h) = u
0

2(h)

u
2

1(h) = u
1

2(h)

u
3

1(h) = u
2

2(h)

u
4
1(h) = u

3
2(h)u

4
2(−h) = u

3
1(−h)

u
3

2(−h) = u
2

1(−h)

u
2

2(−h) = u
1

1(−h)

u
1

2(−h) = u
0

1(−h)

-1 1

.

.

.

.

.

.

17

The Robin method

• Lions (1990)

• Used to accelerate convergence of Schwarz

• Free positive parameter: how to find its correct value?

• Convergence rate not demonstrated theoretically

• No need for overlap!
Luk+1

j = uk+1
j − ∆uk+1

j = fj

puk+1
j +

∂uk+1

j

∂njl
= puk

l + ∂uk
l

∂njl
on ∂Ωj ∩ ∂Ωl for l ∈ N (Ωj)

uk+1
j = u0 on ∂Ωj ∩ ∂Ω

18

Fourier analysis

• Study simple 2D problem

• Only 2 subdomains

• Fourier transform in the tangent direction to the separating
interface between domains

• Solve the remaining ODE

• Obtain convergence rate of the algorithm

19

0 L

Overlap

Ω1 Ω2

Γ12Γ21

Boundary conditions: solution decays at
infinity

Ω1 = [−∞, L] × R and Ω2 = [0,∞] × R

(η − ∆)u(x, y) = 0, on Ω

Subdomains:

Problem
setting:

Fourier analysis

20

(η − ∆)un+1
1 = 0 in Ω1, (η − ∆)un+1

2 = 0 in Ω2,

un+1
1 (L, y) = un

2 (L, y) on Γ12, un+1
2 (0, y) = un

1 (0, y) on Γ21.

(η + k2
− ∂xx)ûn+1

1 = 0 in Ω1, (η + k2
− ∂xx)ûn+1

2 = 0 in Ω2,
ûn+1

1 (L, k) = ûn

2 (L, k) on Γ12, ûn+1
2 (0, k) = ûn

1 (0, k) on Γ21.

ûn
1 (x, k) = ûn−1

2 (L, k)e−
√

k2+η(x−L), ûn
2 (x, k) = ûn−1

1 (0, k)e−
√

k2+ηx

ρcla = ρcla(k, η, L) = e−
√

k2+ηL

Two subproblems:

Fourier transforming in the y direction:

Solving in the x direction:

Convergence rate of classical Schwarz
(Gander 2006 SINUM):

Fourier analysis

21

Optimized approach

• Inspired by the Robin problem:
(η − ∆)un+1

1 = 0 in Ω1, (η − ∆)un+1
2 = 0 in Ω2,

(∂x + S1)u
n+1
1 = (∂x + S1)un

2 on Γ12, (∂x + S2)u
n+1
2 = (∂x + S2)un

1 on Γ21.

We are looking for the best possible forms of in Fourier space

Proceeding as before leads to the solutions: σr(k) = F(Sr)()

ûn
1 (x, k) =

σ1(k)−
√

k2+η

σ1(k)+
√

k2+η
e−

√

k2+η(x−L)ûn−1
2 (L, k), ûn

2 (x, k) =
σ2(k)+

√

k2+η

σ2(k)−
√

k2+η
e−

√

k2+ηxûn−1
1 (0, k)

ρopt = ρopt(k, η, L) =
σ1(k) −

√

k2 + η

σ1(k) +
√

k2 + η

σ2(k) +
√

k2 + η

σ2(k) −
√

k2 + η
e−2

√

k2+ηL

New convergence rate:

22

Optimized approach

The choice

σ1(k) =
√

k2 + η, σ2(k) = −

√

k2 + η

leads to the convergence of the algorithm in 2 iterations
ρopt = 0

The operators are not local operators in physical space!

An approximation is sought such that all frequencies have an
optimal decay rate:

σ
app

1
(k) = p1 + q1k

2, σ
app

2
(k) = −p2 − q2k

2

23

Various choices (one
sided)

Taylor zeroth order:

Taylor second order:

Zeroth order optimized:

Second order optimized: very long and complex formulas for
p and q ...

Details see Gander (SINUM 2006)

σapp

1
(k) =

√

η +
1

2
√

η
k2

k(L, η, p) =

√

L(2p + L(p2
− η))

L

σapp

1
(k) =

√

η

p∗ = ((k2

min + η)(k2

max + η))
1

4

ρOO0(kmin, L, η, p∗) = ρOO0(k(p∗), L, η, p∗)

Zeroth order optimized (no overlap):

24

Convergence rates

OPTIMIZED SCHWARZ METHODS 705

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100
k

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100
k

Fig. 4.1. Convergence factor ρcla of the classical Schwarz method (top curve) as a function of k,
compared on the left to ρT0 (middle curve) and ρT2 (bottom curve) of the optimized Schwarz methods
with zeroth and second order transmission conditions, respectively, obtained by Taylor expansion,
and on the right compared to the OO0 and OO2 Schwarz methods, and the optimized Schwarz method
with two-sided optimized Robin transmission conditions, which lies in between OO0 and OO2.

choice of transmission conditions for the model problem with two subdomains, overlap
L = 1

100 and problem parameter η = 1, together with the classical convergence factor
ρcla. First one can clearly see that the optimized Schwarz methods are uniformly
better than the classical Schwarz method; in particular the low-frequency behavior
is greatly improved. The maximum of the convergence factor of classical Schwarz
is about 0.980, whereas the maximum of the convergence factor with zeroth order
Taylor condition is 0.568 and the maximum with second order Taylor condition is
0.449 in this example. Hence the classical Schwarz method needs about 28 iterations
to obtain the contraction factor of one iteration of the optimized Schwarz method
with zeroth order Taylor conditions, and about 40 iterations are needed to obtain
the contraction of one iteration of the optimized Schwarz method with second order
transmission conditions from Taylor expansion.

As we mentioned earlier, the classical Schwarz method does not converge without
overlap: for L = 0 we obtain ρcla(k, 0, η) = 1 and hence convergence is lost for all
modes. Optimized Schwarz methods, however, can be used without overlap, and
nonoverlapping Schwarz methods can be of great interest, if the physical properties
in the subdomains differ, for example, when there are jumps in the coefficients of the
equation as in [20] or the nature of the equations changes, like in the case of coupling
of hyperbolic and parabolic problems; see, for example, [18] and references therein.
If we set L = 0 in the convergence factor (4.4) of the optimized Schwarz method, the
exponential term becomes one, but the factor in front remains unchanged, and thus
ρT0(k, 0, η) < 1 and ρT2(k, 0, η) < 1 for all k. In a numerical implementation there is
a maximum frequency which can be represented on a grid with grid spacing h. An
estimate for this maximum frequency is kmax = π

h . Hence the slowest convergence for
the optimized Schwarz method without overlap and Taylor transmission conditions
is obtained for the highest frequency: the method is a rougher as opposed to the
smoother the classical Schwarz method is.

In practice, even when using the Schwarz method with overlap, the overlap is
often only a few grid cells wide, and thus L = O(h). In that case the convergence
factor of the classical Schwarz method deteriorates as well as one refines the mesh and
h goes to zero and we have the following comparison theorem.

Theorem 4.2. The optimized Schwarz methods with Taylor transmission con-
ditions and overlap L = h have an asymptotically superior performance than the

Classical Schwarz

Taylor zeroth order and second
order

Optimized zeroth and second order
with two-sided zeroth order

25

Convergence rates

OPTIMIZED SCHWARZ METHODS 705

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100
k

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100
k

Fig. 4.1. Convergence factor ρcla of the classical Schwarz method (top curve) as a function of k,
compared on the left to ρT0 (middle curve) and ρT2 (bottom curve) of the optimized Schwarz methods
with zeroth and second order transmission conditions, respectively, obtained by Taylor expansion,
and on the right compared to the OO0 and OO2 Schwarz methods, and the optimized Schwarz method
with two-sided optimized Robin transmission conditions, which lies in between OO0 and OO2.

choice of transmission conditions for the model problem with two subdomains, overlap
L = 1

100 and problem parameter η = 1, together with the classical convergence factor
ρcla. First one can clearly see that the optimized Schwarz methods are uniformly
better than the classical Schwarz method; in particular the low-frequency behavior
is greatly improved. The maximum of the convergence factor of classical Schwarz
is about 0.980, whereas the maximum of the convergence factor with zeroth order
Taylor condition is 0.568 and the maximum with second order Taylor condition is
0.449 in this example. Hence the classical Schwarz method needs about 28 iterations
to obtain the contraction factor of one iteration of the optimized Schwarz method
with zeroth order Taylor conditions, and about 40 iterations are needed to obtain
the contraction of one iteration of the optimized Schwarz method with second order
transmission conditions from Taylor expansion.

As we mentioned earlier, the classical Schwarz method does not converge without
overlap: for L = 0 we obtain ρcla(k, 0, η) = 1 and hence convergence is lost for all
modes. Optimized Schwarz methods, however, can be used without overlap, and
nonoverlapping Schwarz methods can be of great interest, if the physical properties
in the subdomains differ, for example, when there are jumps in the coefficients of the
equation as in [20] or the nature of the equations changes, like in the case of coupling
of hyperbolic and parabolic problems; see, for example, [18] and references therein.
If we set L = 0 in the convergence factor (4.4) of the optimized Schwarz method, the
exponential term becomes one, but the factor in front remains unchanged, and thus
ρT0(k, 0, η) < 1 and ρT2(k, 0, η) < 1 for all k. In a numerical implementation there is
a maximum frequency which can be represented on a grid with grid spacing h. An
estimate for this maximum frequency is kmax = π

h . Hence the slowest convergence for
the optimized Schwarz method without overlap and Taylor transmission conditions
is obtained for the highest frequency: the method is a rougher as opposed to the
smoother the classical Schwarz method is.

In practice, even when using the Schwarz method with overlap, the overlap is
often only a few grid cells wide, and thus L = O(h). In that case the convergence
factor of the classical Schwarz method deteriorates as well as one refines the mesh and
h goes to zero and we have the following comparison theorem.

Theorem 4.2. The optimized Schwarz methods with Taylor transmission con-
ditions and overlap L = h have an asymptotically superior performance than the

Classical Schwarz

Taylor zeroth order and second
order

Optimized zeroth and second order
with two-sided zeroth order

25

Optimized Schwarz: algebraic results

• SGT 2007: show how to modify existing Schwarz
algorithm to yield optimized versions

• The augmented or “enhanced” system is rediscovered

• Spectral elements are natural candidates:

n Overlapping grids are cumbersome to construct

n Block preconditioning costly: FDM when possible

n Optimal preconditioner is known (SD Kim 2006)

n Q1-GLL based problem costly to invert does not scale:
use MG or other solver (opt Schwarz?)to invert

26

u
n+1
j = Ã

−1
j fj + Ã

−1
j

J∑

k=1

B̃jku
n
k

(I − Ã
−1

j

J∑

k=1

B̃jk)uk = Ã
−1

j fj

M
−1

Āu = M
−1

f̄

{I −
J∑

j,k=1

R̃
T
j Ã

−1

j B̃jkRk}u =

J∑

j=1

R̃
T
j Ã

−1

j Rjf

Inverting:

At convergence:

Apply restriction extension operators:

MxV operation:

Optimized Schwarz: algebraic results

27

u
n+1
j = Ã

−1
j fj + Ã

−1
j

J∑

k=1

B̃jku
n
k

(I − Ã
−1

j

J∑

k=1

B̃jk)uk = Ã
−1

j fj

M
−1

Āu = M
−1

f̄

{I −
J∑

j,k=1

R̃
T
j Ã

−1

j B̃jkRk}u =

J∑

j=1

R̃
T
j Ã

−1

j Rjf

Inverting:

At convergence:

Apply restriction extension operators:

MxV operation:

Optimized Schwarz: algebraic results

27

u
n+1
j = Ã

−1
j fj + Ã

−1
j

J∑

k=1

B̃jku
n
k

(I − Ã
−1

j

J∑

k=1

B̃jk)uk = Ã
−1

j fj

M
−1

Āu = M
−1

f̄

{I −
J∑

j,k=1

R̃
T
j Ã

−1

j B̃jkRk}u =

J∑

j=1

R̃
T
j Ã

−1

j Rjf

Inverting:

At convergence:

Apply restriction extension operators:

MxV operation:

Optimized Schwarz: algebraic results

27

• Schwarz for SEM: efficient implementation (Fischer
97,+Miller and Tufo 98, + Tufo 99) (3D)

• Constraints imposed by new architectures

• Loosing symmetry: 2 MxV instead of 1

• OS no overlapping region to construct

• FDM lost?

Optimizing optimized Schwarz!!

28

Optimizing for cache

zj =

J∑

k=1

B̃jku
n
k

Suppose a non-overlapping domain in 2D:

!

!!"#$"%

!
!!"#$!"% !"#$!"%

!"#$"%

1

2

zj

!

!!"#$"%

!
!!"#$!"% !"#$!"%

!"#$"%

1

2

!

!!"#$"%

!
!!"#$!"% !"#$!"%

!"#$"%

1

2
!

!!"#$"%

!
!!"#$!"% !"#$!"%

!"#$"%

1

2

N
2 unknowns

29

Optimizing for cache

zj =

J∑

k=1

B̃jku
n
k

Suppose a non-overlapping domain in 2D:

!

!!"#$"%

!
!!"#$!"% !"#$!"%

!"#$"%

1

2

zj

N
2 unknowns

29

Optimizing for cache

zj =

J∑

k=1

B̃jku
n
k

Suppose a non-overlapping domain in 2D:

!

!!"#$"%

!
!!"#$!"% !"#$!"%

!"#$"%

1

2

zj

N
2 unknowns

2N Boundary nodes

29

Optimizing for cache

zj =

J∑

k=1

B̃jku
n
k

Suppose a non-overlapping domain in 2D:

!

!!"#$"%

!
!!"#$!"% !"#$!"%

!"#$"%

1

2

zj

N
2 unknowns

2N Boundary nodes

O(N3)

N
2
× N

2
N

2
× 2N

O(N4)

Ã
−1

j zj = Ã
−1

j

J∑

k=1

B̃jku
n
k

Normal Optimized

Size:

MxV cost:

Rectangular

29

Optimizing for cache

zj =

J∑

k=1

B̃jku
n
k

Suppose a non-overlapping domain in 2D:

!

!!"#$"%

!
!!"#$!"% !"#$!"%

!"#$"%

1

2

zj

N
2 unknowns

2N Boundary nodes

O(N3)

N
2
× N

2
N

2
× 2N

O(N4)

Ã
−1

j zj = Ã
−1

j

J∑

k=1

B̃jku
n
k

Normal Optimized

Size:

MxV cost:

Rectangular

Cost identical to 2D FDM or “interface” system approach
29

• The normal derivative can be written in terms of the
original bilinear operator (Toselli, Widlund 2005)

• Avoids the difficult duality pairing for functions on
the edges of the subdomains

Creating the augmented
system from a weak form

with the consistency property at convergence that

K
∑

j=1

{aj(w
k+1
j , φj) − fj(φj)} =

∫

Ω
∇wk+1 ·∇φ +

∫

Ω
wk+1φ −

∫

Ω
Gφ (19)

It is difficult to characterize the duality pairing (φj , wj) ∈ H−1/2(Γjl)×H1/2(Γjl).

Instead, an equivalence is used which relies on the residual between the bilinear

form and the normal derivative

Tj(w
k+1
j , φj) =

∫

Ωj

∇φj ·∇wk+1
j +

∫

Ωj

φj∆wk+1
j (20)

=
∫

Ωj

∇φj ·∇wk+1
j +

∫

Ωj

φjw
k+1
j − fj(φj) (21)

= aj(w
k+1
j , φj) − fj(φj) (22)

where φj ∈ Vj = H1(∂Ωj) ∩ H1
0 (∂Ω).

Integrating the equation (11) with respect to a test function in H1(Γjl) ∩

H1
0 (∂Ω) leads to

∫

Γjl

pφjw
k+1
j +

∫

Γjl

φj
∂wk+1

j

∂njl
=

∫

Γjl

pφjw
k
l +

∫

Γjl

φj
∂wk

l

∂njl
(23)

∫

Γjl

φj
∂wk+1

j

∂njl
=

∫

Γjl

pφj(w
k
l − wk+1

l) +
∫

Γjl

φj
∂wk

l

∂njl
(24)

Tj(w
k+1
j , φj|Γjl

) =
∫

Γjl

φj
∂wk+1

j

∂njl
=

∫

Γjl

pφj(w
k
l − wk+1

l) − Tl(w
k
l , φj|Γjl

) (25)

summing over all neighbors gives the expression for the normal derivative

Tj(w
k+1
j , φj) =

∑

l∈N (Ωj)

Tj(w
k+1
j , φj|Γjl

) (26)

=
∑

l∈N (Ωj)

{
∫

Γjl

pφj(w
k
l − wk+1

l) − Tl(w
k
l , φj|Γjl

)} (27)

= −
∫

Ωj

pφjw
k+1
j +

∑

l∈N (Ωj)

{
∫

Γjl

pφjw
k
l − Tl(w

k
l , φj|Γjl

)} (28)

The latter can be now used to replace the normal derivative in the local weak

form

aj(w
k+1
j , φj) +

∫

Ωj

pφjw
k+1
j −

∑

l∈N (Ωj)

{
∫

Γjl

pφjw
k
l − Tl(w

k
l , φj|Γjl

)} = fj(φj)

(29)

5

Where we pick φj ∈ H1(∂Ωj)

30

with the consistency property at convergence that

K
∑

j=1

{aj(w
k+1
j , φj) − fj(φj)} =

∫

Ω
∇wk+1 ·∇φ +

∫

Ω
wk+1φ −

∫

Ω
Gφ (19)

It is difficult to characterize the duality pairing (φj , wj) ∈ H−1/2(Γjl)×H1/2(Γjl).

Instead, an equivalence is used which relies on the residual between the bilinear

form and the normal derivative

Tj(w
k+1
j , φj) =

∫

Ωj

∇φj ·∇wk+1
j +

∫

Ωj

φj∆wk+1
j (20)

=
∫

Ωj

∇φj ·∇wk+1
j +

∫

Ωj

φjw
k+1
j − fj(φj) (21)

= aj(w
k+1
j , φj) − fj(φj) (22)

where φj ∈ Vj = H1(∂Ωj) ∩ H1
0 (∂Ω).

Integrating the equation (11) with respect to a test function in H1(Γjl) ∩

H1
0 (∂Ω) leads to

∫

Γjl

pφjw
k+1
j +

∫

Γjl

φj
∂wk+1

j

∂njl
=

∫

Γjl

pφjw
k
l +

∫

Γjl

φj
∂wk

l

∂njl
(23)

∫

Γjl

φj
∂wk+1

j

∂njl
=

∫

Γjl

pφj(w
k
l − wk+1

l) +
∫

Γjl

φj
∂wk

l

∂njl
(24)

Tj(w
k+1
j , φj|Γjl

) =
∫

Γjl

φj
∂wk+1

j

∂njl
=

∫

Γjl

pφj(w
k
l − wk+1

l) − Tl(w
k
l , φj|Γjl

) (25)

summing over all neighbors gives the expression for the normal derivative

Tj(w
k+1
j , φj) =

∑

l∈N (Ωj)

Tj(w
k+1
j , φj|Γjl

) (26)

=
∑

l∈N (Ωj)

{
∫

Γjl

pφj(w
k
l − wk+1

l) − Tl(w
k
l , φj|Γjl

)} (27)

= −
∫

Ωj

pφjw
k+1
j +

∑

l∈N (Ωj)

{
∫

Γjl

pφjw
k
l − Tl(w

k
l , φj|Γjl

)} (28)

The latter can be now used to replace the normal derivative in the local weak

form

aj(w
k+1
j , φj) +

∫

Ωj

pφjw
k+1
j −

∑

l∈N (Ωj)

{
∫

Γjl

pφjw
k
l − Tl(w

k
l , φj|Γjl

)} = fj(φj)

(29)

5

Creating the augmented
system from a weak form

Boundary condition is:

where a sum on neighbors appears.
Leads to the relaxed form required by the algorithm

18 Amik St-Cyr, Martin J. Gander and Stephen J. Thomas

vector pointing from element Ωj to element Ωl along the boundary Γjl and superscript
n denotes the iterate of the Schwarz algorithm. After some manipulation, one step of
the discrete optimized Schwarz algorithm for the spectral element discretization is to
find un+1

j in XN
j ≡ P2

N,J ∩ H1(Ωj) ∩ H1
0 (Ω) such that

ah
j (un+1

j , φj)+
∑

l∈N (Ωj)

< φj , T (un+1
j , p, q, τ) > |Γjl

= fh
j (φj) +

∑

l∈N (Ωj)

fh
l (φl|Γjl

)

−
∑

l∈N (Ωj)

ah
l (un

l , φl|Γjl
) +

∑

l∈N (Ωj)

< φl, T (un
l , p, q, τ) > |Γjl

(4.8)

for all φj in XN
j . The bracket < ·, · > |Γjl

is the discrete one dimensional integral on

an edge or vertex Γjl performed using the GLL quadrature and ah
j (·, ·) is identical to

ah(·, ·) with the exception that the sum is taken for element Ωj only with the same
convention for fh

j (·). The notation φl|Γjl
denotes the trace of the test function on the

edge Γjl, including end points, and φl|Γjl
(x) = φj |Γjl

(x) since, at convergence, the
functions must be in H1

0 (Ω) see [19] for example.
Remark 4. The vertex integrals are performed in the same way as their edge

or surface counterparts except that the test function is non-zero only at the vertex
point and zero at all other collocation points. Using the basis described in [8] such
a test function for the vertex situated at −(1, 1), on the reference element, would be
h0(r

j
1)h0(r

j
2). The proposed algorithm (4.8) is a relaxation of the assembly procedure

at the heart of any finite element method. The following links to Lemma 3.2 can be
established:

φT
j
ÃjR̂jû = ah

j (uj , φj
) +

∑

l∈N (Ωj)

< φ
j
, T (uj, p, q, τ) > |Γjl

(4.9)

φT
j

J∑

l=1

B̃jlR̂lû = −
∑

l∈N (Ωj)

ah
l (ul, φl

|Γjl
) +

∑

l∈N (Ωj)

< φ
l
, T (ul, p, q, τ) > |Γjl

(4.10)

φT
j
R̂jAû = ah

j (uj , φj
) +

∑

l∈N (Ωj)

ah
l (ul, φl

|Γjl
) (4.11)

φT
j
R̂j f̂ = fh

j (φ
j
) +

∑

l∈N (Ωj)

fh
l (φ

l
|Γjl

) (4.12)

for all 1 ≤ j ≤ J and vector φ
j

such that uj = R̂jû. Finally, the preconditioned

system can be written as

(I −
J∑

j=1

R̂T
j Ã−1

j

J∑

l=1

B̃jlR̂l)û =
J∑

j=1

R̂T
j Ã−1

j R̂j f̂ . (4.13)

Notice that no Lagrange multipliers were introduced to find the value of the normal
derivative at corners as in [15]. Coerciveness must be ensured for each local problem.
The coefficient p = O(

√
η), in the case of a zeroth order Taylor approximation can be

too small for spectral elements. For a zeroth order optimized p this seems not to be a
problem. This was also observed in the case of locally discontinuous Galerkin approx-
imations where good bounds on the penalty coefficient p are available for triangles of
degree up to 8 (see [24] for instance).

31

SEM simple problem

0

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

3

3.5

4

!1

!0.5

0

0.5

1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

12 A. St-Cyr et al.

Proof. The proof is again by induction. By assumption, (3.24) holds for n = 0.
Assuming it holds for n, we obtain from (3.22), using the fact that the restriction
operators R̂j , j = 1, . . . , J are non-overlapping, Lemma 3.2 and (3.3)

ûn+1 = ûn +
J

∑

j=1

R̂T
j Ã−1

j R̂j(f̂ − Âûn) = ûn +
J

∑

j=1

R̂T
j Ã−1

j (f j − R̂jÂûn)

= ûn +
J

∑

j=1

R̂T
j Ã−1

j (f j − Ãju
n
j +

J
∑

l=1

B̃jlu
n
l) =

J
∑

j=1

R̂T
j Ã−1

j (f j +
J

∑

l=1

B̃jlu
n
l)

=
J

∑

j=1

R̂T
j un+1

j =
[

(un+1
1)T , (un+1

2)T , . . . (un+1
J)T

]T
= ûn+1, (3.25)

which concludes the proof.
An advantage of this formulation is that non-overlapping parallel preconditioners

can be used, such as the optimized Jacobi Schwarz method (3.3) and optimized al-
ternating Schwarz method (3.12). A disadvantage is that the operators B̃jk must be
constructed explicitly, because they are needed in the application of Ã−1

j in (3.22).

4. Application to the positive definite Helmholtz Problem. We now ap-
ply the results of the previous sections to finite difference and spectral element dis-
cretizations of the positive definite Helmholtz problem on the domain Ω,

Lu = (η − ∆)u = f, in Ω, (4.1)

where Ω is an open set in two dimensions and we impose homogeneous Dirichlet
conditions to simplify the exposition.

4.1. Finite Differences. Discretizing (4.1) using a standard five point dis-
cretization on an equidistant grid on the domain Ω = (0, 1) × (0, 1) leads to the
matrix problem

Au = f , A =
1

h2

Tη −I

−I Tη
. . .

. . .
. . .

, Tη =

ηh2 + 4 −1

−1 ηh2 + 4
.. .

. . .
. . .

.

The subdomain matrices Aj , j = 1, 2 of a classical Schwarz method are of the same
form as A, just smaller. To obtain the optimized subdomain matrices Ãj , it suf-
fices according to the results in Section 3 to simply replace the interface blocks Tη in
Aj by blocks corresponding to optimized transmission conditions. Algebraically, the
best transmission condition is obtained from the Schur complement for the interface
unknowns. Approximation of the Schur complement at the algebraic level was exten-
sively studied in [9]. We use here an approximation from [5] based on the PDE which
is discretized, which suggests replacing the interface blocks Tη by the matrix

T̃ =
1

2
Tη + phI +

q

h
(T0 − 2I), T0 = Tη|η=0, (4.2)

and corresponds to a general optimized transmission condition of order 2 with two
parameters p and q. The optimal choice for the parameters p and q in the new block T̃
depends on the problem parameter η, the overlap in the method, the mesh parameter

Gander 2006

32

SEM simple problem

0

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

3

3.5

4

!1

!0.5

0

0.5

1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

101

102

G
M

RE
S

ite
ra

tio
ns

Polynomial order

TO0
TO2
OO0
OO2
Classical Schwarz
N1/2

N1/4

N

12 A. St-Cyr et al.

Proof. The proof is again by induction. By assumption, (3.24) holds for n = 0.
Assuming it holds for n, we obtain from (3.22), using the fact that the restriction
operators R̂j , j = 1, . . . , J are non-overlapping, Lemma 3.2 and (3.3)

ûn+1 = ûn +
J

∑

j=1

R̂T
j Ã−1

j R̂j(f̂ − Âûn) = ûn +
J

∑

j=1

R̂T
j Ã−1

j (f j − R̂jÂûn)

= ûn +
J

∑

j=1

R̂T
j Ã−1

j (f j − Ãju
n
j +

J
∑

l=1

B̃jlu
n
l) =

J
∑

j=1

R̂T
j Ã−1

j (f j +
J

∑

l=1

B̃jlu
n
l)

=
J

∑

j=1

R̂T
j un+1

j =
[

(un+1
1)T , (un+1

2)T , . . . (un+1
J)T

]T
= ûn+1, (3.25)

which concludes the proof.
An advantage of this formulation is that non-overlapping parallel preconditioners

can be used, such as the optimized Jacobi Schwarz method (3.3) and optimized al-
ternating Schwarz method (3.12). A disadvantage is that the operators B̃jk must be
constructed explicitly, because they are needed in the application of Ã−1

j in (3.22).

4. Application to the positive definite Helmholtz Problem. We now ap-
ply the results of the previous sections to finite difference and spectral element dis-
cretizations of the positive definite Helmholtz problem on the domain Ω,

Lu = (η − ∆)u = f, in Ω, (4.1)

where Ω is an open set in two dimensions and we impose homogeneous Dirichlet
conditions to simplify the exposition.

4.1. Finite Differences. Discretizing (4.1) using a standard five point dis-
cretization on an equidistant grid on the domain Ω = (0, 1) × (0, 1) leads to the
matrix problem

Au = f , A =
1

h2

Tη −I

−I Tη
. . .

. . .
. . .

, Tη =

ηh2 + 4 −1

−1 ηh2 + 4
.. .

. . .
. . .

.

The subdomain matrices Aj , j = 1, 2 of a classical Schwarz method are of the same
form as A, just smaller. To obtain the optimized subdomain matrices Ãj , it suf-
fices according to the results in Section 3 to simply replace the interface blocks Tη in
Aj by blocks corresponding to optimized transmission conditions. Algebraically, the
best transmission condition is obtained from the Schur complement for the interface
unknowns. Approximation of the Schur complement at the algebraic level was exten-
sively studied in [9]. We use here an approximation from [5] based on the PDE which
is discretized, which suggests replacing the interface blocks Tη by the matrix

T̃ =
1

2
Tη + phI +

q

h
(T0 − 2I), T0 = Tη|η=0, (4.2)

and corresponds to a general optimized transmission condition of order 2 with two
parameters p and q. The optimal choice for the parameters p and q in the new block T̃
depends on the problem parameter η, the overlap in the method, the mesh parameter

Gander 2006

32

Coarse solver?
20 Amik St-Cyr, Martin J. Gander and Stephen J. Thomas

10
1

10
2

10
2

G
M

R
E

S
 i
te

ra
ti
o
n
s

Total number of elements

Classical Schwarz

(OO2)

H
3/4

10
1

10
2

10

15

20

25

30

35

40

Total number of elements

G
M

R
E

S
 i
te

ra
ti
o
n
s

Classical Schwarz

(OO2)

Fig. 4.5. Top and bottom: number of GMRES iterations for classical Schwarz and optimized
Schwarz (OO2) using polynomial degree N = 5 and a varying number of elements and no coarse
solver. Bottom only: the formula used for η is J

4
(N

4
)4 where J is the number of elements and N

the polynomial degree.

the number of iterations to be proportional to the square root of the condition number
of the preconditioned spectral element matrix κ(M−1A). The bottom panel of Figure
4.4 depicts the number of GMRES iterations with respect to the polynomial degree N .
In all tests, a starting vector with random entries between [0, 1] was employed, which
guarantees that all frequencies are contained in the error during the iteration and is
important when verifying asymptotics, see [9]. For a classical Schwarz preconditioner
applied to the augmented system, the asymptotic behavior in the number of iterations
reveals the expected growth in the condition number, namely, κ(M−1

ASA) = O(N2) see

20 Amik St-Cyr, Martin J. Gander and Stephen J. Thomas

10
1

10
2

10
2

G
M

R
E

S
 i
te

ra
ti
o

n
s

Total number of elements

Classical Schwarz

(OO2)

H
3/4

10
1

10
2

10

15

20

25

30

35

40

Total number of elements

G
M

R
E

S
 i
te

ra
ti
o

n
s

Classical Schwarz

(OO2)

Fig. 4.5. Top and bottom: number of GMRES iterations for classical Schwarz and optimized
Schwarz (OO2) using polynomial degree N = 5 and a varying number of elements and no coarse
solver. Bottom only: the formula used for η is J

4
(N

4
)4 where J is the number of elements and N

the polynomial degree.

the number of iterations to be proportional to the square root of the condition number
of the preconditioned spectral element matrix κ(M−1A). The bottom panel of Figure
4.4 depicts the number of GMRES iterations with respect to the polynomial degree N .
In all tests, a starting vector with random entries between [0, 1] was employed, which
guarantees that all frequencies are contained in the error during the iteration and is
important when verifying asymptotics, see [9]. For a classical Schwarz preconditioner
applied to the augmented system, the asymptotic behavior in the number of iterations
reveals the expected growth in the condition number, namely, κ(M−1

ASA) = O(N2) see

20 Amik St-Cyr, Martin J. Gander and Stephen J. Thomas

10
1

10
2

10
2

G
M

R
E

S
 i
te

ra
ti
o
n
s

Total number of elements

Classical Schwarz

(OO2)

H
3/4

10
1

10
2

10

15

20

25

30

35

40

Total number of elements

G
M

R
E

S
 i
te

ra
ti
o
n
s

Classical Schwarz

(OO2)

Fig. 4.5. Top and bottom: number of GMRES iterations for classical Schwarz and optimized
Schwarz (OO2) using polynomial degree N = 5 and a varying number of elements and no coarse
solver. Bottom only: the formula used for η is J

4
(N

4
)4 where J is the number of elements and N

the polynomial degree.

the number of iterations to be proportional to the square root of the condition number
of the preconditioned spectral element matrix κ(M−1A). The bottom panel of Figure
4.4 depicts the number of GMRES iterations with respect to the polynomial degree N .
In all tests, a starting vector with random entries between [0, 1] was employed, which
guarantees that all frequencies are contained in the error during the iteration and is
important when verifying asymptotics, see [9]. For a classical Schwarz preconditioner
applied to the augmented system, the asymptotic behavior in the number of iterations
reveals the expected growth in the condition number, namely, κ(M−1

ASA) = O(N2) see

20 Amik St-Cyr, Martin J. Gander and Stephen J. Thomas

10
1

10
2

10
2

G
M

R
E

S
 i
te

ra
ti
o
n
s

Total number of elements

Classical Schwarz

(OO2)

H
3/4

10
1

10
2

10

15

20

25

30

35

40

Total number of elements

G
M

R
E

S
 i
te

ra
ti
o
n
s

Classical Schwarz

(OO2)

Fig. 4.5. Top and bottom: number of GMRES iterations for classical Schwarz and optimized
Schwarz (OO2) using polynomial degree N = 5 and a varying number of elements and no coarse
solver. Bottom only: the formula used for η is J

4
(N

4
)4 where J is the number of elements and N

the polynomial degree.

the number of iterations to be proportional to the square root of the condition number
of the preconditioned spectral element matrix κ(M−1A). The bottom panel of Figure
4.4 depicts the number of GMRES iterations with respect to the polynomial degree N .
In all tests, a starting vector with random entries between [0, 1] was employed, which
guarantees that all frequencies are contained in the error during the iteration and is
important when verifying asymptotics, see [9]. For a classical Schwarz preconditioner
applied to the augmented system, the asymptotic behavior in the number of iterations
reveals the expected growth in the condition number, namely, κ(M−1

ASA) = O(N2) see

Scaling as Qin and Xu 2006 SINUM

33

Primitive equations

dv

dt
+ f k × v + ∇Φ + R T ∇ ln p = 0

d T

d t
−

κ T ω

p
= 0

∂

∂t

(

∂p

∂η

)

+ ∇ ·

(

v

∂p

∂η

)

+
∂

∂η

(

η̇
∂p

∂η

)

= 0

Momentum:

Thermodynamic:

Continuity:

HOMME: high order multiscale modeling environment

34

Primitive equations: SI

The Primitive Equations

Momentum,Thermodynamic and Continuity equations:

dv

dt
+ f k × v + ∇Φ + R T ∇ ln p = 0

d T

d t
−

κ T ω

p
= 0

∂

∂t

(

∂p

∂η

)

+ ∇ ·
(

v
∂p

∂η

)

+
∂

∂η

(

η̇
∂p

∂η

)

= 0

Hydrostatic equation:

∂Φ

∂η
= −

R T

p

∂p

∂η
.

Comp Math 2006 – p.20/29

Hydrostatic assumption:

Linearization (barotropic state): T r
= 300K, pr

s
= 1000hPa

3

1

ps
η̇

∂p

∂η
= −B

∂ ln ps

∂t
−

∫ η

0

∂B

∂η
v ·∇ ln psdη −

∫ η

0

∂p

∂η

1

ps
∇ · vdη (9)

From the time derivative of pressure

∂p

∂t
= psB

∂

∂t
(ln ps), ∇p = psB∇ ln ps.

Therefore, the pressure vertical velocity ω is related to ln ps and η̇ by

ω

p
=

ps

p

[

B

(

∂

∂t
(ln ps) + v ·∇ ln ps

)

+
1

ps
η̇

∂p

∂η

]

and substituting (8) and (9)

ω

p
=

ps

p

[

B (v ·∇ ln ps) −

∫ η

0

∂B

∂η
v ·∇ ln psdη −

∫ η

0

∂p

∂η

1

ps
∇ · vdη

]

. (10)

Semi-implicit

Consider the ODE
dX

dt
= M(X)

with proper initial conditions. Suppose L is a linear operator then

dX

dt
= M(X) + LX − LX = N (X) − LX

Using leap-Frog1 time integration scheme is employed with an averaging of the
L term one gets

Xn+1 − Xn−1

2∆t
= N (Xn)−

1

2
L(Xn+1+Xn−1) = M(Xn)+LXn−

1

2
L(Xn+1+Xn−1)

The scheme can be understood as a second order correction to an explicit leap-
frog time step,

Xn+1 − Xn−1

2∆t
= M(Xn) −

1

2
∆ttLX

where

∆ttX = Xn+1 − 2Xn + Xn−1

The Robert–Asselin (1972) time-filter is applied every time step to damp the
growth of the non-physical computational mode.

Xf = X + α
(

Xn+1 − 2Xn + Xn−1
f

)

1Stormer-Verlet

3

1

ps
η̇

∂p

∂η
= −B

∂ ln ps

∂t
−

∫ η

0

∂B

∂η
v ·∇ ln psdη −

∫ η

0

∂p

∂η

1

ps
∇ · vdη (9)

From the time derivative of pressure

∂p

∂t
= psB

∂

∂t
(ln ps), ∇p = psB∇ ln ps.

Therefore, the pressure vertical velocity ω is related to ln ps and η̇ by

ω

p
=

ps

p

[

B

(

∂

∂t
(ln ps) + v ·∇ ln ps

)

+
1

ps
η̇

∂p

∂η

]

and substituting (8) and (9)

ω

p
=

ps

p

[

B (v ·∇ ln ps) −

∫ η

0

∂B

∂η
v ·∇ ln psdη −

∫ η

0

∂p

∂η

1

ps
∇ · vdη

]

. (10)

Semi-implicit

Consider the ODE
dX

dt
= M(X)

with proper initial conditions. Suppose L is a linear operator then

dX

dt
= M(X) + LX − LX = N (X) − LX

Using leap-Frog1 time integration scheme is employed with an averaging of the
L term one gets

Xn+1 − Xn−1

2∆t
= N (Xn)−

1

2
L(Xn+1+Xn−1) = M(Xn)+LXn−

1

2
L(Xn+1+Xn−1)

The scheme can be understood as a second order correction to an explicit leap-
frog time step,

Xn+1 − Xn−1

2∆t
= M(Xn) −

1

2
∆ttLX

where

∆ttX = Xn+1 − 2Xn + Xn−1

The Robert–Asselin (1972) time-filter is applied every time step to damp the
growth of the non-physical computational mode.

Xf = X + α
(

Xn+1 − 2Xn + Xn−1
f

)

1Stormer-Verlet

3

1

ps
η̇

∂p

∂η
= −B

∂ ln ps

∂t
−

∫ η

0

∂B

∂η
v ·∇ ln psdη −

∫ η

0

∂p

∂η

1

ps
∇ · vdη (9)

From the time derivative of pressure

∂p

∂t
= psB

∂

∂t
(ln ps), ∇p = psB∇ ln ps.

Therefore, the pressure vertical velocity ω is related to ln ps and η̇ by

ω

p
=

ps

p

[

B

(

∂

∂t
(ln ps) + v ·∇ ln ps

)

+
1

ps
η̇

∂p

∂η

]

and substituting (8) and (9)

ω

p
=

ps

p

[

B (v ·∇ ln ps) −

∫ η

0

∂B

∂η
v ·∇ ln psdη −

∫ η

0

∂p

∂η

1

ps
∇ · vdη

]

. (10)

Semi-implicit

Consider the ODE
dX

dt
= M(X)

with proper initial conditions. Suppose L is a linear operator then

dX

dt
= M(X) + LX − LX = N (X) − LX

Using leap-Frog1 time integration scheme is employed with an averaging of the
L term one gets

Xn+1 − Xn−1

2∆t
= N (Xn)−

1

2
L(Xn+1+Xn−1) = M(Xn)+LXn−

1

2
L(Xn+1+Xn−1)

The scheme can be understood as a second order correction to an explicit leap-
frog time step,

Xn+1 − Xn−1

2∆t
= M(Xn) −

1

2
∆ttLX

where

∆ttX = Xn+1 − 2Xn + Xn−1

The Robert–Asselin (1972) time-filter is applied every time step to damp the
growth of the non-physical computational mode.

Xf = X + α
(

Xn+1 − 2Xn + Xn−1
f

)

1Stormer-Verlet

Semi-Implicit:

Add zero:

3

1

ps
η̇

∂p

∂η
= −B

∂ ln ps

∂t
−

∫ η

0

∂B

∂η
v ·∇ ln psdη −

∫ η

0

∂p

∂η

1

ps
∇ · vdη (9)

From the time derivative of pressure

∂p

∂t
= psB

∂

∂t
(ln ps), ∇p = psB∇ ln ps.

Therefore, the pressure vertical velocity ω is related to ln ps and η̇ by

ω

p
=

ps

p

[

B

(

∂

∂t
(ln ps) + v ·∇ ln ps

)

+
1

ps
η̇

∂p

∂η

]

and substituting (8) and (9)

ω

p
=

ps

p

[

B (v ·∇ ln ps) −

∫ η

0

∂B

∂η
v ·∇ ln psdη −

∫ η

0

∂p

∂η

1

ps
∇ · vdη

]

. (10)

Semi-implicit

Consider the ODE
dX

dt
= M(X)

with proper initial conditions. Suppose L is a linear operator then

dX

dt
= M(X) + LX − LX = N (X) − LX

Using leap-Frog1 time integration scheme is employed with an averaging of the
L term one gets

Xn+1 − Xn−1

2∆t
= N (Xn)−

1

2
L(Xn+1+Xn−1) = M(Xn)+LXn−

1

2
L(Xn+1+Xn−1)

The scheme can be understood as a second order correction to an explicit leap-
frog time step,

Xn+1 − Xn−1

2∆t
= M(Xn) −

1

2
∆ttLX

where

∆ttX = Xn+1 − 2Xn + Xn−1

The Robert–Asselin (1972) time-filter is applied every time step to damp the
growth of the non-physical computational mode.

Xf = X + α
(

Xn+1 − 2Xn + Xn−1
f

)

1Stormer-Verlet

“Time diffusion”

35

PE: vertical structure
matrix

Results of hydrostatic assumption
and vertical coordinate choice:

2

Primitive equations

dv

dt
+ f k̂ × v + ∇Φ + R T ∇ ln p = 0 (1)

d T

d t
−

κ T ω

p
= 0 (2)

∂

∂t

(

∂p

∂η

)

+ ∇ ·

(

v
∂p

∂η

)

+
∂

∂η

(

η̇
∂p

∂η

)

= 0 (3)

material derivative is given by

d

dt
=

∂

∂t
+ v ·∇ + η̇

∂

∂η
.

The geopotential Φ is computed diagnostically using the hydrostatic balance
relation

∂Φ

∂η
= −

R T

p

∂p

∂η
. (4)

The hybrid vertical coordinate η is defined implicitly by the following relation

p(η, ps) = A(η)p0 + B(η)ps

where p0 is a specified constant reference pressure. In order to solve the primitive
equations, boundary conditions must be specified at the top and bottom of the
atmosphere.

The kinematic lower boundary condition at η = 1 takes the simple form
η̇ = 0. At the top of the atmosphere, η = 0, η̇ = 0 prevents mass transport
across the upper boundary. Integrating the continuity equation (3) subject to
these boundary conditions results in the following relations

∂ps

∂t
= −

∫ 1

0
∇ ·

(

v
∂p

∂η

)

dη (5)

∂

∂t
(ln ps) = −

1

ps

∫ 1

0
∇ ·

(

v
∂p

∂η

)

dη (6)

η̇
∂p

∂η
= −

∂p

∂t
−

∫ η

0
∇ ·

(

v
∂p

∂η

)

dη (7)

By applying the identity

∇ ·

(

v
∂p

∂η

)

=
∂B

∂η
v ·∇π +

∂p

∂η
∇ · v,

equations (6) and (7) can be written as

∂

∂t
(ln ps) = −

∫ 1

0

∂B

∂η
v ·∇ ln psdη −

∫ 1

0

∂p

∂η

1

ps
∇ · vdη (8)

9

where P is a row vector with elements Pk = ∆pr
k/pr

s. Substituting equations
(28) and (29) into equation (??) for Gr leads to

Gr + ∆t (RHrT + RT rP)D = Φs + RHrT + RT rP (30)

Next, define the vertical structure matrix A and rhs vector B

A = RHrT + RT rP, B = Φs + RHrT + RT rP

After computing the discrete divergence of the momentum equation, two coupled
equations remain

Gr + ∆tAD = B (31)

D + ∆t∇2Gr = ∇ · V (32)

Finally, eliminating the divergence results in the Schur complement system

Gr − ∆t2A∇2Gr = B − ∆tA∇ · V (33)

The discrete ∇2 operator is the L2 pseudo-Laplacian matrix DgM−1gijDT ,
where D and M are the spectral element derivative and mass matrices, respec-
tively.

The eigenvalues of the vertical structure matrix A are determined by

Aek = λkek, k = 1, . . . , K

where
E =

[

e1 e2 . . . eK

]

, E−1AE = L

L =

λ1

λ2

. . .
λK

Applying the similarity transformation E−1

E−1Gr − ∆t2∇2LE−1Gr = E−1B − ∆tLE−1∇ · V

Define

Γr = E−1Gr, Λ =
1

∆t2
L−1

The Schur complement system then becomes

Γr − ∆t2L∇2Γr = E−1B − ∆tLE−1∇ · V

or equivalently

∇2Γr − ΛΓr =
1

∆t
E−1∇ · V − ΛE−1B = C

9

where P is a row vector with elements Pk = ∆pr
k/pr

s. Substituting equations
(28) and (29) into equation (??) for Gr leads to

Gr + ∆t (RHrT + RT rP)D = Φs + RHrT + RT rP (30)

Next, define the vertical structure matrix A and rhs vector B

A = RHrT + RT rP, B = Φs + RHrT + RT rP

After computing the discrete divergence of the momentum equation, two coupled
equations remain

Gr + ∆tAD = B (31)

D + ∆t∇2Gr = ∇ · V (32)

Finally, eliminating the divergence results in the Schur complement system

Gr − ∆t2A∇2Gr = B − ∆tA∇ · V (33)

The discrete ∇2 operator is the L2 pseudo-Laplacian matrix DgM−1gijDT ,
where D and M are the spectral element derivative and mass matrices, respec-
tively.

The eigenvalues of the vertical structure matrix A are determined by

Aek = λkek, k = 1, . . . , K

where
E =

[

e1 e2 . . . eK

]

, E−1AE = L

L =

λ1

λ2

. . .
λK

Applying the similarity transformation E−1

E−1Gr − ∆t2∇2LE−1Gr = E−1B − ∆tLE−1∇ · V

Define

Γr = E−1Gr, Λ =
1

∆t2
L−1

The Schur complement system then becomes

Γr − ∆t2L∇2Γr = E−1B − ∆tLE−1∇ · V

or equivalently

∇2Γr − ΛΓr =
1

∆t
E−1∇ · V − ΛE−1B = C

10

Figure 1: Vertical level structure

The preconditioned conjugate gradient iteration is applied on each vertical level
to solve

(

∇2 −
1

∆t2λk

)

Γr
k = Ck

A block-Jacobi preconditioner was implemented with homogeneous Neumann
boundary conditions specified at element boundaries. To complete a time step,
the prognostic variables at time level n+1 are obtained by back-substitution of
the pressure Gr = EΓr into the equations

D = ∆t−1 A−1 (B − Gr)

ln ps = P − ∆t P · D

T = T − ∆t TD

v = V − ∆t ∇Gr

10

Figure 1: Vertical level structure

The preconditioned conjugate gradient iteration is applied on each vertical level
to solve

(

∇2 −
1

∆t2λk

)

Γr
k = Ck

A block-Jacobi preconditioner was implemented with homogeneous Neumann
boundary conditions specified at element boundaries. To complete a time step,
the prognostic variables at time level n+1 are obtained by back-substitution of
the pressure Gr = EΓr into the equations

D = ∆t−1 A−1 (B − Gr)

ln ps = P − ∆t P · D

T = T − ∆t TD

v = V − ∆t ∇Gr

Solve for each k: Backsub:

Series of 2D Helmholtz
Barotropic eigenmodes of atmosphere (Thomas and Loft 2005)

Time dependance

36

PE: vertical structure
matrix

Results of hydrostatic assumption
and vertical coordinate choice:

2

Primitive equations

dv

dt
+ f k̂ × v + ∇Φ + R T ∇ ln p = 0 (1)

d T

d t
−

κ T ω

p
= 0 (2)

∂

∂t

(

∂p

∂η

)

+ ∇ ·

(

v
∂p

∂η

)

+
∂

∂η

(

η̇
∂p

∂η

)

= 0 (3)

material derivative is given by

d

dt
=

∂

∂t
+ v ·∇ + η̇

∂

∂η
.

The geopotential Φ is computed diagnostically using the hydrostatic balance
relation

∂Φ

∂η
= −

R T

p

∂p

∂η
. (4)

The hybrid vertical coordinate η is defined implicitly by the following relation

p(η, ps) = A(η)p0 + B(η)ps

where p0 is a specified constant reference pressure. In order to solve the primitive
equations, boundary conditions must be specified at the top and bottom of the
atmosphere.

The kinematic lower boundary condition at η = 1 takes the simple form
η̇ = 0. At the top of the atmosphere, η = 0, η̇ = 0 prevents mass transport
across the upper boundary. Integrating the continuity equation (3) subject to
these boundary conditions results in the following relations

∂ps

∂t
= −

∫ 1

0
∇ ·

(

v
∂p

∂η

)

dη (5)

∂

∂t
(ln ps) = −

1

ps

∫ 1

0
∇ ·

(

v
∂p

∂η

)

dη (6)

η̇
∂p

∂η
= −

∂p

∂t
−

∫ η

0
∇ ·

(

v
∂p

∂η

)

dη (7)

By applying the identity

∇ ·

(

v
∂p

∂η

)

=
∂B

∂η
v ·∇π +

∂p

∂η
∇ · v,

equations (6) and (7) can be written as

∂

∂t
(ln ps) = −

∫ 1

0

∂B

∂η
v ·∇ ln psdη −

∫ 1

0

∂p

∂η

1

ps
∇ · vdη (8)

9

where P is a row vector with elements Pk = ∆pr
k/pr

s. Substituting equations
(28) and (29) into equation (??) for Gr leads to

Gr + ∆t (RHrT + RT rP)D = Φs + RHrT + RT rP (30)

Next, define the vertical structure matrix A and rhs vector B

A = RHrT + RT rP, B = Φs + RHrT + RT rP

After computing the discrete divergence of the momentum equation, two coupled
equations remain

Gr + ∆tAD = B (31)

D + ∆t∇2Gr = ∇ · V (32)

Finally, eliminating the divergence results in the Schur complement system

Gr − ∆t2A∇2Gr = B − ∆tA∇ · V (33)

The discrete ∇2 operator is the L2 pseudo-Laplacian matrix DgM−1gijDT ,
where D and M are the spectral element derivative and mass matrices, respec-
tively.

The eigenvalues of the vertical structure matrix A are determined by

Aek = λkek, k = 1, . . . , K

where
E =

[

e1 e2 . . . eK

]

, E−1AE = L

L =

λ1

λ2

. . .
λK

Applying the similarity transformation E−1

E−1Gr − ∆t2∇2LE−1Gr = E−1B − ∆tLE−1∇ · V

Define

Γr = E−1Gr, Λ =
1

∆t2
L−1

The Schur complement system then becomes

Γr − ∆t2L∇2Γr = E−1B − ∆tLE−1∇ · V

or equivalently

∇2Γr − ΛΓr =
1

∆t
E−1∇ · V − ΛE−1B = C

9

where P is a row vector with elements Pk = ∆pr
k/pr

s. Substituting equations
(28) and (29) into equation (??) for Gr leads to

Gr + ∆t (RHrT + RT rP)D = Φs + RHrT + RT rP (30)

Next, define the vertical structure matrix A and rhs vector B

A = RHrT + RT rP, B = Φs + RHrT + RT rP

After computing the discrete divergence of the momentum equation, two coupled
equations remain

Gr + ∆tAD = B (31)

D + ∆t∇2Gr = ∇ · V (32)

Finally, eliminating the divergence results in the Schur complement system

Gr − ∆t2A∇2Gr = B − ∆tA∇ · V (33)

The discrete ∇2 operator is the L2 pseudo-Laplacian matrix DgM−1gijDT ,
where D and M are the spectral element derivative and mass matrices, respec-
tively.

The eigenvalues of the vertical structure matrix A are determined by

Aek = λkek, k = 1, . . . , K

where
E =

[

e1 e2 . . . eK

]

, E−1AE = L

L =

λ1

λ2

. . .
λK

Applying the similarity transformation E−1

E−1Gr − ∆t2∇2LE−1Gr = E−1B − ∆tLE−1∇ · V

Define

Γr = E−1Gr, Λ =
1

∆t2
L−1

The Schur complement system then becomes

Γr − ∆t2L∇2Γr = E−1B − ∆tLE−1∇ · V

or equivalently

∇2Γr − ΛΓr =
1

∆t
E−1∇ · V − ΛE−1B = C

10

Figure 1: Vertical level structure

The preconditioned conjugate gradient iteration is applied on each vertical level
to solve

(

∇2 −
1

∆t2λk

)

Γr
k = Ck

A block-Jacobi preconditioner was implemented with homogeneous Neumann
boundary conditions specified at element boundaries. To complete a time step,
the prognostic variables at time level n+1 are obtained by back-substitution of
the pressure Gr = EΓr into the equations

D = ∆t−1 A−1 (B − Gr)

ln ps = P − ∆t P · D

T = T − ∆t TD

v = V − ∆t ∇Gr

10

Figure 1: Vertical level structure

The preconditioned conjugate gradient iteration is applied on each vertical level
to solve

(

∇2 −
1

∆t2λk

)

Γr
k = Ck

A block-Jacobi preconditioner was implemented with homogeneous Neumann
boundary conditions specified at element boundaries. To complete a time step,
the prognostic variables at time level n+1 are obtained by back-substitution of
the pressure Gr = EΓr into the equations

D = ∆t−1 A−1 (B − Gr)

ln ps = P − ∆t P · D

T = T − ∆t TD

v = V − ∆t ∇Gr

Solve for each k: Backsub:

Series of 2D Helmholtz
Barotropic eigenmodes of atmosphere (Thomas and Loft 2005)

Time dependance

Diagonalize

36

Cubed sphere

gij =
1

r4 cos2 x1 cos2 x2

[

1 + tan2
x1 − tanx1 tanx2

− tan x1 tanx2 1 + tan2
x2

]

.

• Equiangular projection

• Sadourny (72), Rancic
(96), Ronchi (96)

• Most models moving
towards this approach

• SFC: Dennis 2003

g ∇ · v =
∂

∂xj
(g uj), g ζ = εij

∂uj

∂xi
.

Metric tensor

Rewrite div and vorticity

37

Cubed sphere

gij =
1

r4 cos2 x1 cos2 x2

[

1 + tan2
x1 − tanx1 tanx2

− tan x1 tanx2 1 + tan2
x2

]

.

• Equiangular projection

• Sadourny (72), Rancic
(96), Ronchi (96)

• Most models moving
towards this approach

• SFC: Dennis 2003

g ∇ · v =
∂

∂xj
(g uj), g ζ = εij

∂uj

∂xi
.

Metric tensor

Rewrite div and vorticity

!

(!1, 1)

!
(!1, !1) (1, !1)

(1, 1)

1

2

37

Mesh partitioning

Space filling curves (Dennis 2003):

Hilbert SFC:

Cubed sphere:

38

Convergence per mode

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Diagonal Opt Schwarz
• Communication cost identical

• Twice the cost of CG per iteration

• Diagonal O(N) while OS is O(N)

• Best strategy: use OS on first few
barotropic modes and diagonal
elsewhere

• No coarse solver needed: because of
time dependance

3

39

New approach

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Diagonal Opt Schwarz

40

New approach

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Diagonal Opt Schwarz

OAS
40

New approach

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Diagonal Opt Schwarz

OAS Diagonal
40

Si vs Exp: Red Storm

W. Spotz : Sandia National Labs
41

Si vs Exp: Blue gene

400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

Sp
ee

du
p

Number of processors

Ideal speedup
Explicit coprocessor mode
Semi!implicit coprocessor mode (OO2)
Explicit virtual node mode
Semi!implicit virtual node mode (OO2)

ne=32,
40km

42

Si vs Exp: Blue gene

400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

Sp
ee

du
p

Number of processors

Ideal speedup
Explicit coprocessor mode
Semi!implicit coprocessor mode (OO2)
Explicit virtual node mode
Semi!implicit virtual node mode (OO2)

ne=32,
40km

400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

Sp
ee

du
p

Number of processors

Ideal speedup
Explicit virtual node mode
Semi!implicit virtual node mode (OO2)

42

BitE the BulleT

43

Stratified
Compressible Euler

3

CFL / accel 1 2 4
10 4.5 2 1
20 9.5 4.75 2.4
30 14.5 7.25 3.6
100 49.5 24.75 12.4
500 249.5 124.75 62.4

Table 0.1
Average number of Krylov solver iterations per stage in the Rosenbrock approach, for a

BiCGStab, necessary to outperform an explicit Runge-Kutta with a comparable number of stages

Table 0.2
ROS34PW2

γ = 0.4358665215084590
a21 = 2.0000000000000000 c21 = −4.588560720558083
a31 = 1.4192173174557647 c31 = −4.184760482319161
a32 = −0.2592322116729697 c32 = 0.285192017355496
a41 = 4.1847604823191607 c41 = −6.368179200128358
a42 = −0.2851920173554959 c42 = −6.795620944466836
a43 = 2.2942803602790417 c43 = 2.870098604331056
m1 = 0.242123807060954 m̂1 = 3.907010534671192
m2 = −1.223250583904515 m̂2 = 1.118047877820503
m3 = 1.545260255335102 m̂3 = 0.521650232611491
m4 = 0.435866521508459 m̂4 = 0.500000000000000

matrices A instead of J are available. These methods are called Rosenbrock-W meth-
ods and were first investigated in the paper of Steihaug and Wolfbrandt in 1979. Rang
and Angermann have derived L-stable Rosenbrock methods of order 3 with 4 stages.

The compressible Euler equations:

U
¯
≡ (ρ, ρu, ρw,Θ)T = (ρ, U, W, Θ)T (0.20)

F(U
¯
) ≡ (F,G) (0.21)

F = (U,
UU

ρ
+ p,

WU

ρ
,
UΘ
ρ

)T (0.22)

G = (W,
UW

ρ
,
WW

ρ
+ p,

WΘ
ρ

)T (0.23)

S(U
¯
) = (0, 0,−gρ, 0)T (0.24)

p = p0(
RΘ
p0

)γ (0.25)

where γ = cp/cv.

It is now possible to rewrite the system around an hydrostatically balanced state
using

4

p =p̄(z) + p′ (0.26)
ρ =ρ̄ + ρ′ (0.27)
Θ =ρ̄(z)θ̄(z) + Θ′ (0.28)

and ∂p
∂z = −ρ̄g.

The momentum equation in the ẑ direction is written as

∂W

∂t
+∇ · (WU

ρ
,
WW

ρ
+ pnz) + ρg = 0 (0.29)

∂W

∂t
+∇ · (WU

ρ
,
WW

ρ
) +

∂p

∂z
+ ρg = 0 (0.30)

∂W

∂t
+∇ · (WU

ρ̄ + ρ′ ,
WW

ρ̄ + ρ′) +
∂p̄

∂z
+ ρ̄g +

∂p′

∂z
+ ρ′g = 0 (0.31)

∂W

∂t
+∇ · (WU

ρ̄ + ρ′ ,
WW

ρ̄ + ρ′) +
∂p′

∂z
+ ρ′g = 0 (0.32)

∂W

∂t
+∇ · (WU

ρ̄ + ρ′ ,
WW

ρ̄ + ρ′ + p′nz) + ρ′g = 0 (0.33)

Boundary conditions. Walls:

u · n̂ = 0 (0.34)

implies that on a vertical wall and horizontals wall we respectively have

F = (0, p, 0, 0)T , (0.35)

G = (0, 0, p, 0)T . (0.36)

Buoyancy needs to be treated carefully. Since w = 0 at the top or bottom of the
atmosphere, we have for all times ∂W

∂t = w ∂ρ
∂t + ρ∂w

∂t = 0

∂p′

∂z
+ ρ′g = 0. (0.37)

Space discretization. The computational domain Ω is partitioned into finite
elements Ωk. An approximate solution uh belongs to the finite dimensional space
Vh(Ω). uh is expanded in terms of a tensor-product of the Lagrange basis functions
defined at the Gauss-Lobatto-Legendre collocation points

uk
h =

N∑

i=0

N∑

j=0

uijhi(x)hj(y) (0.38)

A weak Galerkin variational problem is obtained by integrating the equations with
respect to a test function ϕh ∈ Vh. The integrals are then directly evaluated using
Gauss-Lobatto quadrature.

∫

Ωk

φhuh dΩ ≈
N∑

i=0

N∑

j=0

φh(ξi, ξj)uh(ξi, ξj)ρiρj (0.39)

JACOBIAN FREE ROSENBROCK-W METHODS FOR THE
HIGH-ORDER SOLUTION OF THE COMPRESSIBLE EULER

EQUATIONS

AMIK ST-CYR ∗

Abstract. A stiffly stable Rosenbrock-W method, originally proposed by Rang and Angermann,
is combined with a Jacobian free approach to integrate in time the compressible Euler equations
discretized in space using the locally discontinuous Galerkin method. This Runge-Kutta method has
embedded error control and enables to bypass geophysically irrelevant acoustic waves.

2D equations.

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.1)

Rosenbrock:
Start with a DIRK:

ki = ∆tf(un +
i−1∑

j=1

aijkj + aiiki) (0.2)

un+1 = un +
s∑

i=1

biki (0.3)

Linearizing around un +
∑i−1

j=1 aijkj :

ki = ∆tf(gi) + ∆t
∂f

∂u

∣∣∣
gi

aiiki (0.4)

gi = un +
i−1∑

j=1

aijkj (0.5)

un+1 = un +
s∑

i=1

biki (0.6)

Approximating ∂f
∂u

∣∣∣
gi

with J ≡ ∂f
∂u

∣∣∣
un

and considering a linear combination of the

Jki leads to an s-stages Rosenbrock method

ki = ∆tf(un +
i−1∑

j=1

αijkj) + ∆tJ
i∑

j=1

γijkj (0.7)

un+1 = un +
s∑

i=1

biki (0.8)

∗NCAR 1850 Table Mesa Drive Boulder, CO 80305, USA, (amik@ucar.edu)

1

Remove hydrostatic state:

Conservation law:

With:

44

DG formulation:

5

where (ξi, ρi) are the Gauss-Lobatto nodes and weights. C0 continuity is imposed in
the spectral element method through the application of direct stiffness summation.

A discontinuous Galerkin approximation in d space dimensions is obtained by
writing the governing equations in the general flux form,

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.40)

By applying the Gauss divergence theorem, the weak Galerkin formulation becomes
∫

Ωk

ϕh
dU
¯h

dt
dΩ =

∫

Ωk

ϕhS(U
¯h) dΩ +

∫

Ωk

F(U
¯h) ·∇ϕh dΩ−

∫

∂Ωk

ϕhF · n̂ ds (0.41)

The flux function F(U
¯h) · n̂ is approximated, for now, by a Lax-Friedrichs numerical

flux

F̂(U
¯

+
h ,U

¯
−
h) · n̂ =

1
2

[
(F(U

¯
+
h) + F(U

¯
−
h)) · n̂− α(U

¯
+
h −U

¯
−
h)

]
, (0.42)

where α is the upper bound for the absolute value of eigenvalues of the flux Jacobian
F′(u) in the direction n̂. Boundary integrals are computed using Gaussian quadrature.
The semi-discrete form of (0.40) – (0.41) is then given by

dU
¯h

dt
= Lh(U

¯h). (0.43)

Time discretization.

Fully implicit.

Overview. Existence of implicit strong-stability preserving (SSP) time discretiza-
tions was disproved by Gottlieb et al (2001). The first and simplest way to discretize
(0.44) to get a second order fully implicit method is by using the trapezoidal rule.

U
¯

n+1
h −U

¯
n
h

∆t
=

1
2
(Lh(U

¯
n+1
h) + Lh(U

¯
n
h)). (0.44)

This problem is equivalent to finding a solution U
¯
∗
h to the following non-linear

system

H(U
¯
∗
h) ≡ U

¯
∗
h −U

¯
n
h

∆t
− 1

2
(Lh(U

¯
∗
h) + Lh(U

¯
n
h)) = 0 (0.45)

given U
¯

n
h.

Linearizing around U
¯
∗
h leads to the following linear system:

H(U
¯
∗,k+1
h) = H(U

¯
∗,k
h) +

∂H(U
¯
∗,k
h)

∂U
¯
∗,k
h

(U
¯
∗,k+1 −U

¯
∗,k)

= H(U
¯
∗,k
h) +

∂H(U
¯
∗,k
h)

∂U
¯
∗,k
h

δU
¯

k
h ≈ 0 (0.46)

where k is not the be mistaken with the actual time-step, it represents the kth
non-linear iteration approached linearly by (0.46).

5

where (ξi, ρi) are the Gauss-Lobatto nodes and weights. C0 continuity is imposed in
the spectral element method through the application of direct stiffness summation.

A discontinuous Galerkin approximation in d space dimensions is obtained by
writing the governing equations in the general flux form,

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.40)

By applying the Gauss divergence theorem, the weak Galerkin formulation becomes
∫

Ωk

ϕh
dU
¯h

dt
dΩ =

∫

Ωk

ϕhS(U
¯h) dΩ +

∫

Ωk

F(U
¯h) ·∇ϕh dΩ−

∫

∂Ωk

ϕhF · n̂ ds (0.41)

The flux function F(U
¯h) · n̂ is approximated, for now, by a Lax-Friedrichs numerical

flux

F̂(U
¯

+
h ,U

¯
−
h) · n̂ =

1
2

[
(F(U

¯
+
h) + F(U

¯
−
h)) · n̂− α(U

¯
+
h −U

¯
−
h)

]
, (0.42)

where α is the upper bound for the absolute value of eigenvalues of the flux Jacobian
F′(u) in the direction n̂. Boundary integrals are computed using Gaussian quadrature.
The semi-discrete form of (0.40) – (0.41) is then given by

dU
¯h

dt
= Lh(U

¯h). (0.43)

Time discretization.

Fully implicit.

Overview. Existence of implicit strong-stability preserving (SSP) time discretiza-
tions was disproved by Gottlieb et al (2001). The first and simplest way to discretize
(0.44) to get a second order fully implicit method is by using the trapezoidal rule.

U
¯

n+1
h −U

¯
n
h

∆t
=

1
2
(Lh(U

¯
n+1
h) + Lh(U

¯
n
h)). (0.44)

This problem is equivalent to finding a solution U
¯
∗
h to the following non-linear

system

H(U
¯
∗
h) ≡ U

¯
∗
h −U

¯
n
h

∆t
− 1

2
(Lh(U

¯
∗
h) + Lh(U

¯
n
h)) = 0 (0.45)

given U
¯

n
h.

Linearizing around U
¯
∗
h leads to the following linear system:

H(U
¯
∗,k+1
h) = H(U

¯
∗,k
h) +

∂H(U
¯
∗,k
h)

∂U
¯
∗,k
h

(U
¯
∗,k+1 −U

¯
∗,k)

= H(U
¯
∗,k
h) +

∂H(U
¯
∗,k
h)

∂U
¯
∗,k
h

δU
¯

k
h ≈ 0 (0.46)

where k is not the be mistaken with the actual time-step, it represents the kth
non-linear iteration approached linearly by (0.46).

5

where (ξi, ρi) are the Gauss-Lobatto nodes and weights. C0 continuity is imposed in
the spectral element method through the application of direct stiffness summation.

A discontinuous Galerkin approximation in d space dimensions is obtained by
writing the governing equations in the general flux form,

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.40)

By applying the Gauss divergence theorem, the weak Galerkin formulation becomes
∫

Ωk

ϕh
dU
¯h

dt
dΩ =

∫

Ωk

ϕhS(U
¯h) dΩ +

∫

Ωk

F(U
¯h) ·∇ϕh dΩ−

∫

∂Ωk

ϕhF · n̂ ds (0.41)

The flux function F(U
¯h) · n̂ is approximated, for now, by a Lax-Friedrichs numerical

flux

F̂(U
¯

+
h ,U

¯
−
h) · n̂ =

1
2

[
(F(U

¯
+
h) + F(U

¯
−
h)) · n̂− α(U

¯
+
h −U

¯
−
h)

]
, (0.42)

where α is the upper bound for the absolute value of eigenvalues of the flux Jacobian
F′(u) in the direction n̂. Boundary integrals are computed using Gaussian quadrature.
The semi-discrete form of (0.40) – (0.41) is then given by

dU
¯h

dt
= Lh(U

¯h). (0.43)

Time discretization.

Fully implicit.

Overview. Existence of implicit strong-stability preserving (SSP) time discretiza-
tions was disproved by Gottlieb et al (2001). The first and simplest way to discretize
(0.44) to get a second order fully implicit method is by using the trapezoidal rule.

U
¯

n+1
h −U

¯
n
h

∆t
=

1
2
(Lh(U

¯
n+1
h) + Lh(U

¯
n
h)). (0.44)

This problem is equivalent to finding a solution U
¯
∗
h to the following non-linear

system

H(U
¯
∗
h) ≡ U

¯
∗
h −U

¯
n
h

∆t
− 1

2
(Lh(U

¯
∗
h) + Lh(U

¯
n
h)) = 0 (0.45)

given U
¯

n
h.

Linearizing around U
¯
∗
h leads to the following linear system:

H(U
¯
∗,k+1
h) = H(U

¯
∗,k
h) +

∂H(U
¯
∗,k
h)

∂U
¯
∗,k
h

(U
¯
∗,k+1 −U

¯
∗,k)

= H(U
¯
∗,k
h) +

∂H(U
¯
∗,k
h)

∂U
¯
∗,k
h

δU
¯

k
h ≈ 0 (0.46)

where k is not the be mistaken with the actual time-step, it represents the kth
non-linear iteration approached linearly by (0.46).

Integrate over control volume using:

5

where (ξi, ρi) are the Gauss-Lobatto nodes and weights. C0 continuity is imposed in
the spectral element method through the application of direct stiffness summation.

A discontinuous Galerkin approximation in d space dimensions is obtained by
writing the governing equations in the general flux form,

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.40)

By applying the Gauss divergence theorem, the weak Galerkin formulation becomes
∫

Ωk

ϕh
dU
¯h

dt
dΩ =

∫

Ωk

ϕhS(U
¯h) dΩ +

∫

Ωk

F(U
¯h) ·∇ϕh dΩ−

∫

∂Ωk

ϕhF · n̂ ds (0.41)

The flux function F(U
¯h) · n̂ is approximated, for now, by a Lax-Friedrichs numerical

flux

F̂(U
¯

+
h ,U

¯
−
h) · n̂ =

1
2

[
(F(U

¯
+
h) + F(U

¯
−
h)) · n̂− α(U

¯
+
h −U

¯
−
h)

]
, (0.42)

where α is the upper bound for the absolute value of eigenvalues of the flux Jacobian
F′(u) in the direction n̂. Boundary integrals are computed using Gaussian quadrature.
The semi-discrete form of (0.40) – (0.41) is then given by

dU
¯h

dt
= Lh(U

¯h). (0.43)

Time discretization.

Fully implicit.

Overview. Existence of implicit strong-stability preserving (SSP) time discretiza-
tions was disproved by Gottlieb et al (2001). The first and simplest way to discretize
(0.44) to get a second order fully implicit method is by using the trapezoidal rule.

U
¯

n+1
h −U

¯
n
h

∆t
=

1
2
(Lh(U

¯
n+1
h) + Lh(U

¯
n
h)). (0.44)

This problem is equivalent to finding a solution U
¯
∗
h to the following non-linear

system

H(U
¯
∗
h) ≡ U

¯
∗
h −U

¯
n
h

∆t
− 1

2
(Lh(U

¯
∗
h) + Lh(U

¯
n
h)) = 0 (0.45)

given U
¯

n
h.

Linearizing around U
¯
∗
h leads to the following linear system:

H(U
¯
∗,k+1
h) = H(U

¯
∗,k
h) +

∂H(U
¯
∗,k
h)

∂U
¯
∗,k
h

(U
¯
∗,k+1 −U

¯
∗,k)

= H(U
¯
∗,k
h) +

∂H(U
¯
∗,k
h)

∂U
¯
∗,k
h

δU
¯

k
h ≈ 0 (0.46)

where k is not the be mistaken with the actual time-step, it represents the kth
non-linear iteration approached linearly by (0.46).

Lax-Friedrich numerical flux:

Leads to semi-discrete problem solved using ROW:

4

p =p̄(z) + p′ (0.26)
ρ =ρ̄ + ρ′ (0.27)
Θ =ρ̄(z)θ̄(z) + Θ′ (0.28)

and ∂p
∂z = −ρ̄g.

The momentum equation in the ẑ direction is written as

∂W

∂t
+∇ · (WU

ρ
,
WW

ρ
+ pnz) + ρg = 0 (0.29)

∂W

∂t
+∇ · (WU

ρ
,
WW

ρ
) +

∂p

∂z
+ ρg = 0 (0.30)

∂W

∂t
+∇ · (WU

ρ̄ + ρ′ ,
WW

ρ̄ + ρ′) +
∂p̄

∂z
+ ρ̄g +

∂p′

∂z
+ ρ′g = 0 (0.31)

∂W

∂t
+∇ · (WU

ρ̄ + ρ′ ,
WW

ρ̄ + ρ′) +
∂p′

∂z
+ ρ′g = 0 (0.32)

∂W

∂t
+∇ · (WU

ρ̄ + ρ′ ,
WW

ρ̄ + ρ′ + p′nz) + ρ′g = 0 (0.33)

Boundary conditions. Walls:

u · n̂ = 0 (0.34)

implies that on a vertical wall and horizontals wall we respectively have

F = (0, p, 0, 0)T , (0.35)

G = (0, 0, p, 0)T . (0.36)

Buoyancy needs to be treated carefully. Since w = 0 at the top or bottom of the
atmosphere, we have for all times ∂W

∂t = w ∂ρ
∂t + ρ∂w

∂t = 0

∂p′

∂z
+ ρ′g = 0. (0.37)

Space discretization. The computational domain Ω is partitioned into finite
elements Ωk. An approximate solution uh belongs to the finite dimensional space
Vh(Ω). uh is expanded in terms of a tensor-product of the Lagrange basis functions
defined at the Gauss-Lobatto-Legendre collocation points

uk
h =

N∑

i=0

N∑

j=0

uijhi(x)hj(y) (0.38)

A weak Galerkin variational problem is obtained by integrating the equations with
respect to a test function ϕh ∈ Vh. The integrals are then directly evaluated using
Gauss-Lobatto quadrature.

∫

Ωk

φhuh dΩ ≈
N∑

i=0

N∑

j=0

φh(ξi, ξj)uh(ξi, ξj)ρiρj (0.39)

Galerkin based on GLL points + exact integration

Filtering is applied: Boyd-Vandeven
45

Cheap Implicitness:
Rosenbrock methods

• The Jacobian matrix is included in the DIRK order
conditions

• Each stage requires solution to linear problem only

• Viewed as one Newton iteration per RK stage

• Used for stiff chemical reaction problems in the
geosciences with success

• Used traditionally for parabolic PDEs

46

Rosenbrock

JACOBIAN FREE ROSENBROCK-W METHODS FOR THE
HIGH-ORDER SOLUTION OF THE COMPRESSIBLE EULER

EQUATIONS

AMIK ST-CYR ∗

Abstract. A stiffly stable Rosenbrock-W method, originally proposed by Rang and Angermann,
is combined with a Jacobian free approach to integrate in time the compressible Euler equations
discretized in space using the locally discontinuous Galerkin method. This Runge-Kutta method has
embedded error control and enables to bypass geophysically irrelevant acoustic waves.

2D equations.

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.1)

Rosenbrock:
Start with a DIRK:

ki = ∆tf(un +
i−1∑

j=1

aijkj + aiiki) (0.2)

un+1 = un +
s∑

i=1

biki (0.3)

Linearizing around un +
∑i−1

j=1 aijkj :

ki = ∆tf(gi) + ∆t
∂f

∂u

∣∣∣
gi

aiiki (0.4)

gi = un +
i−1∑

j=1

aijkj (0.5)

un+1 = un +
s∑

i=1

biki (0.6)

Approximating ∂f
∂u

∣∣∣
gi

with J ≡ ∂f
∂u

∣∣∣
un

and considering a linear combination of the

Jki leads to an s-stages Rosenbrock method

ki = ∆tf(un +
i−1∑

j=1

αijkj) + ∆tJ
i∑

j=1

γijkj (0.7)

un+1 = un +
s∑

i=1

biki (0.8)

∗NCAR 1850 Table Mesa Drive Boulder, CO 80305, USA, (amik@ucar.edu)

1

JACOBIAN FREE ROSENBROCK-W METHODS FOR THE
HIGH-ORDER SOLUTION OF THE COMPRESSIBLE EULER

EQUATIONS

AMIK ST-CYR ∗

Abstract. A stiffly stable Rosenbrock-W method, originally proposed by Rang and Angermann,
is combined with a Jacobian free approach to integrate in time the compressible Euler equations
discretized in space using the locally discontinuous Galerkin method. This Runge-Kutta method has
embedded error control and enables to bypass geophysically irrelevant acoustic waves.

2D equations.

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.1)

Rosenbrock:
Start with a DIRK:

ki = ∆tf(un +
i−1∑

j=1

aijkj + aiiki) (0.2)

un+1 = un +
s∑

i=1

biki (0.3)

Linearizing around un +
∑i−1

j=1 aijkj :

ki = ∆tf(gi) + ∆t
∂f

∂u

∣∣∣
gi

aiiki (0.4)

gi = un +
i−1∑

j=1

aijkj (0.5)

un+1 = un +
s∑

i=1

biki (0.6)

Approximating ∂f
∂u

∣∣∣
gi

with J ≡ ∂f
∂u

∣∣∣
un

and considering a linear combination of the

Jki leads to an s-stages Rosenbrock method

ki = ∆tf(un +
i−1∑

j=1

αijkj) + ∆tJ
i∑

j=1

γijkj (0.7)

un+1 = un +
s∑

i=1

biki (0.8)

∗NCAR 1850 Table Mesa Drive Boulder, CO 80305, USA, (amik@ucar.edu)

1

JACOBIAN FREE ROSENBROCK-W METHODS FOR THE
HIGH-ORDER SOLUTION OF THE COMPRESSIBLE EULER

EQUATIONS

AMIK ST-CYR ∗

Abstract. A stiffly stable Rosenbrock-W method, originally proposed by Rang and Angermann,
is combined with a Jacobian free approach to integrate in time the compressible Euler equations
discretized in space using the locally discontinuous Galerkin method. This Runge-Kutta method has
embedded error control and enables to bypass geophysically irrelevant acoustic waves.

2D equations.

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.1)

Rosenbrock:
Start with a DIRK:

ki = ∆tf(un +
i−1∑

j=1

aijkj + aiiki) (0.2)

un+1 = un +
s∑

i=1

biki (0.3)

Linearizing around un +
∑i−1

j=1 aijkj :

ki = ∆tf(gi) + ∆t
∂f

∂u

∣∣∣
gi

aiiki (0.4)

gi = un +
i−1∑

j=1

aijkj (0.5)

un+1 = un +
s∑

i=1

biki (0.6)

Approximating ∂f
∂u

∣∣∣
gi

with J ≡ ∂f
∂u

∣∣∣
un

and considering a linear combination of the

Jki leads to an s-stages Rosenbrock method

ki = ∆tf(un +
i−1∑

j=1

αijkj) + ∆tJ
i∑

j=1

γijkj (0.7)

un+1 = un +
s∑

i=1

biki (0.8)

∗NCAR 1850 Table Mesa Drive Boulder, CO 80305, USA, (amik@ucar.edu)

1

JACOBIAN FREE ROSENBROCK-W METHODS FOR THE
HIGH-ORDER SOLUTION OF THE COMPRESSIBLE EULER

EQUATIONS

AMIK ST-CYR ∗

Abstract. A stiffly stable Rosenbrock-W method, originally proposed by Rang and Angermann,
is combined with a Jacobian free approach to integrate in time the compressible Euler equations
discretized in space using the locally discontinuous Galerkin method. This Runge-Kutta method has
embedded error control and enables to bypass geophysically irrelevant acoustic waves.

2D equations.

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.1)

Rosenbrock:
Start with a DIRK:

ki = ∆tf(un +
i−1∑

j=1

aijkj + aiiki) (0.2)

un+1 = un +
s∑

i=1

biki (0.3)

Linearizing around un +
∑i−1

j=1 aijkj :

ki = ∆tf(gi) + ∆t
∂f

∂u

∣∣∣
gi

aiiki (0.4)

gi = un +
i−1∑

j=1

aijkj (0.5)

un+1 = un +
s∑

i=1

biki (0.6)

Approximating ∂f
∂u

∣∣∣
gi

with J ≡ ∂f
∂u

∣∣∣
un

and considering a linear combination of the

Jki leads to an s-stages Rosenbrock method

ki = ∆tf(un +
i−1∑

j=1

αijkj) + ∆tJ
i∑

j=1

γijkj (0.7)

un+1 = un +
s∑

i=1

biki (0.8)

∗NCAR 1850 Table Mesa Drive Boulder, CO 80305, USA, (amik@ucar.edu)

1

Start with DIRK:

Linearize around:

LDIRK:

Replace Jacobian at with

JACOBIAN FREE ROSENBROCK-W METHODS FOR THE
HIGH-ORDER SOLUTION OF THE COMPRESSIBLE EULER

EQUATIONS

AMIK ST-CYR ∗

Abstract. A stiffly stable Rosenbrock-W method, originally proposed by Rang and Angermann,
is combined with a Jacobian free approach to integrate in time the compressible Euler equations
discretized in space using the locally discontinuous Galerkin method. This Runge-Kutta method has
embedded error control and enables to bypass geophysically irrelevant acoustic waves.

2D equations.

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.1)

Rosenbrock:
Start with a DIRK:

ki = ∆tf(un +
i−1∑

j=1

aijkj + aiiki) (0.2)

un+1 = un +
s∑

i=1

biki (0.3)

Linearizing around un +
∑i−1

j=1 aijkj :

ki = ∆tf(gi) + ∆t
∂f

∂u

∣∣∣
gi

aiiki (0.4)

gi = un +
i−1∑

j=1

aijkj (0.5)

un+1 = un +
s∑

i=1

biki (0.6)

Approximating ∂f
∂u

∣∣∣
gi

with J ≡ ∂f
∂u

∣∣∣
un

and considering a linear combination of the

Jki leads to an s-stages Rosenbrock method

ki = ∆tf(un +
i−1∑

j=1

αijkj) + ∆tJ
i∑

j=1

γijkj (0.7)

un+1 = un +
s∑

i=1

biki (0.8)

∗NCAR 1850 Table Mesa Drive Boulder, CO 80305, USA, (amik@ucar.edu)

1

JACOBIAN FREE ROSENBROCK-W METHODS FOR THE
HIGH-ORDER SOLUTION OF THE COMPRESSIBLE EULER

EQUATIONS

AMIK ST-CYR ∗

Abstract. A stiffly stable Rosenbrock-W method, originally proposed by Rang and Angermann,
is combined with a Jacobian free approach to integrate in time the compressible Euler equations
discretized in space using the locally discontinuous Galerkin method. This Runge-Kutta method has
embedded error control and enables to bypass geophysically irrelevant acoustic waves.

2D equations.

U
¯ t +∇ · F(U

¯
) = S(U

¯
). (0.1)

Rosenbrock:
Start with a DIRK:

ki = ∆tf(un +
i−1∑

j=1

aijkj + aiiki) (0.2)

un+1 = un +
s∑

i=1

biki (0.3)

Linearizing around un +
∑i−1

j=1 aijkj :

ki = ∆tf(gi) + ∆t
∂f

∂u

∣∣∣
gi

aiiki (0.4)

gi = un +
i−1∑

j=1

aijkj (0.5)

un+1 = un +
s∑

i=1

biki (0.6)

Approximating ∂f
∂u

∣∣∣
gi

with J ≡ ∂f
∂u

∣∣∣
un

and considering a linear combination of the

Jki leads to an s-stages Rosenbrock method

ki = ∆tf(un +
i−1∑

j=1

αijkj) + ∆tJ
i∑

j=1

γijkj (0.7)

un+1 = un +
s∑

i=1

biki (0.8)

∗NCAR 1850 Table Mesa Drive Boulder, CO 80305, USA, (amik@ucar.edu)

1

Rosenbrock:
MxV products

47

Avoiding
multiplications

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

Suppose then

The modified Rosenbrock is

Free error estimation!Where: and

Solving the linear system might not be the cheapest thing...
48

• Suppose matrix-vector and the RHS evaluation of the
ODE have unit cost

• Suppose a s-stages explicit RK and s-stages SDIRK or
Rosenbrock

• Find the total number of Krylov iterations one can
afford to see some acceleration

Implicit vs Explicit

49

• Suppose matrix-vector and the RHS evaluation of the
ODE have unit cost

• Suppose a s-stages explicit RK and s-stages SDIRK or
Rosenbrock

• Find the total number of Krylov iterations one can
afford to see some acceleration

Implicit vs Explicit

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

Rosenbrock:

Newton-Krylov (SDIRK):

49

• Suppose matrix-vector and the RHS evaluation of the
ODE have unit cost

• Suppose a s-stages explicit RK and s-stages SDIRK or
Rosenbrock

• Find the total number of Krylov iterations one can
afford to see some acceleration

Implicit vs Explicit

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

2

To avoid the multiplications with J use

hi =
i∑

j=1

γijkj (0.9)

ki =
1
γii

hi −
i−1∑

j=1

cijhj (0.10)

(
1

∆tγii
− J)hi = f(un +

i−1∑

j=1

aijhj) +
i−1∑

j=1

(
cij

∆t
)hj (0.11)

un+1 = un +
s∑

j=1

mjhj (0.12)

ûn+1 = ûn +
s∑

j=1

m̂jhj (0.13)

where Γ = (γij) was employed with the changes:

c = diag(γ−1
11 , ..., γ−1

ss)− Γ−1, (0.14)

(aij) = (αij)Γ−1, (0.15)

mT = bT Γ−1. (0.16)

The action of the Jacobian matrix J on a vector v can be computed using f . Indeed,
from the Gateau derivative we have

Jv =
∂f

∂u

∣∣∣
un

v =
f(un + εv)− f(un)

ε
+ O(ε) (0.17)

For an explicit Runge-Kutta, having the same number of stages s, a cost function
with respect to the average number of iterations, per stage, necessary to solve the
linear systems in a Rosenbrock can be established as

iter ≤ CFL− 1
prod× accel

(0.18)

with prod being the number of matrix vector multiplies in one iteration, CFL the
Courant-Friedricj-Levy condition (CFL = 1 being explicit) and accel is the desired
acceleration factor with respect to explicit. To get an estimate, for a BiCGStab with
prod = 2, the table () can be computed and depicts the upper bound on the aver-
age number of iterations per stage necessary to see various acceleration factors with
respect to an s-stages explicit Runge-Kutta method.

The table establishes clearly that outperforming an explicit scheme is very difficult
unless very large CFL numbers are used. It should be noted that in the case of a
Jacobian free Newton-Krylov approach, for SDIRK, the upper bound would still be
valid but divided by the number of Newton iterations

iter × newton ≤ CFL− 1
prod× accel

. (0.19)

The linear system at each stage can at most be solved approximatively and traditional
Rosenbrock methods cannot be employed. In turn, methods able to support arbitrary

Rosenbrock:

Newton-Krylov (SDIRK):

3

CFL / accel 1 2 4
10 4.5 2 1
20 9.5 4.75 2.4
30 14.5 7.25 3.6
100 49.5 24.75 12.4
500 249.5 124.75 62.4

Table 0.1
Average number of Krylov solver iterations per stage in the Rosenbrock approach, for a

BiCGStab, necessary to outperform an explicit Runge-Kutta with a comparable number of stages

Table 0.2
ROS34PW2

γ = 0.4358665215084590
a21 = 2.0000000000000000 c21 = −4.588560720558083
a31 = 1.4192173174557647 c31 = −4.184760482319161
a32 = −0.2592322116729697 c32 = 0.285192017355496
a41 = 4.1847604823191607 c41 = −6.368179200128358
a42 = −0.2851920173554959 c42 = −6.795620944466836
a43 = 2.2942803602790417 c43 = 2.870098604331056
m1 = 0.242123807060954 m̂1 = 3.907010534671192
m2 = −1.223250583904515 m̂2 = 1.118047877820503
m3 = 1.545260255335102 m̂3 = 0.521650232611491
m4 = 0.435866521508459 m̂4 = 0.500000000000000

matrices A instead of J are available. These methods are called Rosenbrock-W meth-
ods and were first investigated in the paper of Steihaug and Wolfbrandt in 1979. Rang
and Angermann have derived L-stable Rosenbrock methods of order 3 with 4 stages.

The compressible Euler equations:

U
¯
≡ (ρ, ρu, ρw,Θ)T = (ρ, U, W, Θ)T (0.20)

F(U
¯
) ≡ (F,G) (0.21)

F = (U,
UU

ρ
+ p,

WU

ρ
,
UΘ
ρ

)T (0.22)

G = (W,
UW

ρ
,
WW

ρ
+ p,

WΘ
ρ

)T (0.23)

S(U
¯
) = (0, 0,−gρ, 0)T (0.24)

p = p0(
RΘ
p0

)γ (0.25)

where γ = cp/cv.

It is now possible to rewrite the system around an hydrostatically balanced state
using

(BiCGStab) prod=2

49

Rosenbrock-W: ROW

• Steihaug and Wolfbrandt 1979

• Rosenbrock-W: suppose Jacobian is not exact

• Same stability region as SDIRK if Jacobian is exact

• If not ... stability very hard to study

• Never used with high-order methods

• We need L-stability for PDEs...

• Dense output + error estimator is available

50

L-stable Rosenbrock-W
• More order conditions for ROW methods

• p=s (p > 2) for ROW to be L-stable: impossible

• p<s we can get L-stable + W

• Stiffly accurate: no error reduction in RK stages

• Embedded method: error control

3

CFL / accel 1 2 4
10 4.5 2 1
20 9.5 4.75 2.4
30 14.5 7.25 3.6
100 49.5 24.75 12.4
500 249.5 124.75 62.4

Table 0.1
Average number of Krylov solver iterations per stage in the Rosenbrock approach, for a

BiCGStab, necessary to outperform an explicit Runge-Kutta with a comparable number of stages

Table 0.2
ROS34PW2

γ = 0.4358665215084590
a21 = 2.0000000000000000 c21 = −4.588560720558083
a31 = 1.4192173174557647 c31 = −4.184760482319161
a32 = −0.2592322116729697 c32 = 0.285192017355496
a41 = 4.1847604823191607 c41 = −6.368179200128358
a42 = −0.2851920173554959 c42 = −6.795620944466836
a43 = 2.2942803602790417 c43 = 2.870098604331056
m1 = 0.242123807060954 m̂1 = 3.907010534671192
m2 = −1.223250583904515 m̂2 = 1.118047877820503
m3 = 1.545260255335102 m̂3 = 0.521650232611491
m4 = 0.435866521508459 m̂4 = 0.500000000000000

matrices A instead of J are available. These methods are called Rosenbrock-W meth-
ods and were first investigated in the paper of Steihaug and Wolfbrandt in 1979. Rang
and Angermann have derived L-stable Rosenbrock methods of order 3 with 4 stages.

The compressible Euler equations:

U
¯
≡ (ρ, ρu, ρw,Θ)T = (ρ, U, W, Θ)T (0.20)

F(U
¯
) ≡ (F,G) (0.21)

F = (U,
UU

ρ
+ p,

WU

ρ
,
UΘ
ρ

)T (0.22)

G = (W,
UW

ρ
,
WW

ρ
+ p,

WΘ
ρ

)T (0.23)

S(U
¯
) = (0, 0,−gρ, 0)T (0.24)

p = p0(
RΘ
p0

)γ (0.25)

where γ = cp/cv.

It is now possible to rewrite the system around an hydrostatically balanced state
using

Combining ideas in
Hairer and Wanner (II)

we get an L-stable

51

L-stable Rosenbrock-W
• More order conditions for ROW methods

• p=s (p > 2) for ROW to be L-stable: impossible

• p<s we can get L-stable + W

• Stiffly accurate: no error reduction in RK stages

• Embedded method: error control

3

CFL / accel 1 2 4
10 4.5 2 1
20 9.5 4.75 2.4
30 14.5 7.25 3.6
100 49.5 24.75 12.4
500 249.5 124.75 62.4

Table 0.1
Average number of Krylov solver iterations per stage in the Rosenbrock approach, for a

BiCGStab, necessary to outperform an explicit Runge-Kutta with a comparable number of stages

Table 0.2
ROS34PW2

γ = 0.4358665215084590
a21 = 2.0000000000000000 c21 = −4.588560720558083
a31 = 1.4192173174557647 c31 = −4.184760482319161
a32 = −0.2592322116729697 c32 = 0.285192017355496
a41 = 4.1847604823191607 c41 = −6.368179200128358
a42 = −0.2851920173554959 c42 = −6.795620944466836
a43 = 2.2942803602790417 c43 = 2.870098604331056
m1 = 0.242123807060954 m̂1 = 3.907010534671192
m2 = −1.223250583904515 m̂2 = 1.118047877820503
m3 = 1.545260255335102 m̂3 = 0.521650232611491
m4 = 0.435866521508459 m̂4 = 0.500000000000000

matrices A instead of J are available. These methods are called Rosenbrock-W meth-
ods and were first investigated in the paper of Steihaug and Wolfbrandt in 1979. Rang
and Angermann have derived L-stable Rosenbrock methods of order 3 with 4 stages.

The compressible Euler equations:

U
¯
≡ (ρ, ρu, ρw,Θ)T = (ρ, U, W, Θ)T (0.20)

F(U
¯
) ≡ (F,G) (0.21)

F = (U,
UU

ρ
+ p,

WU

ρ
,
UΘ
ρ

)T (0.22)

G = (W,
UW

ρ
,
WW

ρ
+ p,

WΘ
ρ

)T (0.23)

S(U
¯
) = (0, 0,−gρ, 0)T (0.24)

p = p0(
RΘ
p0

)γ (0.25)

where γ = cp/cv.

It is now possible to rewrite the system around an hydrostatically balanced state
using

Combining ideas in
Hairer and Wanner (II)

we get an L-stable

Error control

51

• Close to incompressible flows: boundary effects

• At high resolutions the nonhydrostatic effects need to be
considered: hydrostatic GCM can run at 10 km resolutions
now (e.g. HOMME)

• Global next generation GCM will be nonhydrostatic

• High-order: ideally suited for wave propagation
phenomena not well suited for shocks and steep gradients:
limiting HOMs is research...

Stratified Compressible
Euler

52

Numerical experiment:
Rising bubble

• Hydrostatically balanced flow

• Potential temperature perturbed

• Domain 1.0 km x 1.5 km resolution: 6m

• Robert (1993): slow moving large scale bubble with fast acoustic waves reflected

• Integrate for 1800 secs: bubble crashes onto top lid

• Block Jacobi preconditioning + Guillard and Viozat diffusive term (1998)

• dt fixed to 1 secs, acceleration observed ~6-8: compared to an SSP with CFL=2

53

Initial condition (t=0)

54

t=360 seconds

55

t=720 seconds

56

t=1080 seconds

57

t=1800 seconds

58

Conclusions and
future work

• Petascale computing imposes constraints!

• The barotropic problem is solved optimally by OAS

• A very cache friendly OAS version was derived: compares to FDM

• A cheap way of achieving implicit time integration for PDEs was derived

• Possible to attain high-order in time: error control

• Stiffer problems will be considered: mountains and gravity waves in a
channel

• Preconditioning ... + projections using lower polynomial degrees to
construct better starting estimates

• ROW + SSP: L-stable Rosenbrock-W method with explicit part SSP (Joint
with Prof. Sandu and E. Constantinescu: Virginia Tech)

59

Acknowledgments

• The AMR work was funded under NSF grant CMG-0222282: An
adaptive Mesh, Spectral Element Formulation of the Well-Posed
Primitive Equations for Climate and Weather Modeling, NSF MRI
Grant CNS-0421498, NSF MRI Grant CNS-0420873, NSF MRI
Grant CNS-0420985

• Partly supported by the NSF-CMG grant: Adaptive High-Order
Methods for Nonhydrostatic Numerical Weather Prediction
0530820.

• DOE Climate Change Prediction Program CCPP.

Email: amik@ucar.edu
Phone: 303-497-1287

60

mailto:amik@ucar.edu
mailto:amik@ucar.edu

