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History

e Vector Machines
— Cyber 203 and 205 at NASA Langley (~1985)

» Painful vectorization procedure

— Cray 2, Cray YMP, Cray C-90, Convex C1-C2
» Vastly better vectorization compilers
» Good coarse grain parallelism support

* Rise of cache-based parallel architecture
(aka. killer micros)
— Early successes: 1.5 Gflops on 512 cpu of Intel

Touchstone Delta Machine (with J. Saltz at ICASE)
In 1992

» See Proc. SC92: Was still slower than 8cpu Cray-C90



History

o Early difficulties of massively parallel machines

— Cache based optimizations fundamentally at odds
with vector optimizations

 Local versus global
— Tridiagonal solver: Inner loop must vectorize over lines
— Unclear programming paradigms and Tools
e SIMD, MIMD
 HPF, Vienna Fortran, CMFortran
e PVM, MPI, Shmem etc ...?



Personal View

» Biggest single enabler of massively parallel
computer applications has been:

— Emergence of MPI (and OpenMP) as standards

— Realization that low level programming will be
required for good performance

» Failure of HPF type approaches
— Were inspired by success of auto-vectorization (Cray/Convex)
— Parallel turns out to be more complex than vector

e Difficult Issues remain but

— Probability of automated high level software tools
which do not compromise performance seems remote

» e.g. Dynamic load balancing for mesh adaptation



Looking forward

Can this approach (MPI/OMP) be extended
up to 1M cores ?

Challenges of strong solvers (implicit or multigrid)
on many cores

Should we embrace hybrid models ?

— MPI-OpenMP ?

What if long vectors make a come back ?
— Stalling clock speeds....



NSU3D: Unstructured Navier-
Stokes Solver

» High fidelity viscous analysis
— Resolves thin boundary layer to wall
e O(10% normal spacing
 Stiff discrete equations to solve
» Suite of turbulence models available
— High accuracy objective: 1 drag count
e Unstructured mixed element grids
for complex geometries
— VGRID: NASA Langley
— ICEM CFD, Others

 Production use in commercial,
general aviation industry

» Extension to Design Optimization
and Unsteady Simulations




NSU3D Solver

* Governing Equations: Reynolds Averaged
Navier-Stokes Equations
— Conservation of Mass, Momentum and Energy
— Single Equation turbulence model (Spalart-Alimaras)
— 2 equation k-omega model
« Convection-Diffusion — Production
* Vertex-Based Discretization
— 2"d order upwind finite-volume scheme
— 6 /7variables per grid point
— Flow equations fully coupled (5x5)
— Turbulence equation uncoupled



Spatial Discretization

 Mixed Element Meshes
— Tetrahedra, Prisms, Pyramids, Hexahedra

e Control Volume Based on Median Duals

— Fluxes based on edges
« Upwind or artifical dissipation

* Fix = f(Ulefs, Uright)

* Wlef, = W, Upjeht, = Wy, 1S Order accurate

1
* Uleft = Ui + 5 VU Tk S

* Upight = Uk + 3 Vuk.Tia’ 2Nd order accurate

+ Vu; evaluated as contour integral around CV

— Single edge-based data-structure represents all
element types



Mixed-Element Discretizations

e Edge-based data structure

— Building block for all element types

— Reduces memory requirements

— Minimizes indirect addressing / gather-scatter
— Graph of grid = Discretization stencil

« Implications for solvers, Partitioners %

N2

 Has had major impact on
HPC performance

EDGE

M1



Agglomeration Multigrid

e Agglomeration Multigrid solvers for unstructured meshes

— Coarse level meshes constructed by agglomerating fine grid cells/equations
« Automated, invisible to user

— Multigrid algorithm cycles back and forth between coarse and fine grid levels
— Produces order of magnitude improvement in convergence
— Maintains good scalability of explicit scheme
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«Automated Graph-Based Coarsening Algorithm

*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection

*Grid independent convergence rates (order of magnitude improvement)



Agglomeration Multigrid

%\Vﬂ
RN

~

Yy,

ORI

Ty ATy, L5 A

Ay ST vrvﬁ IS T.‘#;%%‘g
¥ ALYy

Y A
-ﬂ;rp?,#.l
LSRR

N '“ﬂ-'l‘m ;

[ A )
Ry )
A '“'A"&v ¥ A
AR

7o/ /N Ve
SIS ERSAD
SR

«Automated Graph-Based Coarsening Algorithm

*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection

*Grid independent convergence rates (order of magnitude improvement)
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sAutomated Graph-Based Coarsening Algorithm

*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection

*Grid independent convergence rates (order of magnitude improvement)
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sAutomated Graph-Based Coarsening Algorithm
*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection
*Grid independent convergence rates (order of magnitude improvement)



Agglomeration Multigrid
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sAutomated Graph-Based Coarsening Algorithm

*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection

*Grid independent convergence rates (order of magnitude improvement)



Anisotropy Induced Stiffness

e Convergence rates for RANS
(viscous) problems much slower then

Inviscid flows

— Mainly due to grid stretching
— Thin boundary and wake regions
— Mixed element (prism-tet) grids

b

e Use directional solver to relieve
stiffness

— Line solver in anisotropic regions



Method of Solution

e Line-implicit solver
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Parallelization through Domain
Decomposition

Partitio

‘ertex .,

* Intersected edges resolved by ghost vertices

e Generates communication between original and

ghost vertex

— Handled using MPI and/or OpenMP (Hybrid implementation)
— Local reordering within partition for cache-locality



Partitioning

(Block) Tridiagonal Lines solver inherently sequential
Contract graph along implicit lines

Weight edges and vertices
% — '
Partition contracted graph

Decontract graph
— Guaranteed lines never broken
— Possible small increase in imbalance/cut edges




Partitioning Example

o 32-way partition of 30,562 point 2D grid
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« Unwelighted partition: 2.6% edges cut, 2.7% lines
cut
« Weighted partition: 3.2% edges cut, 0% lines cut




Preprocessing Requirements

o Multigrid levels (graphs) are partitioned
Independently and then matched up through a

greedy algorithm

— Intragrid communication more important than intergrid
communication

— Became a problem at > 4000 cpus

* Preprocessing still done sequentially

— Can we guarantee exact same solver behavior on
different numbers of processors (at least as fallback)
o Jacobi: Yes Gauss Seidel: No
* Agglomeration multigrid : frontal algorithm = no ?



AlAA Drag Prediction Workshop
Test Case

Wing-Body Configuration (but includes separated flow)
72 million grid points
Transonic Flow

Mach=0.75, Incidence = 0 degrees, Reynolds number=3,000,000




NSU3D Scalability on NASA Columbia
Machine

e« 72M pt grid
— Assume perfect
speedup on 128
cpus
« (Good scalability up
to 2008 cpus

e Multigrid slowdown
due to coarse grid
communication

— But yields fastest
convergence
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NSU3D Scalability
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Best convergence with 6
level multigrid scheme

Importance of fastest
overall solution strategy
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— 10 minutes wall clock
time for steady-state
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NSU3D Benchmark on BG/L

 |dentical case as described on Columbia at SCO5:
— 72 million points, steady state MG solver
— BGI/L cpus ~ 1/ 3 of Columbia cpus: 333 Mflops/cpu
— Solution in 20 minutes on 4016 cpus

« Strong scalability: only 18,000 points per cpus

CPUs Time/cycle |Scaling Tflops (approx
1004 9.6 secs 1.00 0.33

2008 5.06 secs [1.89/2.00 |0.62

4016 2.64 secs |3.62/4.00 |1.2




Hybrid Parallel Programming

 With multicore architectures, we have
clusters of SMPs

— Hybrid MP1/OpenMP programming model

e In theory:
— Local memory access faster using OpenMP/Threads
— MPI reserved for inter-node communication

— Alternatively,do loop level parallelism at thread level on
multicores

» (not recommmended so far, but may become
necessary on many cores/cpus)



EXTENDING MPI CODE TO MIXED MPI-OpenMP MODEL

o MPI| Process Rewritten to Handle Multiple Domains
— Sequentially
— In Parallel Using OpenMP

o Flexibility
— Run MPI or OpenMP Exclusively
— Run Two-Level MPI-OpenMP Model
— Sequential Capability

« Number of Domains can be Multiple of Number of Processors

o Entirely Domain-Based Parallelism



OVERALL CODE STRUCTURE

include OMP_DIRECTIVE
do : Loop over number of partitions
do : Loop over number of vector groups

do : Loop over edges in a vector group
n1 = edge_end(1,iedge)
n2 = edge_end(1,iedge)
flux = function of values at n1,n2
residual{n1) = residual{n1) + flux
residual(n2) = residual(n2) - flux
enddo
enddo
enddo
c
include OMP_DIRECTIVE
do : Loop over number of partitions
call OMP_communicate
enddo
c
include OMP_DIRECTIVE
do : Loop over number of partitions
call MPl_communicate
enddo

o Entire Code OMP’ed with 2 or 3 Directives
e Distinct Partition Loops (instead of OMP BARRIER) enables

Code to run Sequentially



OPENMP COMMUNICATION (within an MPI Process)

— e Arrays Span Al Local Partitions/Threads
o Pointers used to Identify Extent of Each Partition/Thread
o Local Indices (relative to pointers) used in Computation Loop
o Global Indices Used for Communication

o Communicate by Copying Selected Values to Specific Locations in Global Array

POINTER TO POINTER TO POINTER TO POINTER TO
PARTITION 1 PARTITION 2 PARTITION 3 PARTITION 4



COMMUNICATION BETWEEN MPI PROCESSES

~ e Threadto Thread MPI Messages
— Each Thread Sends to/ Receives from:
+ An MPI Process
« A Thread |d (implemented as message tag)
o Entirely Parallel Provided MPI Implementation is THREAD-SAFE

MPIPROC 1 MPIPROC 2

THREAD 1 THREAD 2 THREAD 3 THREAD 1 THREAD 2 THREAD 3

MPI_SEND MPI_RECV
MPI 2 THREAD 1 MPI 1 THREAD 2



COMPARISON OF MPI and OPENMP on CRAY SV1

20

18 —a&—— OpenMP

—@&—— MPI-np

—»—— MPI-nt
IDEAL

16

14

12

10

SPEEDUP

| | | | |
2 4 6 8 10 12 14 16 18 20
NPROC

o Vector Machine with Uniform Access Memory

o Two Vendor MPI Implementations

— MPI -np : Unix Sockets
— MPI -nt : Shared Memory Communication
e 177K Point Grid, No Multigrid



MPI vs. OPENMP ON SINGLE BOX OF ASCI BLUE MOUNTAIN

140

120 | —a—— OpenMP Alone /
— —O— — MPI Alone 7

100

80

SPEEDUP

60

40

20

]
20 40 60 80 100 120 140
NPROC

o OMP Uses Parallel Initialization (first touch memory placement)

e 3.1 million Point Grid, No Multigrid

Using domain based parallelism, OMP can perform as well as MPI



COMBINED MPI-OpenMP ON ASCI BLUE MOUNTAIN
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e 3.1 million Point Grid, No Multigrid



MPI/OpenMP PERFORMANCE

e OpenMP and MPI Perform Equivalently on SV1, 02000

— Validates OMP Implementation

e Combined MPI-OMP Cases Show Degradation
— Current Origin 2000 MPI Implementation NOT Completely THREAD-SAFE
« Individual Thread MPI Calls are Sequentialized
+ Degradation Increases with Number of Threads

« Acceptable for Small Numbers of Threads : Dual CPU Pentiums

o Requested Processor Map Not Always Held
— Initialized Memory No Longer Local
— Processes Double up On Single Processor (MP1 64, OMP 2)



Hybrid MPI-OMP (NSU3D)
/ MPI Send-Recv \

MFI FROC 2

MFI FROC 1

%

. “ OpenMF

Pack Messages -
: OpenMP

Unpack ™
Messages ' '-,:k

THEEAD 2 THREAD D THEEAD 1 THREAD 2

THREAD O THEEAD L

 MPI master gathers/scatters to OMP threads
OMP local thread-to-thread communication occurs during MPI Irecv wait

time (attempt to overlap)
Unavoidable loss of parallelism due to (localy) sequential MPI Send/Recv



NASA Columbia Machine

72 million grid points
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« 2 OMP required for IB on 2048
» Excellent scalability for single grid solver (non multigrid)



4016 cpus on Columbia
(requires MPI/OMP)

4300 F
n — = NUMALINK; 1 OMP Thread e
3500  ——+—— NUMALINK: 2 OMP Threads 15
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500 1000 1500 2030 2509 3000 3500 40090
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1 OMP possible for IB on 2008 (8 hosts)
2 OMP required for IB on 4016 (8 hosts)
Good scalability up to 4016

5.2 Tflops at 4016

TFLOPS



Programming Models

 To date, have never found an architecture where
pure MPI was not the best performing approach

— Large shared memory nodes (SGI Altix, IBM P5)

— Dual core, dual cpu commodity machines/clusters
 However, often MPI-OMP strategy is required to

access all cores/cpus
 Problems to be addressed.:

— Shared memory benefit of OMP not realized

— Sequential MPI Send-Recv penalty

— Thread-safe issues

— May be different - 1M cores




High Order Methods

Higher order methods such as Discontinuous
Galerkin best suited to meet high accuracy
requirements

— Asymptotic properties
HOMs scale very well on massively parallel
architectures

HOMSs reduce grid generation requirements

HOMSs reduce grid handling infrastructure
— Dynamic load balancing

Compact data representation (data compression)

— Smaller number of modal coefficients versus large
number of point-wise values



Single Grid Steady-State Implicit Solver

e Steady state
R,(U,)=5,

e Newton iteration

oU

p

aRp n n+1 n
AU =S —-R_(U")

e Non-linear update .
n+l n n+1
U =U,+AU}

e [D] is Jacobian approximation

Size of [D]
9X 95
20x 20
90 x 50

100 x 100

280 x 280
420 x 420

e Non-linear element-Jacobi (NEJ)

UGt =[D; ] (S, ~R,(U}))

OO bs WN =D




The Multigrid Approach: p-Multigrid

e p-Multigrid (Fidkowski et al., Helenbrook B. and Mauvriplis D. J.)
> Fine/coarse grids contain the same number of elements

» Transfer operators almost trivial for hierarchical basis

> Restriction: Fine -> Coarse: p=4->3->2->1
v" Omit higher order modes

> Prolongation: Coarse -> Fine
v" Transfer low order modal coefficients exactly
v" High order modal coefficients set to zero

> Forp=1->0
v Solution restriction: average
v Residual restriction: summation
v Soution prolongation: injection



The Multigrid Approach: h-Multigrid

e h-Multigrid (Mavriplis D. J.)
> Begins at p=0 level
> Agglomeration multigrid (AMG)

e hp-Multigrid strategy:
> Non-linear multigrid (FAS)
> Full multigrid (FMG)
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Parallel Implementation
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e MPI buffers
> Ghost cells
> p-Multigrid
> h-Multigrid (AMG)

Ghost Cell
L

" MPI Communication

Partition Boundary



Parallel hp-Multigrid Implementation

e p-MG

> Static grid

> Same MPI communication for all levels

> No duplication of computation in adjacent partition

> No communication required for restriction and prolongation

e h-MG
> Each level is partitioned independently
> Each level has its own communication pattern

> Additional communication is required for restriction and
prolongation

> But h-levels represent almost trivial work compared to the rest

e Partitioning and communication patterns/buffers are
performed sequentially and stored a priori (pre-processor)



Complex Flow Configuration (DRL-F6)
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Results: p=0

107
1o —&— N=185k
—a—— N = 450k 104
sl —o— N=2.6m
10 - 105
108 10
= 107 Ep
|:E F EE 10
- 10°L _ .
3 E S 10°
- 10-9' —
108
10'¢ ; 1010
1wt é 10-11
10-1?: M P 1= SRR IR BT SR R "
5O 1000 18500 2000 2500 3000 19
Number of Iterations
N Single grid AMG AMG-levels
185k 679 46 4
450k 1200 43 5
2.6m 3375 51 6
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—¢— N=286m

20 30 40 50
Number of MG-cycles



hp-Multigrid: p-dependence

Log( nR.)

Log( 1Ry, )
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hp-Multigrid: h-dependence

Log( nRi1,)
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Parallel Performance: Speedup (1 MG-cycle)

e N =185 000 e N =2 600 000

1494 = 213913

<

L IIIIIIIIII
259

750 120 250 533 750

[ BN BN AT AN A BT B A |
1039 1250 1300 1750 23949

500
Numkber of CPUs Number of CPUs

= p=0 does not scale = p=0 does not scale

e p=1 scales up to 500 proc. e p=1 scales up to 1000 proc.

e p>1 scales almost optimal e p>1 ideal scalability



Concluding Remarks

e Petascale computing will likely look very similar to terascale
computing:
> MPI for inter-processor communication
> Perhaps hybrid MPI-OMP paradigm
e Can something be done to take advantage of shared memory
parallelism more effectively ?
> MPI still appears to be best
> 16 way nodes will be common (quad core, quad cpu)
e Previously non-competitive methods which scale well may
become methods of choice
e High-order methods (in space and time)
> Scale well
> Reduce grid infrastructure problems
> Compact (compressed) representation of data
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