
Some Long Term Experiences in
HPC Programming for

Computational Fluid Dynamics
Problems

Dimitri Mavriplis
University of Wyoming

Overview

• A bit of history
• Details of a Parallel Unstructured Mesh

Flow Solver
• Programming paradigms

– Some old and new performance results
• Why we are excited about Higher Order

Methods
• Conclusions

History
• Vector Machines

– Cyber 203 and 205 at NASA Langley (~1985)
• Painful vectorization procedure

– Cray 2, Cray YMP, Cray C-90, Convex C1-C2
• Vastly better vectorization compilers
• Good coarse grain parallelism support

• Rise of cache-based parallel architecture
(aka. killer micros)
– Early successes: 1.5 Gflops on 512 cpu of Intel

Touchstone Delta Machine (with J. Saltz at ICASE)
in 1992

• See Proc. SC92: Was still slower than 8cpu Cray-C90

History

• Early difficulties of massively parallel machines
– Cache based optimizations fundamentally at odds

with vector optimizations
• Local versus global

– Tridiagonal solver: Inner loop must vectorize over lines

– Unclear programming paradigms and Tools
• SIMD, MIMD
• HPF, Vienna Fortran, CMFortran
• PVM, MPI, Shmem etc …?

Personal View
• Biggest single enabler of massively parallel

computer applications has been:
– Emergence of MPI (and OpenMP) as standards
– Realization that low level programming will be

required for good performance
• Failure of HPF type approaches

– Were inspired by success of auto-vectorization (Cray/Convex)
– Parallel turns out to be more complex than vector

• Difficult issues remain but
– Probability of automated high level software tools

which do not compromise performance seems remote
• e.g. Dynamic load balancing for mesh adaptation

Looking forward

• Can this approach (MPI/OMP) be extended
up to 1M cores ?

• Challenges of strong solvers (implicit or multigrid)
on many cores

• Should we embrace hybrid models ?
– MPI-OpenMP ?

• What if long vectors make a come back ?
– Stalling clock speeds….

NSU3D: Unstructured Navier-
Stokes Solver

• High fidelity viscous analysis
– Resolves thin boundary layer to wall

• O(10-6) normal spacing
• Stiff discrete equations to solve
• Suite of turbulence models available

– High accuracy objective: 1 drag count
• Unstructured mixed element grids

for complex geometries
– VGRID: NASA Langley
– ICEM CFD, Others

• Production use in commercial,
general aviation industry

• Extension to Design Optimization
and Unsteady Simulations

NSU3D Solver
• Governing Equations: Reynolds Averaged

Navier-Stokes Equations
– Conservation of Mass, Momentum and Energy
– Single Equation turbulence model (Spalart-Allmaras)
– 2 equation k-omega model

• Convection-Diffusion – Production

• Vertex-Based Discretization
– 2nd order upwind finite-volume scheme
– 6 /7variables per grid point
– Flow equations fully coupled (5x5)
– Turbulence equation uncoupled

Spatial Discretization
• Mixed Element Meshes

– Tetrahedra, Prisms, Pyramids, Hexahedra
• Control Volume Based on Median Duals

– Fluxes based on edges
• Upwind or artifical dissipation

– Single edge-based data-structure represents all
element types

Mixed-Element Discretizations

• Edge-based data structure
– Building block for all element types
– Reduces memory requirements
– Minimizes indirect addressing / gather-scatter
– Graph of grid = Discretization stencil

• Implications for solvers, Partitioners

• Has had major impact on
HPC performance

Agglomeration Multigrid

• Agglomeration Multigrid solvers for unstructured meshes
– Coarse level meshes constructed by agglomerating fine grid cells/equations

• Automated, invisible to user
– Multigrid algorithm cycles back and forth between coarse and fine grid levels
– Produces order of magnitude improvement in convergence
– Maintains good scalability of explicit scheme

Agglomeration Multigrid

•Automated Graph-Based Coarsening Algorithm
•Coarse Levels are Graphs
•Coarse Level Operator by Galerkin Projection
•Grid independent convergence rates (order of magnitude improvement)

Agglomeration Multigrid

•Automated Graph-Based Coarsening Algorithm
•Coarse Levels are Graphs
•Coarse Level Operator by Galerkin Projection
•Grid independent convergence rates (order of magnitude improvement)

Agglomeration Multigrid

•Automated Graph-Based Coarsening Algorithm
•Coarse Levels are Graphs
•Coarse Level Operator by Galerkin Projection
•Grid independent convergence rates (order of magnitude improvement)

Agglomeration Multigrid

•Automated Graph-Based Coarsening Algorithm
•Coarse Levels are Graphs
•Coarse Level Operator by Galerkin Projection
•Grid independent convergence rates (order of magnitude improvement)

Agglomeration Multigrid

•Automated Graph-Based Coarsening Algorithm
•Coarse Levels are Graphs
•Coarse Level Operator by Galerkin Projection
•Grid independent convergence rates (order of magnitude improvement)

Anisotropy Induced Stiffness

• Convergence rates for RANS
(viscous) problems much slower then
inviscid flows

– Mainly due to grid stretching
– Thin boundary and wake regions
– Mixed element (prism-tet) grids

• Use directional solver to relieve
stiffness
– Line solver in anisotropic regions

Method of Solution
• Line-implicit solver

Strong coupling

Line Solver Multigrid Convergence

Line solver convergence
insensitive to grid
stretching

Multigrid convergence
insensitive to grid
resolution

Parallelization through Domain
Decomposition

• Intersected edges resolved by ghost vertices
• Generates communication between original and

ghost vertex
– Handled using MPI and/or OpenMP (Hybrid implementation)
– Local reordering within partition for cache-locality

Partitioning
• (Block) Tridiagonal Lines solver inherently sequential
• Contract graph along implicit lines
• Weight edges and vertices

• Partition contracted graph
• Decontract graph

– Guaranteed lines never broken
– Possible small increase in imbalance/cut edges

Partitioning Example
• 32-way partition of 30,562 point 2D grid

• Unweighted partition: 2.6% edges cut, 2.7% lines
cut

• Weighted partition: 3.2% edges cut, 0% lines cut

Preprocessing Requirements
• Multigrid levels (graphs) are partitioned

independently and then matched up through a
greedy algorithm
– Intragrid communication more important than intergrid

communication
– Became a problem at > 4000 cpus

• Preprocessing still done sequentially
– Can we guarantee exact same solver behavior on

different numbers of processors (at least as fallback)
• Jacobi: Yes Gauss Seidel: No
• Agglomeration multigrid : frontal algorithm = no ?

AIAA Drag Prediction Workshop
Test Case

• Wing-Body Configuration (but includes separated flow)
• 72 million grid points
• Transonic Flow
• Mach=0.75, Incidence = 0 degrees, Reynolds number=3,000,000

NSU3D Scalability on NASA Columbia
Machine

• 72M pt grid
– Assume perfect

speedup on 128
cpus

• Good scalability up
to 2008 cpus

• Multigrid slowdown
due to coarse grid
communication
– But yields fastest

convergence

G

F

L

O

P

S

NSU3D Scalability

• Best convergence with 6
level multigrid scheme

• Importance of fastest
overall solution strategy
– 5 level Multigrid
– 10 minutes wall clock

time for steady-state
solution on 72M pt
grid

NSU3D Benchmark on BG/L
• Identical case as described on Columbia at SC05:

– 72 million points, steady state MG solver
– BG/L cpus ~ 1/ 3 of Columbia cpus: 333 Mflops/cpu
– Solution in 20 minutes on 4016 cpus

• Strong scalability: only 18,000 points per cpus

CPUs Time/cycle Scaling Tflops (approx)

1004 9.6 secs 1.00 0.33
2008 5.06 secs 1.89/2.00 0.62
4016 2.64 secs 3.62/4.00 1.2

Note: Columbia one of a kind machine
Acess to > 2048 cpus difficult

Hybrid Parallel Programming

• With multicore architectures, we have
clusters of SMPs
– Hybrid MPI/OpenMP programming model

• In theory:
– Local memory access faster using OpenMP/Threads
– MPI reserved for inter-node communication
– Alternatively,do loop level parallelism at thread level on

multicores
» (not recommmended so far, but may become

necessary on many cores/cpus)

Using domain based parallelism, OMP can perform as well as MPI

Hybrid MPI-OMP (NSU3D)

• MPI master gathers/scatters to OMP threads
• OMP local thread-to-thread communication occurs during MPI Irecv wait

time (attempt to overlap)
• Unavoidable loss of parallelism due to (localy) sequential MPI Send/Recv

NASA Columbia Machine

• 2 OMP required for IB on 2048
• Excellent scalability for single grid solver (non multigrid)

72 million grid points

4016 cpus on Columbia
(requires MPI/OMP)

• 1 OMP possible for IB on 2008 (8 hosts)
• 2 OMP required for IB on 4016 (8 hosts)
• Good scalability up to 4016
• 5.2 Tflops at 4016

Programming Models
• To date, have never found an architecture where

pure MPI was not the best performing approach
– Large shared memory nodes (SGI Altix, IBM P5)
– Dual core, dual cpu commodity machines/clusters

• However, often MPI-OMP strategy is required to
access all cores/cpus

• Problems to be addressed:
– Shared memory benefit of OMP not realized
– Sequential MPI Send-Recv penalty
– Thread-safe issues
– May be different 1M cores

High Order Methods
• Higher order methods such as Discontinuous

Galerkin best suited to meet high accuracy
requirements
– Asymptotic properties

• HOMs scale very well on massively parallel
architectures

• HOMs reduce grid generation requirements
• HOMs reduce grid handling infrastructure

– Dynamic load balancing
• Compact data representation (data compression)

– Smaller number of modal coefficients versus large
number of point-wise values

Single Grid Steady-State Implicit Solver

• Steady state

• Newton iteration

• Non-linear update

• [D] is Jacobian approximation

• Non-linear element-Jacobi (NEJ)

1R
U S R (U)

U

n

p n n
p p p p

p

+
⎡ ⎤∂

Δ = −⎢ ⎥
∂⎢ ⎥⎣ ⎦

R (U) Sp p p=

()11U S R (U)nn n
p p ppp D

−+ ⎡ ⎤Δ = −⎣ ⎦

1 1U U Un n n
p p p
+ += + Δ

• p-Multigrid (Fidkowski et al., Helenbrook B. and Mavriplis D. J.)

Fine/coarse grids contain the same number of elements

Transfer operators almost trivial for hierarchical basis
Restriction: Fine -> Coarse: p = 4 3 2 1

Omit higher order modes

Prolongation: Coarse -> Fine
Transfer low order modal coefficients exactly
High order modal coefficients set to zero

For p = 1 0
Solution restriction: average
Residual restriction: summation
Soution prolongation: injection

The Multigrid Approach: p-Multigrid

• h-Multigrid (Mavriplis D. J.)
Begins at p=0 level
Agglomeration multigrid (AMG)

• hp-Multigrid strategy:
Non-linear multigrid (FAS)
Full multigrid (FMG)

The Multigrid Approach: h-Multigrid

Parallel Implementation

• MPI buffers
Ghost cells
p-Multigrid
h-Multigrid (AMG)

Parallel hp-Multigrid Implementation

• p-MG
Static grid
Same MPI communication for all levels
No duplication of computation in adjacent partition
No communication required for restriction and prolongation

• h-MG
Each level is partitioned independently
Each level has its own communication pattern
Additional communication is required for restriction and
prolongation
But h-levels represent almost trivial work compared to the rest

• Partitioning and communication patterns/buffers are
performed sequentially and stored a priori (pre-processor)

Complex Flow Configuration (DRL-F6)

• ICs: Freestream Mach=0.5
• hp-Multigrid

qNJ smoother
p=[0…4]
V-cycle(10,0)
FMG (10 cyc/level)

Case N AMG-levels
1 185k 4
2 450k 5
3 2.6m 6

Results: p=0

• Put table here !!!

N Single grid AMG AMG-levels
185k 679 46 4
450k 1200 43 5
2.6m 3375 51 6

hp-Multigrid: p-dependence

185K mesh

2.6M mesh

450K mesh

hp-Multigrid: h-dependence

• p = 1 • p = 2

Parallel Performance: Speedup (1 MG-cycle)

• N = 185 000

• p=0 does not scale
• p=1 scales up to 500 proc.
• p>1 scales almost optimal

• N = 2 600 000

• p=0 does not scale
• p=1 scales up to 1000 proc.
• p>1 ideal scalability

Concluding Remarks

• Petascale computing will likely look very similar to terascale
computing:

MPI for inter-processor communication
Perhaps hybrid MPI-OMP paradigm

• Can something be done to take advantage of shared memory
parallelism more effectively ?

MPI still appears to be best
16 way nodes will be common (quad core, quad cpu)

• Previously non-competitive methods which scale well may
become methods of choice

• High-order methods (in space and time)
Scale well
Reduce grid infrastructure problems
Compact (compressed) representation of data

	Some Long Term Experiences in HPC Programming for Computational Fluid Dynamics Problems
	Overview
	History
	History
	Personal View
	Looking forward
	NSU3D: Unstructured Navier-Stokes Solver
	NSU3D Solver
	Spatial Discretization
	Mixed-Element Discretizations
	Agglomeration Multigrid
	Agglomeration Multigrid
	Agglomeration Multigrid
	Agglomeration Multigrid
	Agglomeration Multigrid
	Agglomeration Multigrid
	Anisotropy Induced Stiffness
	Method of Solution
	Line Solver Multigrid Convergence
	Parallelization through Domain Decomposition
	Partitioning
	Partitioning Example
	Preprocessing Requirements
	AIAA Drag Prediction Workshop �Test Case
	NSU3D Scalability on NASA Columbia Machine
	NSU3D Scalability
	NSU3D Benchmark on BG/L
	Hybrid Parallel Programming
	Hybrid MPI-OMP (NSU3D)
	NASA Columbia Machine
	 4016 cpus on Columbia �(requires MPI/OMP)
	Programming Models
	High Order Methods
	Single Grid Steady-State Implicit Solver
	The Multigrid Approach: p-Multigrid
	The Multigrid Approach: h-Multigrid
	Parallel Implementation
	Parallel hp-Multigrid Implementation
	Complex Flow Configuration (DRL-F6)
	Results: p=0
	hp-Multigrid: p-dependence
	hp-Multigrid: h-dependence
	Parallel Performance: Speedup (1 MG-cycle)
	Concluding Remarks

