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Overview

• A bit of history
• Details of a Parallel Unstructured Mesh 

Flow Solver
• Programming paradigms

– Some old and new performance results
• Why we are excited about Higher Order 

Methods
• Conclusions



History
• Vector Machines

– Cyber 203 and 205 at NASA Langley (~1985)
• Painful vectorization procedure 

– Cray 2, Cray YMP, Cray C-90, Convex C1-C2
• Vastly better vectorization compilers
• Good coarse grain parallelism support

• Rise of cache-based parallel architecture     
(aka. killer micros)
– Early successes: 1.5 Gflops on 512 cpu of Intel 

Touchstone Delta Machine (with J. Saltz at ICASE)   
in 1992

• See Proc. SC92:  Was still slower than 8cpu Cray-C90 



History

• Early difficulties of massively parallel machines
– Cache based optimizations fundamentally at odds 

with vector optimizations
• Local versus global

– Tridiagonal solver:  Inner loop must vectorize over lines

– Unclear programming paradigms and Tools
• SIMD, MIMD
• HPF, Vienna Fortran, CMFortran
• PVM, MPI, Shmem etc …?



Personal View
• Biggest single enabler of massively parallel 

computer applications has been:
– Emergence of MPI (and OpenMP) as standards
– Realization that low level programming will be 

required for good performance
• Failure of HPF type approaches

– Were inspired by success of auto-vectorization (Cray/Convex)
– Parallel turns out to be more complex than vector

• Difficult issues remain but
– Probability of automated high level software tools 

which do not compromise performance seems remote
• e.g. Dynamic load balancing for mesh adaptation



Looking forward

• Can this approach (MPI/OMP) be extended                 
up to 1M cores ?

• Challenges of strong solvers (implicit or multigrid)   
on many cores

• Should we embrace hybrid models ?
– MPI-OpenMP ?

• What if long vectors make a come back ?
– Stalling clock speeds….



NSU3D: Unstructured Navier-
Stokes Solver

• High fidelity viscous analysis
– Resolves thin boundary layer to wall

• O(10-6) normal spacing
• Stiff discrete equations to solve
• Suite of turbulence models available

– High accuracy objective: 1 drag count
• Unstructured mixed element grids 

for complex geometries 
– VGRID: NASA Langley
– ICEM CFD, Others

• Production use in commercial, 
general aviation industry

• Extension to Design Optimization 
and  Unsteady Simulations



NSU3D Solver
• Governing Equations: Reynolds Averaged 

Navier-Stokes Equations
– Conservation of Mass, Momentum and Energy
– Single Equation turbulence model (Spalart-Allmaras)
– 2 equation k-omega model

• Convection-Diffusion – Production

• Vertex-Based Discretization
– 2nd order upwind finite-volume scheme
– 6 /7variables per grid point
– Flow equations fully coupled (5x5)
– Turbulence equation uncoupled



Spatial Discretization
• Mixed Element Meshes

– Tetrahedra, Prisms, Pyramids, Hexahedra
• Control Volume Based on Median Duals

– Fluxes based on edges
• Upwind or artifical dissipation

– Single edge-based data-structure represents all 
element types



Mixed-Element Discretizations

• Edge-based data structure
– Building block for all element types
– Reduces memory requirements
– Minimizes indirect addressing / gather-scatter
– Graph of grid = Discretization stencil

• Implications for solvers, Partitioners

• Has had major impact on                               
HPC performance



Agglomeration Multigrid

• Agglomeration Multigrid solvers for unstructured meshes
– Coarse level meshes constructed by agglomerating fine grid cells/equations

• Automated, invisible to user
– Multigrid algorithm cycles back and forth between coarse and fine grid levels
– Produces order of magnitude improvement in convergence 
– Maintains good scalability of explicit scheme 



Agglomeration Multigrid

•Automated Graph-Based Coarsening Algorithm
•Coarse Levels are Graphs
•Coarse Level Operator by Galerkin Projection
•Grid independent convergence rates (order of magnitude improvement)
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Anisotropy Induced Stiffness

• Convergence rates for RANS 
(viscous) problems much slower then 
inviscid flows

– Mainly due to grid stretching
– Thin boundary and wake regions
– Mixed element (prism-tet) grids

• Use directional solver to relieve 
stiffness
– Line solver in anisotropic regions



Method of Solution
• Line-implicit solver

Strong coupling



Line Solver Multigrid Convergence

Line solver convergence 
insensitive to grid 
stretching

Multigrid convergence 
insensitive to grid 
resolution



Parallelization through Domain 
Decomposition

• Intersected edges resolved by ghost vertices
• Generates communication between original and 

ghost vertex
– Handled using MPI and/or OpenMP (Hybrid implementation)
– Local reordering within partition for cache-locality



Partitioning
• (Block) Tridiagonal Lines solver inherently sequential
• Contract graph along implicit lines
• Weight edges and vertices

• Partition contracted graph
• Decontract graph

– Guaranteed lines never broken
– Possible small increase in imbalance/cut edges



Partitioning Example 
• 32-way partition of 30,562 point 2D grid

• Unweighted partition: 2.6% edges cut, 2.7% lines 
cut

• Weighted partition: 3.2% edges cut, 0% lines cut



Preprocessing Requirements
• Multigrid levels (graphs) are partitioned 

independently and then matched up through a 
greedy algorithm
– Intragrid communication more important than intergrid

communication
– Became a problem at > 4000 cpus

• Preprocessing still done sequentially
– Can we guarantee exact same solver behavior on 

different numbers of processors (at least as fallback)
• Jacobi: Yes     Gauss Seidel: No
• Agglomeration multigrid : frontal algorithm = no ?



AIAA Drag Prediction Workshop 
Test Case

• Wing-Body Configuration (but includes separated flow)
• 72 million grid points
• Transonic Flow
• Mach=0.75, Incidence = 0 degrees, Reynolds number=3,000,000



NSU3D Scalability on NASA Columbia 
Machine

• 72M pt grid
– Assume perfect 

speedup on 128 
cpus

• Good scalability up 
to 2008 cpus

• Multigrid slowdown 
due to coarse grid 
communication
– But yields fastest 

convergence
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NSU3D Scalability

• Best convergence with 6 
level multigrid scheme

• Importance of fastest 
overall solution strategy
– 5 level Multigrid
– 10 minutes wall clock 

time for steady-state 
solution on 72M pt 
grid



NSU3D Benchmark on BG/L
• Identical case as described on Columbia at SC05:

– 72 million points, steady state MG solver
– BG/L cpus ~ 1/ 3 of Columbia cpus: 333 Mflops/cpu
– Solution in 20 minutes on 4016 cpus

• Strong scalability: only 18,000 points per cpus

CPUs Time/cycle Scaling Tflops (approx)

1004 9.6 secs 1.00 0.33
2008 5.06 secs 1.89/2.00 0.62
4016 2.64 secs 3.62/4.00 1.2

Note:  Columbia one of a kind machine                           
Acess to > 2048 cpus difficult



Hybrid Parallel Programming

• With multicore architectures, we have 
clusters of SMPs
– Hybrid MPI/OpenMP programming model

• In theory:
– Local memory access faster using OpenMP/Threads
– MPI reserved for inter-node communication
– Alternatively,do loop level parallelism at thread level on 

multicores
» (not recommmended so far, but may become 

necessary on many cores/cpus)













Using domain based parallelism, OMP can perform as well as MPI







Hybrid MPI-OMP (NSU3D)

• MPI master gathers/scatters to OMP threads
• OMP local thread-to-thread communication occurs during MPI Irecv wait 

time (attempt to overlap)
• Unavoidable loss of parallelism due to (localy) sequential MPI Send/Recv



NASA Columbia Machine

• 2 OMP required for IB on 2048
• Excellent scalability for single grid solver (non multigrid)

72 million grid points



4016 cpus on Columbia 
(requires MPI/OMP)

• 1 OMP possible for IB on 2008 (8 hosts)
• 2 OMP required for IB on 4016 (8 hosts)
• Good scalability up to 4016
• 5.2 Tflops at 4016



Programming Models
• To date, have never found an architecture where 

pure MPI was not the best performing approach
– Large shared memory nodes (SGI Altix, IBM P5)
– Dual core, dual cpu commodity machines/clusters

• However, often MPI-OMP strategy is required to 
access all cores/cpus

• Problems to be addressed:
– Shared memory benefit of OMP not realized
– Sequential MPI Send-Recv penalty
– Thread-safe issues
– May be different 1M cores



High Order Methods
• Higher order methods such as Discontinuous 

Galerkin best suited to meet high accuracy 
requirements
– Asymptotic properties

• HOMs scale very well on massively parallel 
architectures

• HOMs reduce grid generation requirements
• HOMs reduce grid handling infrastructure

– Dynamic load balancing
• Compact data representation (data compression)

– Smaller number of modal coefficients versus large 
number of point-wise values



Single Grid Steady-State Implicit Solver

• Steady state

• Newton iteration

• Non-linear update

• [D] is Jacobian approximation

• Non-linear element-Jacobi (NEJ)
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• p-Multigrid (Fidkowski et al., Helenbrook B. and Mavriplis D. J.)

Fine/coarse grids contain the same number of elements

Transfer operators almost trivial for hierarchical basis
Restriction: Fine -> Coarse: p = 4 3 2 1

Omit higher order modes

Prolongation: Coarse -> Fine
Transfer low order modal coefficients exactly
High order modal coefficients set to zero

For p = 1 0
Solution restriction: average
Residual restriction: summation
Soution prolongation: injection

The Multigrid Approach: p-Multigrid



• h-Multigrid (Mavriplis D. J.)
Begins at p=0 level
Agglomeration multigrid (AMG)

• hp-Multigrid strategy:
Non-linear multigrid (FAS)
Full multigrid (FMG)

The Multigrid Approach: h-Multigrid



Parallel Implementation

• MPI buffers
Ghost cells
p-Multigrid
h-Multigrid (AMG)



Parallel hp-Multigrid Implementation

• p-MG
Static grid
Same MPI communication for all levels
No duplication of computation in adjacent partition
No communication required for restriction and prolongation

• h-MG
Each level is partitioned independently
Each level has its own communication pattern
Additional communication is required for restriction and 
prolongation
But h-levels represent almost trivial work compared to the rest

• Partitioning and communication patterns/buffers are 
performed sequentially and stored a priori (pre-processor)



Complex Flow Configuration (DRL-F6)

• ICs: Freestream Mach=0.5
• hp-Multigrid

qNJ smoother
p=[0…4]
V-cycle(10,0)
FMG (10 cyc/level)

Case N AMG-levels
1 185k 4
2 450k 5
3 2.6m 6



Results: p=0

• Put table here !!!

N Single grid AMG AMG-levels
185k 679 46 4
450k 1200 43 5
2.6m 3375 51 6



hp-Multigrid: p-dependence

185K mesh

2.6M mesh

450K  mesh



hp-Multigrid: h-dependence

• p = 1 • p = 2



Parallel Performance: Speedup (1 MG-cycle)

• N = 185 000

• p=0 does not scale
• p=1 scales up to 500 proc.
• p>1 scales almost optimal 

• N = 2 600 000

• p=0 does not scale
• p=1 scales up to 1000 proc.
• p>1 ideal scalability 



Concluding Remarks

• Petascale computing will likely look very similar to terascale
computing:

MPI for inter-processor communication
Perhaps hybrid MPI-OMP paradigm

• Can something be done to take advantage of shared memory 
parallelism more effectively ?

MPI still appears to be best
16 way nodes will be common (quad core, quad cpu)

• Previously non-competitive methods which scale well may 
become methods of choice

• High-order methods (in space and time)
Scale well
Reduce grid infrastructure problems
Compact (compressed) representation of data
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