UNIVERSITY

OF WYOMING

Some Long Term Experiences In
HPC Programming for
Computational Fluid Dynamics
Problems

Dimitri Mavriplis
University of Wyoming

Overview

A bit of history

Detalls of a Parallel Unstructured Mesh
Flow Solver

Programming paradigms
— Some old and new performance results

Why we are excited about Higher Order
Methods

Conclusions

History

e Vector Machines
— Cyber 203 and 205 at NASA Langley (~1985)

» Painful vectorization procedure

— Cray 2, Cray YMP, Cray C-90, Convex C1-C2
» Vastly better vectorization compilers
» Good coarse grain parallelism support

* Rise of cache-based parallel architecture
(aka. killer micros)
— Early successes: 1.5 Gflops on 512 cpu of Intel

Touchstone Delta Machine (with J. Saltz at ICASE)
In 1992

» See Proc. SC92: Was still slower than 8cpu Cray-C90

History

o Early difficulties of massively parallel machines

— Cache based optimizations fundamentally at odds
with vector optimizations

 Local versus global
— Tridiagonal solver: Inner loop must vectorize over lines
— Unclear programming paradigms and Tools
e SIMD, MIMD
 HPF, Vienna Fortran, CMFortran
e PVM, MPI, Shmem etc ...?

Personal View

» Biggest single enabler of massively parallel
computer applications has been:

— Emergence of MPI (and OpenMP) as standards

— Realization that low level programming will be
required for good performance

» Failure of HPF type approaches
— Were inspired by success of auto-vectorization (Cray/Convex)
— Parallel turns out to be more complex than vector

e Difficult Issues remain but

— Probability of automated high level software tools
which do not compromise performance seems remote

» e.g. Dynamic load balancing for mesh adaptation

Looking forward

Can this approach (MPI/OMP) be extended
up to 1M cores ?

Challenges of strong solvers (implicit or multigrid)
on many cores

Should we embrace hybrid models ?

— MPI-OpenMP ?

What if long vectors make a come back ?
— Stalling clock speeds....

NSU3D: Unstructured Navier-
Stokes Solver

» High fidelity viscous analysis
— Resolves thin boundary layer to wall
e O(10% normal spacing
 Stiff discrete equations to solve
» Suite of turbulence models available
— High accuracy objective: 1 drag count
e Unstructured mixed element grids
for complex geometries
— VGRID: NASA Langley
— ICEM CFD, Others

 Production use in commercial,
general aviation industry

» Extension to Design Optimization
and Unsteady Simulations

NSU3D Solver

* Governing Equations: Reynolds Averaged
Navier-Stokes Equations
— Conservation of Mass, Momentum and Energy
— Single Equation turbulence model (Spalart-Alimaras)
— 2 equation k-omega model
« Convection-Diffusion — Production
* Vertex-Based Discretization
— 2"d order upwind finite-volume scheme
— 6 /7variables per grid point
— Flow equations fully coupled (5x5)
— Turbulence equation uncoupled

Spatial Discretization

 Mixed Element Meshes
— Tetrahedra, Prisms, Pyramids, Hexahedra

e Control Volume Based on Median Duals

— Fluxes based on edges
« Upwind or artifical dissipation

* Fix = f(Ulefs, Uright)

* Wlef, = W, Upjeht, = Wy, 1S Order accurate

1
* Uleft = Ui + 5 VU Tk S

* Upight = Uk + 3 Vuk.Tia’ 2Nd order accurate

+ Vu; evaluated as contour integral around CV

— Single edge-based data-structure represents all
element types

Mixed-Element Discretizations

e Edge-based data structure

— Building block for all element types

— Reduces memory requirements

— Minimizes indirect addressing / gather-scatter
— Graph of grid = Discretization stencil

« Implications for solvers, Partitioners %

N2

 Has had major impact on
HPC performance

EDGE

M1

Agglomeration Multigrid

e Agglomeration Multigrid solvers for unstructured meshes

— Coarse level meshes constructed by agglomerating fine grid cells/equations
« Automated, invisible to user

— Multigrid algorithm cycles back and forth between coarse and fine grid levels
— Produces order of magnitude improvement in convergence
— Maintains good scalability of explicit scheme

Agg_gn—ittc,r_ ed
“Poin Rt

£y

Wy STATA, &
" TR
¥,
e STy %.%{g?av“*tv. -~ Avay
T

Vv VAV p SV 7o TANVANVA 2N .
RIS AKS NS
RSN ‘%Yé'gué AW
Iﬁféﬁﬁgﬂ'ﬁﬁgﬁ%{%ﬁ%"ﬂ#"%,ﬂé; L
Ay, ST AYL, AT, 4'5“\ W¥yy,)

3 uéef;‘;#:%%%I%gﬁ%ﬁ%‘ﬁﬁ:#ﬂkv%

n«ﬁ‘?e',p'#‘:g}ﬁklﬁgg}v‘m
s

Agal tl Multigrid

<P "4\'
RS a SAVAVAN
) <]
OO K ,ﬁ#" 0 R

¥ Al

R X DO

e v,
T vﬁ%v ‘%‘."%‘,ﬂﬂ!;
AN

7
iy VYA,
¥y, Dy, L 'r:%: %‘ i

“'-'“'A'nv Ea, L
T e S
Vg R Ry ATy A o A
VAV SIS e
AVav,y %I?“‘@%E“Eﬂr i
AR
SN
¥
.‘v'ﬂ;‘ A,

‘NN" N . .:k' Ay, \‘4:[7 X
N, SNV NS
Y ANAVAVAN A S5

«Automated Graph-Based Coarsening Algorithm

*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection

*Grid independent convergence rates (order of magnitude improvement)

Agglomeration Multigrid

%\Vﬂ
RN

~

Yy,

ORI

Ty ATy, L5 A

Ay ST vrvﬁ IS T.‘#;%%‘g
¥ ALYy

Y A
-ﬂ;rp?,#.l
LSRR

N '“ﬂ-'l‘m ;

[A)
Ry)
A '“'A"&v ¥ A
AR

7o/ /N Ve
SIS ERSAD
SR

«Automated Graph-Based Coarsening Algorithm

*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection

*Grid independent convergence rates (order of magnitude improvement)

o “‘A_b
Ao > <
ORISR X
el Ea AN '!mmgm
VAT A AV A Py A :
Wy ATy, ! D Y
RO
Tl A e
AT, ATAT Ay LA A
N A vaviv vy,
e T . AN YAy, SR
T AT) i‘#\‘ﬁ*ﬂﬂ"
o SO0 0 Y
VLY Al

\/

ATy ATAY,
“'9'4?34-"&
A A

) “
..‘;‘gb

G, :ﬁ:?‘!‘,""'
oy

A
ROX i
i
ey
{

‘fgﬁﬁih__ gﬁﬁﬁ'qm‘.g ; .

A VAV i Ny SR S
-.&“’AVQ}JS%&“%‘

INVAVANE @S %

y

sAutomated Graph-Based Coarsening Algorithm

*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection

*Grid independent convergence rates (order of magnitude improvement)

~

Agglomeration Multigrid
N/

LRI NNAVL 7
SEPAN r’ﬂé‘A \
% \WAY, A
: T YV, ; {\/
: ‘:‘*‘g=:*§+".‘.:¢§i,vm. tv'-;r: ?\?‘“ U T Y
sl I
. S Fa
TS P
\WN 2 ’*ﬁﬁﬁ% AF e L
R
< e Y _am
ARG s B .
: 5 y SRISES Vg ATy AT -
NSRS ?ﬁ%ﬁ;g‘*é:%gm B8 > o
A SRAROCRPE % \
VATANNY. o AEROATE 2 <
AVANAVAVAYE OV avarivgers ty —

sAutomated Graph-Based Coarsening Algorithm
*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection
*Grid independent convergence rates (order of magnitude improvement)

Agglomeration Multigrid

~
™

W T

T AVAV
R
RIS S SHNAS
RIS
Ay yp :‘: -rfﬁiﬁig%é:ﬁ#:%‘a”é?’ﬁ
SR

v,
A%i‘gﬂ

- _,x(Jf\'E
i
it
b
oy, Ay .
A A
ST SIE N
"v“‘ ““"‘7 "‘-" 4, "‘i"““ TiT A
"‘u‘ ““A‘“ "“i‘"‘“&#‘"hr Wiy
OO RSRIERS
\/ ﬁ“‘#‘% SRR |

AR AL
SRR
AN

DNV Navave

sAutomated Graph-Based Coarsening Algorithm

*Coarse Levels are Graphs

*Coarse Level Operator by Galerkin Projection

*Grid independent convergence rates (order of magnitude improvement)

Anisotropy Induced Stiffness

e Convergence rates for RANS
(viscous) problems much slower then

Inviscid flows

— Mainly due to grid stretching
— Thin boundary and wake regions
— Mixed element (prism-tet) grids

b

e Use directional solver to relieve
stiffness

— Line solver in anisotropic regions

Method of Solution

e Line-implicit solver

DENSITY RESIDUAL

o}
&

L}
]

Line Solver Multigrid Convergence

Line Solver

Point Solver]

o]

500
CYCLE

1900

Line solver convergence

Insensitive to grid
stretching

Coarse (5M pts)]
Medium [(15M pts)]

- Fing (40M pts)

.4

194

200 370
MG Cycles

Multigrid convergence
Insensitive to grid
resolution

400

CL

Parallelization through Domain
Decomposition

Partitio

‘ertex .,

* Intersected edges resolved by ghost vertices

e Generates communication between original and

ghost vertex

— Handled using MPI and/or OpenMP (Hybrid implementation)
— Local reordering within partition for cache-locality

Partitioning

(Block) Tridiagonal Lines solver inherently sequential
Contract graph along implicit lines

Weight edges and vertices
% — '
Partition contracted graph

Decontract graph
— Guaranteed lines never broken
— Possible small increase in imbalance/cut edges

Partitioning Example

o 32-way partition of 30,562 point 2D grid

\\ . N
Fa _)'}T A - ™,
W J .) o Tl T . ANV .
" v

« Unwelighted partition: 2.6% edges cut, 2.7% lines
cut
« Weighted partition: 3.2% edges cut, 0% lines cut

Preprocessing Requirements

o Multigrid levels (graphs) are partitioned
Independently and then matched up through a

greedy algorithm

— Intragrid communication more important than intergrid
communication

— Became a problem at > 4000 cpus

* Preprocessing still done sequentially

— Can we guarantee exact same solver behavior on
different numbers of processors (at least as fallback)
o Jacobi: Yes Gauss Seidel: No
* Agglomeration multigrid : frontal algorithm = no ?

AlAA Drag Prediction Workshop
Test Case

Wing-Body Configuration (but includes separated flow)
72 million grid points
Transonic Flow

Mach=0.75, Incidence = 0 degrees, Reynolds number=3,000,000

NSU3D Scalability on NASA Columbia
Machine

e« 72M pt grid
— Assume perfect
speedup on 128
cpus
« (Good scalability up
to 2008 cpus

e Multigrid slowdown
due to coarse grid
communication

— But yields fastest
convergence

2500

2000

1500

1000

Parallel Speedup

200

NSUZD on NASA Columbia Supercomputer

|
Ideal /e -
= 4 Level Multigrid A

@ 5 Level Muttigrid A
A 6 Level Multigrid

NSU3D Unstructured Mesh RANS Solver
Multigrid Solver

Drag Prediction Workshop Il WB Case

72 million Grid Points, 315 million Grid Cells
433 million degrees of freedom

500 1000 1500 2000
of CPUS

3000

2500

2000

1500

1000

200

»“w TV O m 6

NSU3D Scalability

o

A\
.

10° L
n 4 Level Multigrid
® 5 Level Multigrid

* 6 Level Multigrid

a—

Best convergence with 6
level multigrid scheme

Importance of fastest
overall solution strategy

— 5 level Multigrid Tl

— 10 minutes wall clock
time for steady-state
solution on 72M pt
grid

——h

o
[+]

I

B
g |

| |
u

| |

RMS Residual
»
g

=
|
4
'®
>o

—t
=
N
|

-I[}'5 | | I 1 | | I Il Il] I ll ll
250 500 750 1000

Multigrid Cycles

NSU3D Benchmark on BG/L

 |dentical case as described on Columbia at SCO5:
— 72 million points, steady state MG solver
— BGI/L cpus ~ 1/ 3 of Columbia cpus: 333 Mflops/cpu
— Solution in 20 minutes on 4016 cpus

« Strong scalability: only 18,000 points per cpus

CPUs Time/cycle |Scaling Tflops (approx
1004 9.6 secs 1.00 0.33

2008 5.06 secs [1.89/2.00 |0.62

4016 2.64 secs |3.62/4.00 |1.2

Hybrid Parallel Programming

 With multicore architectures, we have
clusters of SMPs

— Hybrid MP1/OpenMP programming model

e In theory:
— Local memory access faster using OpenMP/Threads
— MPI reserved for inter-node communication

— Alternatively,do loop level parallelism at thread level on
multicores

» (not recommmended so far, but may become
necessary on many cores/cpus)

EXTENDING MPI CODE TO MIXED MPI-OpenMP MODEL

o MPI| Process Rewritten to Handle Multiple Domains
— Sequentially
— In Parallel Using OpenMP

o Flexibility
— Run MPI or OpenMP Exclusively
— Run Two-Level MPI-OpenMP Model
— Sequential Capability

« Number of Domains can be Multiple of Number of Processors

o Entirely Domain-Based Parallelism

OVERALL CODE STRUCTURE

include OMP_DIRECTIVE
do : Loop over number of partitions
do : Loop over number of vector groups

do : Loop over edges in a vector group
n1 = edge_end(1,iedge)
n2 = edge_end(1,iedge)
flux = function of values at n1,n2
residual{n1) = residual{n1) + flux
residual(n2) = residual(n2) - flux
enddo
enddo
enddo
c
include OMP_DIRECTIVE
do : Loop over number of partitions
call OMP_communicate
enddo
c
include OMP_DIRECTIVE
do : Loop over number of partitions
call MPl_communicate
enddo

o Entire Code OMP’ed with 2 or 3 Directives
e Distinct Partition Loops (instead of OMP BARRIER) enables

Code to run Sequentially

OPENMP COMMUNICATION (within an MPI Process)

— e Arrays Span Al Local Partitions/Threads
o Pointers used to Identify Extent of Each Partition/Thread
o Local Indices (relative to pointers) used in Computation Loop
o Global Indices Used for Communication

o Communicate by Copying Selected Values to Specific Locations in Global Array

POINTER TO POINTER TO POINTER TO POINTER TO
PARTITION 1 PARTITION 2 PARTITION 3 PARTITION 4

COMMUNICATION BETWEEN MPI PROCESSES

~ e Threadto Thread MPI Messages
— Each Thread Sends to/ Receives from:
+ An MPI Process
« A Thread |d (implemented as message tag)
o Entirely Parallel Provided MPI Implementation is THREAD-SAFE

MPIPROC 1 MPIPROC 2

THREAD 1 THREAD 2 THREAD 3 THREAD 1 THREAD 2 THREAD 3

MPI_SEND MPI_RECV
MPI 2 THREAD 1 MPI 1 THREAD 2

COMPARISON OF MPI and OPENMP on CRAY SV1

20

18 —a&—— OpenMP

—@&—— MPI-np

—»—— MPI-nt
IDEAL

16

14

12

10

SPEEDUP

| | | | |
2 4 6 8 10 12 14 16 18 20
NPROC

o Vector Machine with Uniform Access Memory

o Two Vendor MPI Implementations

— MPI -np : Unix Sockets
— MPI -nt : Shared Memory Communication
e 177K Point Grid, No Multigrid

MPI vs. OPENMP ON SINGLE BOX OF ASCI BLUE MOUNTAIN

140

120 | —a—— OpenMP Alone /
— —O— — MPI Alone 7

100

80

SPEEDUP

60

40

20

]
20 40 60 80 100 120 140
NPROC

o OMP Uses Parallel Initialization (first touch memory placement)

e 3.1 million Point Grid, No Multigrid

Using domain based parallelism, OMP can perform as well as MPI

COMBINED MPI-OpenMP ON ASCI BLUE MOUNTAIN

140
4
120 - — OpenMP Alone
— — — — MPI Alone
MPI 2
100 |- MPI 4
—a— MPI 8
—m— MPI 16
& sl = MPI32
(=) MPI 64
L
L
A 60
N
40 -
20
£
| | | | | |

20 40 60 80 100 120 140
NPROC

e 3.1 million Point Grid, No Multigrid

MPI/OpenMP PERFORMANCE

e OpenMP and MPI Perform Equivalently on SV1, 02000

— Validates OMP Implementation

e Combined MPI-OMP Cases Show Degradation
— Current Origin 2000 MPI Implementation NOT Completely THREAD-SAFE
« Individual Thread MPI Calls are Sequentialized
+ Degradation Increases with Number of Threads

« Acceptable for Small Numbers of Threads : Dual CPU Pentiums

o Requested Processor Map Not Always Held
— Initialized Memory No Longer Local
— Processes Double up On Single Processor (MP1 64, OMP 2)

Hybrid MPI-OMP (NSU3D)
/ MPI Send-Recv \

MFI FROC 2

MFI FROC 1

%

. “ OpenMF

Pack Messages -
: OpenMP

Unpack ™
Messages ' '-,:k

THEEAD 2 THREAD D THEEAD 1 THREAD 2

THREAD O THEEAD L

 MPI master gathers/scatters to OMP threads
OMP local thread-to-thread communication occurs during MPI Irecv wait

time (attempt to overlap)
Unavoidable loss of parallelism due to (localy) sequential MPI Send/Recv

NASA Columbia Machine

72 million grid points

sl
B —m—— NUMALINK: 1 OMP Thread
B ——&—— NUMALINK: 2 OMP Threads
o000l ~——®—— Infinband: 1 OMP Thread
| Infiniband: 2 QOMP Threads
o N
= N
B 1500
m |
o |
w |
@ N
® 1000 [~
m L
o N
SIS o
. L | T B |

S0 1000 1500 2000
Number of CPUS

« 2 OMP required for IB on 2048
» Excellent scalability for single grid solver (non multigrid)

4016 cpus on Columbia
(requires MPI/OMP)

4300 F
n — = NUMALINK; 1 OMP Thread e
3500 ——+—— NUMALINK: 2 OMP Threads 15
- —&— Infiniband, 1 OMP Thread
N Infiniband: 2 OMP Threads .-~
3000 Ideal 1,
o -
'g =
S 2500
A 1,
Voo f i
€ .
® B]
1500 | -
§1F 1
1009
: 1,
509 |
:"|3| '] '] ' | N |_ q

500 1000 1500 2030 2509 3000 3500 40090
Number of CPUS

1 OMP possible for IB on 2008 (8 hosts)
2 OMP required for IB on 4016 (8 hosts)
Good scalability up to 4016

5.2 Tflops at 4016

TFLOPS

Programming Models

 To date, have never found an architecture where
pure MPI was not the best performing approach

— Large shared memory nodes (SGI Altix, IBM P5)

— Dual core, dual cpu commodity machines/clusters
 However, often MPI-OMP strategy is required to

access all cores/cpus
 Problems to be addressed.:

— Shared memory benefit of OMP not realized

— Sequential MPI Send-Recv penalty

— Thread-safe issues

— May be different - 1M cores

High Order Methods

Higher order methods such as Discontinuous
Galerkin best suited to meet high accuracy
requirements

— Asymptotic properties
HOMs scale very well on massively parallel
architectures

HOMSs reduce grid generation requirements

HOMSs reduce grid handling infrastructure
— Dynamic load balancing

Compact data representation (data compression)

— Smaller number of modal coefficients versus large
number of point-wise values

Single Grid Steady-State Implicit Solver

e Steady state
R,(U,)=5,

e Newton iteration

oU

p

aRp n n+1 n
AU =S —-R_(U")

e Non-linear update .
n+l n n+1
U =U,+AU}

e [D] is Jacobian approximation

Size of [D]
9X 95
20x 20
90 x 50

100 x 100

280 x 280
420 x 420

e Non-linear element-Jacobi (NEJ)

UGt =[D;] (S, ~R,(U}))

OO bs WN =D

The Multigrid Approach: p-Multigrid

e p-Multigrid (Fidkowski et al., Helenbrook B. and Mauvriplis D. J.)
> Fine/coarse grids contain the same number of elements

» Transfer operators almost trivial for hierarchical basis

> Restriction: Fine -> Coarse: p=4->3->2->1
v" Omit higher order modes

> Prolongation: Coarse -> Fine
v" Transfer low order modal coefficients exactly
v" High order modal coefficients set to zero

> Forp=1->0
v Solution restriction: average
v Residual restriction: summation
v Soution prolongation: injection

The Multigrid Approach: h-Multigrid

e h-Multigrid (Mavriplis D. J.)
> Begins at p=0 level
> Agglomeration multigrid (AMG)

e hp-Multigrid strategy:
> Non-linear multigrid (FAS)
> Full multigrid (FMG)

o a Wy i

'a.v oA) . N
il Y‘F&WA“?-\?E&:,%

L
ot -
P

)

ot Tt L bt
) i, STt o,
%

by : '.-!) e

N s oo S S N o
e R

it A

""@,f.‘-‘:?:tv D gyt sk &

"7
i3
TN i ik S
e S o Y
o I
A AV v s

AN

I AV (AT AN LA A o

e e

N A WA WA s e

b e e e Y B
b 2o l-:."ﬂ' 5.1-“‘.' Am:m;“'t% 41"»":;21*3‘.#&'»5' rfj:‘-':ﬁ",a“iw. b5
i ﬁ-"i;"'Eﬁ‘?ﬁﬁ‘:‘y{g@%}'&%q&i%égz Rk

) a‘lﬂ"m"ﬂi il \‘Lﬁ. . ‘, o i ": ’{# Lﬂém

R S e AW P G DS i

O A WA BT

s ot o R N
o

[y,
L T

i
LD
Sapdl

s

¥
é
i

< Y Y.
LSO
SRR R
[,
AW:,}‘@:;{%

7
APy’
RAVAN,

9
Vi

O

Parallel Implementation

o F
=S

T

VAN
AN

S

«H‘%{ﬂ
ﬁb‘#’ 41’1"7‘
AT
Ar‘ ﬂ

/|

V "'
Y

L

£ V"’A
T

[
[
X A AN
AN ANV,
TN
SRS
e

/)
1]
i

i

e
Sl

3=
3

AT Ty !

ety

g ﬁm"“ff -
LA\
00

i Afé

R A

e

e
iy
P

Lf iy
B e AR
J L
it B j]
gz S 17
/A P e AT ‘l
i iy
Ak]

e MPI buffers
> Ghost cells
> p-Multigrid
> h-Multigrid (AMG)

Ghost Cell
L

" MPI Communication

Partition Boundary

Parallel hp-Multigrid Implementation

e p-MG

> Static grid

> Same MPI communication for all levels

> No duplication of computation in adjacent partition

> No communication required for restriction and prolongation

e h-MG
> Each level is partitioned independently
> Each level has its own communication pattern

> Additional communication is required for restriction and
prolongation

> But h-levels represent almost trivial work compared to the rest

e Partitioning and communication patterns/buffers are
performed sequentially and stored a priori (pre-processor)

Complex Flow Configuration (DRL-F6)

K% 0
(D)
> T
=T/ O © c
Q) (&) ~
S © 3
< = o
E 2 953
®] Q,y
X x o Ieb) o) 9 o
2|23l E22%%3
A%ql B Eod
OER220
— r3%Liz
[| -M—
&nﬂ«mﬁ e %p>>>>
* 2= N ™ -
O
[I)

Results: p=0

107
1o —&— N=185k
—a—— N = 450k 104
sl —o— N=2.6m
10 - 105
108 10
= 107 Ep
|:E F EE 10
- 10°L _ .
3 E S 10°
- 10-9' —
108
10'¢ ; 1010
1wt é 10-11
10-1?: M P 1= SRR IR BT SR R "
5O 1000 18500 2000 2500 3000 19
Number of Iterations
N Single grid AMG AMG-levels
185k 679 46 4
450k 1200 43 5
2.6m 3375 51 6

—&— N=185k
—a—— N =450k
—¢— N=286m

20 30 40 50
Number of MG-cycles

hp-Multigrid: p-dependence

Log(nR.)

Log(1Ry,)

185K mesh

it

10 E
WOSE—
105;—
1075—
10° '?Io""z;lo""alol
Number of MG-cycles
107
2.6M mesh [, ..,
—a— P=2

20 40 80 80
Number of MG-cycles

Log(IR,

108

450K mesh

Ht

" anr vl
nouon

LR -

20

40

Number of MG-cycles

50

a0

hp-Multigrid: h-dependence

Log(nRi1,)

10

—e— N-=185k
0 —=— N =450k
0 —— N=25m

0%

108

1O-|0||||||||||||||||||||||||||
25 50 75 100 125

Number of MG-cycles

e p:l

150

Log(nRi1,)

10"

T IIIIIIIIv

—&— N=185k
—=—— N =450k
—4— N=286m

Parallel Performance: Speedup (1 MG-cycle)

e N =185 000 e N =2 600 000

1494 = 213913

<

L IIIIIIIIII
259

750 120 250 533 750

[BN BN AT AN A BT B A |
1039 1250 1300 1750 23949

500
Numkber of CPUs Number of CPUs

= p=0 does not scale = p=0 does not scale

e p=1 scales up to 500 proc. e p=1 scales up to 1000 proc.

e p>1 scales almost optimal e p>1 ideal scalability

Concluding Remarks

e Petascale computing will likely look very similar to terascale
computing:
> MPI for inter-processor communication
> Perhaps hybrid MPI-OMP paradigm
e Can something be done to take advantage of shared memory
parallelism more effectively ?
> MPI still appears to be best
> 16 way nodes will be common (quad core, quad cpu)
e Previously non-competitive methods which scale well may
become methods of choice
e High-order methods (in space and time)
> Scale well
> Reduce grid infrastructure problems
> Compact (compressed) representation of data

	Some Long Term Experiences in HPC Programming for Computational Fluid Dynamics Problems
	Overview
	History
	History
	Personal View
	Looking forward
	NSU3D: Unstructured Navier-Stokes Solver
	NSU3D Solver
	Spatial Discretization
	Mixed-Element Discretizations
	Agglomeration Multigrid
	Agglomeration Multigrid
	Agglomeration Multigrid
	Agglomeration Multigrid
	Agglomeration Multigrid
	Agglomeration Multigrid
	Anisotropy Induced Stiffness
	Method of Solution
	Line Solver Multigrid Convergence
	Parallelization through Domain Decomposition
	Partitioning
	Partitioning Example
	Preprocessing Requirements
	AIAA Drag Prediction Workshop �Test Case
	NSU3D Scalability on NASA Columbia Machine
	NSU3D Scalability
	NSU3D Benchmark on BG/L
	Hybrid Parallel Programming
	Hybrid MPI-OMP (NSU3D)
	NASA Columbia Machine
	 4016 cpus on Columbia �(requires MPI/OMP)
	Programming Models
	High Order Methods
	Single Grid Steady-State Implicit Solver
	The Multigrid Approach: p-Multigrid
	The Multigrid Approach: h-Multigrid
	Parallel Implementation
	Parallel hp-Multigrid Implementation
	Complex Flow Configuration (DRL-F6)
	Results: p=0
	hp-Multigrid: p-dependence
	hp-Multigrid: h-dependence
	Parallel Performance: Speedup (1 MG-cycle)
	Concluding Remarks

