Approximating median in large data vectors

Reza Hosseini
Department of Statistics
University of British Columbia
Vancouver, BC

- Data vector $\left(x_{1}, \cdots, x_{n}\right), n$ large
- partition n to m equal vectors of length l
- Is median of medians a good approximation of the median?
- Is the median of medians a good approximation if we let m and/or l be large? (Should not depend on n)
- Good approximation in what sense?
- Answer: The approximation should be within a reasonable range of quantiles of the data $(1 / 2-\epsilon, 1 / 2+\epsilon)$.

The median of medians can be bad!

partition number	Partition	Median of the partition
1	$1,2, \cdots, b, b+1,10^{b}, \cdots, 10^{b}$	$b+1$
2	$1,2, \cdots, b, b+1,10^{b}, \cdots, 10^{b}$	$b+1$
\cdot		
\cdot		
\cdot		
a	$1,2, \cdots, b, b+1,10^{b}, \cdots, 10^{b}$	$b+1$
$\mathrm{a}+1$	$1,2, \cdots, b, b+1,10^{b}, \cdots, 10^{b}$	10^{b}
$\mathrm{a}+2$	$10^{b}, 10^{b}, \cdots, 10^{b}$	10^{b}
\cdot		
\cdot		
\cdot	$10^{b}, 10^{b}, \cdots, 10^{b}$	10^{b}

- Median of medians is not that bad!
- It is going to be within the range $(0.25,0.75)$
- $m=2 a$ and $l=2 b$
- Let $M M$ be the median of the medians
- Order the obtained medians of each partition and show them by M_{1}, \cdots, M_{m}. By definition $M M \geq M_{j}, j \leq a$.
- Each M_{j} is greater than b data points.
- Hence, $M M$ is greater than ab number of data points
- $a b / 4 a b=0.25$
- How to improve?
- For each partition take the 1st quartile, median and 3rd quartile
- The approximation is improved to $(3 / 8,5 / 8)=(0.375,0.625)$
- In general take $1 / q, 2 / q, \cdots, q-1 / q$ quantiles then approximation is improved to (1/2(q/q+1),1/2(q+2/q+1))
- To get an approximation as good as $(0.4,0.6)$ only need to let $\mathrm{q}=4$
- Note that this does not depend on $m, I(m, l>2)$
- We can pick m, l based on our computing abilities

