
Temperature: a field with both 
spatial and temporal covariance 

Different types of imperfect observations.



Specify parametric forms

T1 T2 T3 T4 T5T0

W1 W2 W3 W4 W5

1. Structure of the spatial covariance.
2. An equation for the temperature evolution.
3. 'Observation equations' for instrumental and 

proxy data sets. 



Block Average



BARSAT models the evolution of the field, 
and specifies 'observation equations'

T1 T2 T3 T4 T5T0

W1 W2 W3 W4 W5

The Ts are field values and the Ws  observations.

The arrows denote conditional dependencies:  

P ( T2 | .) = f (T1, T3, W2, parameters)



BARSAT

A Bayesian Algorithm for Reconstructing 
Spatially Arrayed Temperatures

Martin Tingley and Peter Huybers



Outline

 1. A few words about RegEM. 

2. A few words about temperature fields.

3. BARSAT: the main ideas. 

4. A few equations. 

5. An example and a short movie.   



RegEM – A missing data approach
T

im
e 
 Proxy Instrumental Two types of 

incomplete data 
time series. 

 1 = Observed
 0 = Missing  



RegEM – A missing data approach
T

im
e 
 Proxy Instrumental - Assume that the 

complete data for 
each year is a draw 
from a MVN.

- Impute the missing 
instrumental values, 
using the information 
contained in the 
overlap. 

 Impute 

 O
verlap

 



Improving on RegEM

- An empirical estimate of the data covariance matrix. 

- The locations of the time series are not used.  
- Cannot impute where there are no data time series. 

- Parametric form for the spatial covariance?

- What about temporal autocorrelation?

- What about the small, but non zero, uncertainty in the 
instrumental observations?



BARSAT Equations
Temperature Evolution: 

Spatial Covariance of Innovations: 

Instrumental Observation  Equation:



BARSAT Equations
Assume a statistically linear relationship between proxy values 
and the true temperature values:

Which leads to the proxy observation equation: 

“Discrete time, continuous state, Hidden Markov Model”



BARSAT Parameters



Priors and Conditional Posteriors

Our strategy is to use low information, but proper, priors, and 
show that the data is the major contributor to the posterior. 



BARSAT Equations
Probability of the data given unknowns can be decomposed:

Solving for the posterior using Bayes' rule gives:

A Gibbs sampler with two Metropolis-Hasting steps is used to 
draw from this monstrosity . . . .



A Quick Example Using CRU data

      Instrumental
      Proxy
+    Withheld
      No data

Proxies: constructed 
by adding WN with 
SNR of one to select 
CRU time series. 



Priors and Posteriors



Time series at several locations

Instrumental Posterior median

Instrumental data

Proxy data

No data



Temperature field for two years



Observational errors and innovations

Instrumental 
observational errors

Proxy
observational errors

Innovations:
Proxy data

Instrumental data

No data
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