Liangliang Wang University of British Columbia Email: I.wang@stat.ubc.ca

August 13, 2008

Outline

Description of the data

Proposed methods

Outline

Description of the data

Proposed methods

Radiosonde balloons

(photo source: US National Weather Service)

Radiosonde

- A radiosonde consists of instruments that are launched from the surface by balloon and carried through the atmosphere into the stratosphere.
- Temperature, water vapor, wind speed and wind direction and pressure are measured at different heights above the surface.

Data from NCAR data support section (DSS)

There are 40-60 million unique soundings distributed over 1500 locations and over the period 1920-2007.

Fields of the original data

Station ID:1001 ; (1,161,392 observations)

	Variable	Unit	Missing data
1	station id		no
2	year	4 digit	no
3	month	2 digit	no
4	day	2 digit	no
5	hour	2 digit	no
6	pressure	hP	no
7	Geopotential	meters	398,274 (34.29%)
8	Temperature	degrees K and tenths	326,170 (28.08%)
9	Dew point	degrees K and tenths	503,847 (43.38%)
10	Wind Direction	degrees	441,379 (38.00%)
11	Wind Speed	m/s and tenths	441,286 (38.00%)

Temperature vs. pressure of the first 40 unique time points

- Use year and fraction of year:
 - e.g, September 1, 1957, Hour 0 \rightarrow 1957.668.
- There are 28,788 unique time points;
 - Typically 1 or 2 radiosonde every day
 - Range: 1957.668- 2002.667
- The range of pressure is 0 1,106 hP
- The range of temperature is 173.3 401.1 K

How the shape of the radiosonde changes with time (Year 1958)

The temperature cycle

Years

The outlier detection problem for radiosondes \square Description of the data

Goals

For DSS

to assemble a single consistent data base for all available radiosonde measurements.

For statisticians

to determine objective ways of detecting unusual observations that can be due to sytematic biases or random problems.

Outline

Description of the data

Proposed methods

Proposed methods

- Robust principal components analysis
 - Median-centered spherical PCA (Locantore, Marron, Simpson, Tripoli, Zhang, and Cohen 1999); (Gervini 2007)
 - Functional PCA through conditional expectation (PACE) (Yao, Muller, and Wang 2004)
- ► A 2-d (3-d) thin plate partial smoothing spline
 - As a project for this summer school
 - Using R packages: fields, ncdf

modelling the discontinuity in the derivative for each radiosonde curve

Wahba's method (1986)

- Shiau, Wahba, and Johnson (1986)
- Fix one curve: data $(p_j, x(p_j)), j = 1, \cdots, n$,
 - *p_j* is the pressure value,
 - $x(p_j)$ is the temperature value.
- Model: x(p_j) = f(p_j) + ϵ_j, j = 1, 2, · · · , n. In a partial spline f is modeled as

$$f(p) = g(p) + \theta |p - p^*|$$

- p^* = point of discontinuity in derivative (tropopause).
- Tropopause is at a known pressure value.

The outlier detection problem for radiosondes — modelling the discontinuity in the derivative for each radiosonde curve — Wahba's method (1986)

A partial spline estimate of f is obtained by minimizing

$$\frac{1}{n}\sum_{j=1}^{n}\{x(p_{j})-g(p_{j})-\theta|p_{j}-p^{*}|\}^{2}+\lambda\int_{-\infty}^{\infty}[g^{(2)}(p)]^{2}dp.$$

 Partial spline models can be fitted using the ssanova in the R package gss through the specification of an optional argument partial (Gu 2002).

- modelling the discontinuity in the derivative for each radiosonde curve

Wahba's method (1986)

1958.2137

-modelling the discontinuity in the derivative for each radiosonde curve

A parametric model for one curve

A parametric model for one curve

Two connected parabolas are used to fit each radiosonde curve:

$$\begin{aligned} x(p) &= (\beta_0 + \beta_1 p + \beta_2 p^2) \cdot \mathbb{1}(p \le p^*) \\ &+ (\alpha_0 + \alpha_1 p + \alpha_2 p^2) \cdot \mathbb{1}(p > p^*), \\ \alpha_0 &= \beta_0 + \beta_1 p^* + \beta_2 p^{*2} - \alpha_1 p^* - \alpha_2 p^{*2}. \end{aligned}$$

where

- *p* is the pressure level;
- x(p) is the corresponding temperature;
- p* is the change point (tropopause) of the curve; the two parabolas are connected at p*;
- ▶ $\beta_0, \beta_1, \beta_2$, $\alpha_0, \alpha_1, \alpha_2$, are parameters;
- 1 is the indicator function.

modelling the discontinuity in the derivative for each radiosonde curve

A parametric model for one curve

How to choose the tropopause?

I looked at the difference of two successive ratios of temperature to pressure:

$$r_1(p_j) = \frac{x(p_{j+1}) - x(p_j)}{p_{j+1} - p_j}$$

$$r_2(p_j) = \frac{x(p_j) - x(p_{j-1})}{p_j - p_{j-1}}$$

$$\Delta r(p_j) = r_1(p_j) - r_2(p_j)$$

Better methods?

modelling the discontinuity in the derivative for each radiosonde curve

A parametric model for one curve

One good fit

modelling the discontinuity in the derivative for each radiosonde curve

A parametric model for one curve

One bad fit

The general idea

- estimate the mean function $\mu(p)$;
- estimate the covariance function G(s, p);
- functional PCA
 - The spherical principal components: see Locantore et al. (1999); Gervini (2007)
 - PACE: see Yao, Muller, and Wang (2004)
- ▶ use the first *K* PCs to approximate curves
- outlier detection.

PCA is used to approximate curves using few parameters.

$$\hat{x}_i(\mathbf{p}) = \hat{\mu}(\mathbf{p}) + \sum_{j=1}^{K} \xi_{ij} \phi_j(\mathbf{p}).$$

- p: the pressure value
- $x_i(p)$: the temperature value at p
- ξ_{ij} : principal components cores
- $\phi_j(p)$: principal component function

```
The outlier detection problem for radiosondes
```

Several ways:

- Plot pc scores
- ► L² type error

$$\mathsf{ERROR1} = \sum_{j=1}^{n_i} \frac{(\hat{x}_i(p_{ij}) - x_i(p_{ij}))^2}{n_i}$$

$$\mathsf{ERROR2} = \sum_{j=1}^{n_i} \frac{(\hat{x}_i(p_{ij}) - \hat{\mu}(p_{ij}))^2}{n_i},$$

where $\hat{\mu}$ is the estimated mean curve.

Correlation

- $CORR1 = corr(\hat{x}_i, x_i)$
- CORR2 = corr($\hat{x}_i, \hat{\mu}$)

Some challenges

 Some PC methods require curves measured at common points; eg Gervini (2007)

Some radiosondes are "short"

Median-centered spherical PCA

- Locantore, Marron, Simpson, Tripoli, Zhang, and Cohen (1999); Gervini (2007)
- The functional median $\tilde{\mu}(p)$
- The spherical principal components
 - X(p) is projected onto the sphere:

$$ilde{X}(p) = rac{X(p) - ilde{\mu}(p)}{\|X(p) - ilde{\mu}(p)\|}.$$

The spherical covariance function

$$\tilde{G}(s,p) = \operatorname{cov}(\tilde{X}(s),\tilde{X}(p)),$$

is used in the functional eigen-analysis.

-PCA

-Functional PCA through conditional expectation (PACE)

The PACE model

►

See Yao, Muller, and Wang (2004)

$$Y_{ij} = X_i(p_{ij}) + \epsilon_{ij} = \mu(p_{ij}) + \sum_{k=1}^{\infty} \xi_{ik} \phi_k(p_{ij}) + \epsilon_{ij}, \quad p_{ij} \in \mathcal{T},$$

- Y_{ij}: observation for the *i*th subject at the pressure value p_{ij}, *i* = 1, · · · , n, *j* = 1, · · · , N_i;
- Measurement error $\epsilon_{ij} \sim N(0, \sigma^2)$;
- Covariance function G(s, p) = cov(X(s), X(p))

The outlier detection problem for radiosondes -PCA -Functional PCA through conditional expectation (PACE)

- The mean function µ(p) is estimated based on the pooled data from all individuals by a local linear smoother;
- The covariance surface G(s, p) is estimated via the local linear surface smoother using the "raw" covariance

$$G_i(p_{ij}, p_{il}) = (Y_{ij} - \widehat{\mu}(p_{ij}))(Y_{il} - \widehat{\mu}(p_{il})), j \neq l$$

• The variance of the measurement errors, σ^2 ,

$$\widehat{\sigma}^2 = \frac{1}{|\mathcal{T}|} \int_{\mathcal{T}} \{\widehat{V}(p) - \widetilde{G}(p)\} dp,$$

where $\widehat{V}(p)$ is the estimate for $\{G(p, p) + \sigma^2\}$, and $\widetilde{G}(p)$ is the estimate for $\{G(p, p)\}$.

-PCA

-Functional PCA through conditional expectation (PACE)

.

Eigenanalysis

Eigenfunctions \$\hat{\phi}_k\$ and eigenvalues \$\hat{\lambda}_k\$ are estimated by solving the eigenequations as follows,

$$\int_{\mathcal{T}} \widehat{G}(s,p) \widehat{\phi}_k(p) dp = \widehat{\lambda}_k \widehat{\phi}_k(p),$$

where $\widehat{G}(s, p)$ is the smoothed covariance surface. • Estimates for the FPC scores ξ_{ik} :

$$\widetilde{\xi}_{ik} = E[\xi_{ik}|Y_{i1},\cdots,Y_{iN_i}].$$

-PCA

-Functional PCA through conditional expectation (PACE)

Prediction for individual curves

The curve X_i(p) for the *i*-th subject is approximated with the first K eigenfunctions:

$$\widehat{X}_i^{\mathcal{K}}(p) = \widehat{\mu}(p) + \sum_{k=1}^{\mathcal{K}} \widehat{\xi}_{ik} \widehat{\phi}_k(p).$$

 Note: PACE has no trouble with short curves or non-common pressure values

Curves from the 941st time point to the 970th time point with short curves

Predicted curves via PACE (in black solid lines)

The first 5 PCs via PACE

The mean curve and the effects of adding and subtracting a suitable multiple of each PC via PACE

The outlier detection problem for radiosondes ${\bigsqcup}$ Some illustrations

A toy data set

two types of outliers: different curve shape; position shift.

The blue lines represent 28 curves from June 1980. The red lines are two curves from December 1980.

-Some illustrations

└─A toy data set

Pairs of PC scores via PACE

Outliers by pairs of PC scores via PACE

- picked up some curves with spikes;
- picked up curves with a certain shift.

-Some illustrations

A toy data set

ERROR1 via PACE

Outliers by ERROR1 via PACE

- picked up all curves with spikes;
- didn't pick up curves with a certain shift.

-Some illustrations

A toy data set

1-CORR1 vs. ERROR1 via PACE

Outliers by 1-CORR1 vs. ERROR1 via PACE

- picked up all curves with spikes;
- didn't pick up curves with a certain shift.
- be consistent with the results using ERROR1 only.

-Some illustrations

A toy data set

1-CORR2 vs. ERROR2 via PACE

Outliers by 1-CORR2 vs. ERROR2 via PACE

- picked up some curves with spikes;
- picked up curves with a certain shift.

Reference

Gervini, D. (2007).

Robust functional estimation using the spatial median and spherical principal components.

Gu, C. (2002).

Smoothing Spline ANOVA Models.

New York: Springer.

Locantore, N., J. Marron, D. Simpson, N. Tripoli, J. Zhang, and K. Cohen (1999).

Robust principal component analysis for functional data (with discussion). *Test 8*, 1–28.

Shiau, J.-J., G. Wahba, and D. R. Johnson (1986).

Partial spline models for the inclusion of tropopause and frontal boundary information in otherwise smooth two- and three-dimensional objective analysis.

Journal of Atmospheric and Oceanic Technology 3, 714–725.

Yao, F., H.-G. Muller, and J.-L. Wang (2004).

Functional data analysis for sparse longitudinal data.

Journal of the American Statistical Association 100, 577-590.