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Outline
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• Overview of multivariate spatial regression models.

• Case study: NC temperature and precipitation.

• Case study: pedotransfer functions and soil water profiles.



A Spatial Regression Model
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• A spatial regression model:

Y = Xβ + h + ε
(n × 1) (n × q)(q × 1) (n × 1) (n × 1)

where

– E[h] = 0, Var[h] = Σh

– E[ε] = 0, Var[ε] = σ2I.

– h and ε are independent.

• Y ∼ N (Xβ,V), V = Σh + σ2I

• β̂ = (X′V−1X)−1X′V−1Y, ĥ = ΣhV−1(Y −Xβ̂)



Multivariate Regression
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• A multivariate, multiple regression model:

Y = Xβ + ε
(n × p) (n × q)(q × p) (n × p)

where

– Each of the n rows of Y represents a p-vector observation.

– Each of the p columns of β represent regression coefficients

for each variable.

– The rows of ε represents a collection of iid error vectors

with zero mean and common covariance matrix, Σ.



Multivariate Regression
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• MLEs are straightforward to obtain:

β̂ = (X′X)−1X′Y
(q × p)

Σ̂ = 1
nY′PY

(p × p)

where P = I−X(X′X)−1X′.

• Note that the columns of β̂ can be obtained through p uni-

variate regressions.



Vec and Kronecker
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• The Kronecker product of an m × n matrix A and an r × q

matrix B is an mr × nq matrix:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

... . . . ...
am1B am2B · · · amnB


• Some properties:

A⊗ (B + C) = A⊗B + A⊗C

A⊗ (B⊗C) = (A⊗B)⊗C

(A⊗B)(C⊗D) = AC⊗BD

(A⊗B)′ = A′ ⊗B′

(A⊗B)−1 = A−1 ⊗B−1

|A⊗B| = |A|m|B|n



Vec and Kronecker
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• The vec-operator stacks the columns of a matrix:

A =

[
a11 a12
a21 a22

]
vec(A) =


a11
a21
a12
a22


• Some properties:

vec(AXB) = (B′ ⊗A) vecX

tr(A′B) = vec(A)′ vec(B)

vec(A + B) = vec(A) + vec(B)

vec(αA) = α vec(A)



Multivariate Regression Revisited
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• Rewrite the multivariate, multiple regression model:

vec(Y) = (Ip ⊗X) vec(β) + vec(ε)
(np × 1) (np × qp)(qp × 1) (np × 1).

• What is Var[vec ε]?

• What is the GLS estimator for vec(β)?



A Multivariate Spatial Model
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• Extend the multivariate, multiple regression model:

vec(Y) = (Ip ⊗X) vec(β) + vec(h) + vec(ε)
(np × 1) (np × qp)(qp × 1) (np × 1) (np × 1),

where

Var[vec(h)] = Σh =


Σ11 Σ12 · · · Σ1p
Σ′

12 Σ22 · · · Σ2p
... . . . ...

Σ′
12 Σ′

2p · · · Σpp


Var[vec(ε)] = Σ⊗ In



A Multivariate Spatial Model
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• One simplification to the spatial covariance matrix is to use a

Kronecker form:

Σh = ρ⊗K

where

– ρ is a p × p matrix of scale parameters

– K is an n × n spatial covariance.



A Multivariate Spatial Model
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• Extend the multivariate, multiple regression model:

vec(Y) = (Ip ⊗X) vec(β) + vec(h) + vec(ε)
(np × 1) (np × qp)(qp × 1) (np × 1) (np × 1)

OR

Y = Xβ + h + ε

• Now everything follows...



Case Study:

Pedotransfer Functions
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• Soil characteristics such as composition (clay, silt, sand) are

commonly measured and easily obtainable.

• Unfortunately, crop models require water holding character-

istics such as the wilting point or lower limit (LL) and the

drained upper limit (DUL) which are not so easy to obtain.

– Often the LL and DUL are a function of depth - soil water

profile.



Case Study:

Pedotransfer Functions
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• Pedotransfer functions are commonly used to estimate LL and

DUL.

– Differential equations, regression, nearest neighbors, neural

networks, etc.

– Often specialized by soil type and/or region.

• Develop a new type of pedotransfer function that can cap-

ture the entire soil water profile (LL & DUL as a function of

depth).

– Characterize the variation!



Soil Water Profiles
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The Big Picture
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Yield

Big, black box...

Soil

Weather

Many, many 
 other things...

The CERES Crop Model

• Soil

– Water holding

characteristics

– Bulk density

– Etc.

• Weather (20 years)

– Solar radiation

– Temperature

max/min

– Precipitation



The Big Picture
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• Given a complicated array of inputs, the CERES crop model

will give the yields of, for example, maize.

• Deterministic output – variation in yields also of interest.

• Goals:

– Establish a framework to study sources of variation in crop

yields.

– Assess impacts of climate change on crop yields.



Data
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• n = 272 measurements on N = 63 soil samples

– Gijsman et al. (2002)

– Ratliff et al. (1983), Ritchie et al. (1987)

• Includes measurements of:

– depth,

– soil composition and texture

∗ percentages of clay, sand, and silt

– bulk density, organic matter, and

– field measured values of LL and DUL.



Data
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• The soil texture measurements form a composition

Zclay + Zsilt + Zsand = 1

and Zclay, Zsilt ,Zsand are the proportions of each soil com-

ponent.

– Not really three variables...

• To remove the dependence, the additive log-ratio transforma-

tion (Aitchinson, 1986) is applied, defining two new variables

X1 = log

Zsand
Zclay

 X2 = log

 Zsilt
Zclay

 .



Data - Composition vs LL
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Data - Composition vs LL
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A Multi-objective Pedotransfer Function
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• The model for the multi-objective pedotransfer function for a

particular soil is

Y0 = T0β + h(X0) + ε(D0)

where

Y0 = log



LL1
...

LLd
∆1
...

∆d


,

and d is the number of measurements (depths) and ∆i =

DULi − LLi.



A Multi-objective Pedotransfer Function
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• The model for the multi-objective pedotransfer function for a
particular soil is

Y0 = T0β + h(X0) + ε(D0)

where

T0 =

[
1 X0 ZLL,0 0

0 1 X0 Z∆,0

]
,

and

– X0 is the transformed soil composition information

– ZLL and Z∆ are additional covariates for LL and ∆.

∗ ZLL includes organic carbon

∗ Z∆ includes linear and quadratic terms for depth



A Multi-objective Pedotransfer Function
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• The model for the multi-objective pedotransfer function for a
particular soil is

Y0 = T0β + h(X0) + ε(D0)

where

– h(X0) is a two-dimensional spatial process that controls
the smoothness of the contribution of X

– ε(D0) is an error process that

∗ accounts for the dependence in LL and ∆ for a particular
depth and

∗ accounts for dependence across depths (one-dimensional
spatial process).



A Multi-objective Pedotransfer Function
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• Letting

Y = log [LL11 · · · LL1d1
LL21 · · · LLNdN

∆11 · · · ∆1d1
∆21 · · · ∆NdN

]′ ,

then Y is multivariate normal with

E[Y] = Tβ Var[Y] = Σh + Σε

Σh =

[
ρ1 0
0 ρ2

]
⊗K

Σε = S⊗R.

with

– Kij = k(Xi,Xj)

– S is the covariance of (LL, ∆) at a fixed depth

– R is the (spatial) covariance across depths



Covariance Structures
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• The covariance function for h is the Matern family

C(d) = σ22(θd/2)νKν(θd)

Γ(ν)

where σ2 is a scale parameter, θ represents the range, ν con-
trols the smoothness.

– σ2 = 1 (the ρ controls the variances), ν = 1, and θ is taken
to be approximately the range of the data.

– These choices represent a covariance structure that is con-
sistent with the thin-plate spline estimator (large range,
more smoothness).

– Analogous to fixing the kernel and estimating the band-
width with kernel estimators.



Covariance Structures
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• The covariance function across depths is exponential

C(d) = σ2 exp (−d/θ)

where again σ2 is a scale parameter and θ represents the range.

– The parameters σ2 = 1 (the matrix S controls the vari-

ances) and θ is estimated from the data.

– The multiple realizations of the soils allow for improved

ability to estimate both scale and range parameters.



Covariance Structures
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Σh Σε



Spatial Smoothing
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• Write

Σh + Σε =

[
ρ1 0
0 ρ2

]
⊗K +

[
s11 s12
s12 s22

]
⊗R

= s11

[[
η1 0
0 η2

]
⊗K +

[
1 v12

v12 v22

]
⊗R

]
= s11Ω

• The amount of smoothing is due to the relative contributions
of the variance components, i.e. η1 and η2.

• Different degrees of smoothing are allowed for LL and ∆.

• Also, this construction allows for different degrees of variation
in the error terms for LL and the ∆ variables.



The Estimator
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• The model suggests an estimator of the form

Ŷ0 = T0β̂ + K′
0δ̂,

where

K′
0 =

[
η1 0
0 η2

]
⊗K.

• To fit the model, we must estimate:

– η1, η2 and s11

– β, δ

– R and the other entries of S



REML
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• Take the QR decomposition of T

T = [Q1 Q2]

[
R
0

]
.

• Then Q′
2Y has zero mean and covariance matrix given by

Q′
2(Σh + Σε)Q2.

• Maximize (numerically) the likelihood based on Q′
2Y which is

only a function of the covariance parameters.

• Estimates of β and δ follow directly

β̂ = (T′Ω̂−1
T)−1T′Ω̂−1

Y δ̂ = Ω̂
−1

(Y −Tβ̂).



An Iterative Approach
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0. Initialize: compute K and set S = I and R = I.

1. Estimate η1 and η2 (and s11) via a simplified type of REML
(grid search).

2. Then

β̂ = (T′Ω̂−1
T)−1T−1Ω̂

−1
Y δ̂ = Ω̂

−1
(Y −Tβ̂).

3. Compute residuals and

a. Update S (R fixed) – closed form solution.

b. Update R (S fixed) – grid search for θ.

4. Repeat items 1-3 until convergence.



An Iterative Approach
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• Let Y = µ + h + ε, where h and ε are independent Gaussian
random variables; the conditional distribution of Y − µ − h
given h is a zero mean Gaussian with covariance matrix ε.

• Thus, the log-likelihood associated with the residuals is given
by

−
n

2
|S| − |R| − vec(U)′(S−1 ⊗R−1) vec(U)

• The quadratic form can be written as

tr(S−1 ∑
i

∑
j

rijuju
′
i)

where rij is the ijth element of R−1 and ui is the bivariate,
unstacked residual for the ith observation.



An Iterative Approach
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• An update for S can be written as

Ŝ =
1

n

∑
i

∑
j

rijuju
′
i

=
1

n
U′R−1U

where U is the n × 2 matrix of unstacked residuals.

• Again, a simple grid search for θ is used to obtain a new value

for R.



Parameter Estimates
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η1 η2 S11 S22 S12 θ
REML 5.84 1.66 0.0765 0.0483 -0.0222 134.6

Iterative 5.74 2.21 0.0697 0.0445 -0.0217 144.2



Soil Composition and LL
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Soil Composition and ∆
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Soil Composition and LL/∆
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Organic Carbon and LL
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Depth and ∆
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Residuals (Within Depth)
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Spatial Covariance Across Depth
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Prediction Error
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• The real benefit of considering our estimator as a spatial pro-

cess is in the interpretation with respect to the uncertainty of

the estimator:

– The thin-plate spline is a biased estimator with uncorre-

lated error – not easy to quantify the bias (interpolation

error and smoothing error).

– The spatial process estimator is unbiased, but with corre-

lated error – more complicated error structure but concep-

tually straightforward to work with.



Prediction Error
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• The estimator can be written as

Ŷ0 = T0β̂ + K′
0δ̂

= A0Y,

where

A0 = T0(T
′Ω̂−1

T)−1T′Ω̂−1

+ K0

(
Ω̂
−1 − Ω̂

−1
T(T′Ω̂−1

T)−1T′Ω̂−1)
.



Prediction Error
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• Hence,

Var(Y0 − Ŷ0) = Var(Y0 −A0Y)

= Var(Y0) + A0Var(Y)A′
0 − 2A0Cov(Y,Y0).

– Var(Y0) and Var(Y) are computed by plugging in param-

eters estimates for Σh and Σε.

– The covariance between Y0 and Y comes from h and is

based on the distance between the transformed composi-

tion data.



Generation of Soil Profiles
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• Simulations of logLL and log∆ were generated from a mul-

tivariate normal with mean A0Y and variance given by the

prediction error.

• We use an average soil composition profile computed from

the data and assumed to constant across all depths,

D = {5,15,30,45,60,90,120,150}.

• Represent a draw from the posterior distribution of soil water

profiles based on the estimated mean and covariance structure

and the uncertainty gleaned from the data.



Generation of Soil Profiles
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Application: Crop Models
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• Two soils (SIL, S)

– Given the soil composition, organic carbon, depth, etc.,

100 soil profiles (LL, DUL) were generated.

• Twenty years of weather (solar radiation, temperature min/max,

and precipitation).

• Yield output generated from the CERES-Maize crop model.



Crop Yields
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• SIL (red), S (blue), total annual precipitation (solid line)



Crop Yields
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• SIL (red), S (blue), average annual temperature (solid line)



Thanks!
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