

Multivariate Spatial Models

Stephan R. Sain

Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO

Supported by NSF ATM/DMS.

International Graduate Summer School on Statistics and Climate Modeling, Boulder, CO, 8/9/08

Outline

- Overview of multivariate spatial regression models.
- Case study: NC temperature and precipitation.
- Case study: pedotransfer functions and soil water profiles.

A Spatial Regression Model

• A spatial regression model:

$$- E[h] = 0$$
, $Var[h] = \Sigma_h$

$$- \mathsf{E}[\epsilon] = 0$$
, $\mathsf{Var}[\epsilon] = \sigma^2 \mathbf{I}$.

– **h** and ϵ are independent.

•
$$\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{V}), \ \mathbf{V} = \Sigma_{\mathbf{h}} + \sigma^2 \mathbf{I}$$

•
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y}, \ \hat{\mathbf{h}} = \Sigma_{\mathbf{h}}\mathbf{V}^{-1}(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Multivariate Regression

• A multivariate, multiple regression model:

$$\begin{array}{rcl} \mathbf{Y} &=& \mathbf{X}\boldsymbol{\beta} &+& \boldsymbol{\epsilon} \\ (n\times p) && (n\times q)(q\times p) && (n\times p) \end{array}$$

where

- Each of the n rows of Y represents a p-vector observation.
- Each of the p columns of β represent regression coefficients for each variable.
- The rows of ϵ represents a collection of iid error vectors with zero mean and common covariance matrix, $\Sigma.$

Multivariate Regression

• MLEs are straightforward to obtain:

where $P = I - X(X'X)^{-1}X'$.

• Note that the columns of $\widehat{\boldsymbol{\beta}}$ can be obtained through p univariate regressions.

Vec and Kronecker

• The Kronecker product of an $m \times n$ matrix A and an $r \times q$ matrix B is an $mr \times nq$ matrix:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \cdots & a_{2n}\mathbf{B} \\ \vdots & & \ddots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

• Some properties:

$$\begin{array}{rcl} \mathbf{A}\otimes(\mathbf{B}+\mathbf{C}) &=& \mathbf{A}\otimes\mathbf{B}+\mathbf{A}\otimes\mathbf{C}\\ \mathbf{A}\otimes(\mathbf{B}\otimes\mathbf{C}) &=& (\mathbf{A}\otimes\mathbf{B})\otimes\mathbf{C}\\ (\mathbf{A}\otimes\mathbf{B})(\mathbf{C}\otimes\mathbf{D}) &=& \mathbf{A}\mathbf{C}\otimes\mathbf{B}\mathbf{D}\\ (\mathbf{A}\otimes\mathbf{B})' &=& \mathbf{A}'\otimes\mathbf{B}'\\ (\mathbf{A}\otimes\mathbf{B})^{-1} &=& \mathbf{A}^{-1}\otimes\mathbf{B}^{-1}\\ |\mathbf{A}\otimes\mathbf{B}| &=& |\mathbf{A}|^m|\mathbf{B}|^n \end{array}$$

Vec and Kronecker

• The vec-operator stacks the columns of a matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \text{vec}(\mathbf{A}) = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{12} \\ a_{22} \end{bmatrix}$$

• Some properties:

$$vec(AXB) = (B' \otimes A) vec X$$
$$tr(A'B) = vec(A)' vec(B)$$
$$vec(A + B) = vec(A) + vec(B)$$
$$vec(\alpha A) = \alpha vec(A)$$

Multivariate Regression Revisited

• Rewrite the multivariate, multiple regression model:

$$\begin{array}{lll} \operatorname{vec}(\mathbf{Y}) &=& (\mathbf{I}_p \otimes \mathbf{X}) \operatorname{vec}(\boldsymbol{\beta}) &+& \operatorname{vec}(\boldsymbol{\epsilon}) \\ (np \times 1) && (np \times qp)(qp \times 1) && (np \times 1). \end{array}$$

- What is $Var[vec \epsilon]$?
- What is the GLS estimator for $vec(\beta)$?

A Multivariate Spatial Model

• Extend the multivariate, multiple regression model:

$$\begin{array}{lll} \operatorname{vec}(\mathbf{Y}) &=& (\mathbf{I}_p \otimes \mathbf{X}) \operatorname{vec}(\boldsymbol{\beta}) &+& \operatorname{vec}(\mathbf{h}) &+& \operatorname{vec}(\boldsymbol{\epsilon}) \\ (np \times 1) && (np \times qp)(qp \times 1) && (np \times 1) && (np \times 1), \end{array}$$
where

$$\operatorname{Var}[\operatorname{vec}(\mathbf{h})] = \Sigma_{\mathbf{h}} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1p} \\ \Sigma'_{12} & \Sigma_{22} & \cdots & \Sigma_{2p} \\ \vdots & & \ddots & \vdots \\ \Sigma'_{12} & \Sigma'_{2p} & \cdots & \Sigma_{pp} \end{bmatrix}$$
$$\operatorname{Var}[\operatorname{vec}(\epsilon)] = \Sigma \otimes \mathbf{I}_n$$

A Multivariate Spatial Model

 One simplification to the spatial covariance matrix is to use a Kronecker form:

$$\Sigma_{\mathsf{h}} = \rho \otimes \mathbf{K}$$

where

- ρ is a $p \times p$ matrix of scale parameters
- **K** is an $n \times n$ spatial covariance.

A Multivariate Spatial Model

• Extend the multivariate, multiple regression model:

$$\begin{array}{rcl} \operatorname{vec}(\mathbf{Y}) &=& (\mathbf{I}_p \otimes \mathbf{X}) \operatorname{vec}(\boldsymbol{\beta}) &+& \operatorname{vec}(\mathbf{h}) &+& \operatorname{vec}(\boldsymbol{\epsilon}) \\ (np \times 1) && (np \times qp)(qp \times 1) && (np \times 1) \end{array}$$
$$\begin{array}{rcl} \mathsf{OR} \\ \mathbf{Y} &=& \mathbf{X}\boldsymbol{\beta} &+& \mathbf{h} &+& \boldsymbol{\epsilon} \end{array}$$

• Now everything follows...

Case Study:

Pedotransfer Functions

- Soil characteristics such as composition (clay, silt, sand) are commonly measured and easily obtainable.
- Unfortunately, crop models require water holding characteristics such as the wilting point or lower limit (LL) and the drained upper limit (DUL) which are not so easy to obtain.
 - Often the LL and DUL are a function of depth soil water profile.

Case Study:

Pedotransfer Functions

- Pedotransfer functions are commonly used to estimate LL and DUL.
 - Differential equations, regression, nearest neighbors, neural networks, etc.
 - Often specialized by soil type and/or region.
- Develop a new type of pedotransfer function that can capture the entire soil water profile (LL & DUL as a function of depth).
 - Characterize the variation!

Soil Water Profiles

The Big Picture

The CERES Crop Model

- Soil
 - Water holding
 - characteristics
 - Bulk density
 - Etc.
- Weather (20 years)
 - Solar radiation
 - Temperature max/min
 - Precipitation

The Big Picture

- Given a complicated array of inputs, the CERES crop model will give the yields of, for example, maize.
- Deterministic output variation in yields also of interest.
- Goals:
 - Establish a framework to study sources of variation in crop yields.
 - Assess impacts of climate change on crop yields.

Data

- n = 272 measurements on N = 63 soil samples
 - Gijsman et al. (2002)
 - Ratliff et al. (1983), Ritchie et al. (1987)
- Includes measurements of:
 - depth,
 - soil composition and texture
 - * percentages of clay, sand, and silt
 - bulk density, organic matter, and
 - field measured values of LL and DUL.

Data

• The soil texture measurements form a composition

$$Z_{\text{clay}} + Z_{\text{silt}} + Z_{\text{sand}} = 1$$

and $Z_{\rm clay},~Z_{\rm silt}$, $Z_{\rm sand}$ are the proportions of each soil component.

- Not really three variables...
- To remove the dependence, the additive log-ratio transformation (Aitchinson, 1986) is applied, defining two new variables

$$X_1 = \log\left(\frac{Z_{\text{sand}}}{Z_{\text{clay}}}\right)$$
 $X_2 = \log\left(\frac{Z_{\text{silt}}}{Z_{\text{clay}}}\right)$

Data - Composition vs LL

Data - Composition vs LL

log(SAND/CLAY)

 The model for the multi-objective pedotransfer function for a particular soil is

$$\mathbf{Y}_0 = \mathbf{T}_0 \boldsymbol{\beta} + \mathbf{h}(\mathbf{X}_0) + \boldsymbol{\epsilon}(\mathbf{D}_0)$$

where

$$\mathbf{Y}_0 = \log \begin{bmatrix} \mathsf{L} \mathsf{L}_1 \\ \vdots \\ \mathsf{L} \mathsf{L}_d \\ \Delta_1 \\ \vdots \\ \Delta_d \end{bmatrix},$$

and d is the number of measurements (depths) and $\Delta_i = DUL_i - LL_i$.

 The model for the multi-objective pedotransfer function for a particular soil is

$$\mathbf{Y}_0 = \mathbf{T}_0 \boldsymbol{\beta} + \mathbf{h}(\mathbf{X}_0) + \boldsymbol{\epsilon}(\mathbf{D}_0)$$

where

$$\mathbf{T}_{0} = \begin{bmatrix} \mathbf{1} & \mathbf{X}_{0} & \mathbf{Z}_{\mathsf{LL},0} & \mathbf{0} \\ & \mathbf{0} & & \mathbf{1} & \mathbf{X}_{0} & \mathbf{Z}_{\Delta,0} \end{bmatrix},$$

and

- $\mathbf{X}_{\mathbf{0}}$ is the transformed soil composition information
- \mathbf{Z}_{LL} and \mathbf{Z}_{Δ} are additional covariates for LL and $\Delta.$ * \mathbf{Z}_{LL} includes organic carbon
 - $\ast~Z_{\Delta}$ includes linear and quadratic terms for depth

 The model for the multi-objective pedotransfer function for a particular soil is

$$\mathbf{Y}_0 = \mathbf{T}_0 \boldsymbol{\beta} + \mathbf{h}(\mathbf{X}_0) + \boldsymbol{\epsilon}(\mathbf{D}_0)$$

where

- $h(\mathbf{X}_0)$ is a two-dimensional spatial process that controls the smoothness of the contribution of \mathbf{X}
- $\epsilon(D_0)$ is an error process that
 - $\ast\,$ accounts for the dependence in LL and Δ for a particular depth and
 - accounts for dependence across depths (one-dimensional spatial process).

• Letting

 $\mathbf{Y} = \log \left[\mathsf{LL}_{11} \cdots \mathsf{LL}_{1d_1} \mathsf{LL}_{21} \cdots \mathsf{LL}_{Nd_N} \Delta_{11} \cdots \Delta_{1d_1} \Delta_{21} \cdots \Delta_{Nd_N} \right]',$ then \mathbf{Y} is multivariate normal with

 $E[\mathbf{Y}] = \mathbf{T}\boldsymbol{\beta} \qquad \text{Var}[\mathbf{Y}] = \Sigma_{\mathbf{h}} + \Sigma_{\boldsymbol{\epsilon}}$ $\Sigma_{\mathbf{h}} = \begin{bmatrix} \rho_1 & 0\\ 0 & \rho_2 \end{bmatrix} \otimes \mathbf{K}$ $\Sigma_{\boldsymbol{\epsilon}} = \mathbf{S} \otimes \mathbf{R}.$

with

- $-K_{ij} = k(\mathbf{X}_i, \mathbf{X}_j)$
- ${\bf S}$ is the covariance of (LL, $\Delta)$ at a fixed depth
- ${\bf R}$ is the (spatial) covariance across depths

Covariance Structures

• The covariance function for h is the Matern family

$$C(d) = \sigma^2 \frac{2(\theta d/2)^{\nu} K_{\nu}(\theta d)}{\Gamma(\nu)}$$

where σ^2 is a scale parameter, θ represents the range, ν controls the smoothness.

- $\sigma^2 = 1$ (the ρ controls the variances), $\nu = 1$, and θ is taken to be approximately the range of the data.
- These choices represent a covariance structure that is consistent with the thin-plate spline estimator (large range, more smoothness).
- Analogous to fixing the kernel and estimating the bandwidth with kernel estimators.

Covariance Structures

• The covariance function across depths is exponential

$$C(d) = \sigma^2 \exp\left(-d/\theta\right)$$

where again σ^2 is a scale parameter and θ represents the range.

- The parameters $\sigma^2 = 1$ (the matrix S controls the variances) and θ is estimated from the data.
- The multiple realizations of the soils allow for improved ability to estimate both scale and range parameters.

Covariance Structures

 Σ_{h}

Spatial Smoothing

• Write

$$\begin{split} \Sigma_{\mathbf{h}} + \Sigma_{\boldsymbol{\epsilon}} &= \begin{bmatrix} \rho_{1} & 0 \\ 0 & \rho_{2} \end{bmatrix} \otimes \mathbf{K} + \begin{bmatrix} s_{11} & s_{12} \\ s_{12} & s_{22} \end{bmatrix} \otimes \mathbf{R} \\ &= s_{11} \begin{bmatrix} \eta_{1} & 0 \\ 0 & \eta_{2} \end{bmatrix} \otimes \mathbf{K} + \begin{bmatrix} 1 & v_{12} \\ v_{12} & v_{22} \end{bmatrix} \otimes \mathbf{R} \\ &= s_{11} \Omega \end{split}$$

- The amount of smoothing is due to the relative contributions of the variance components, i.e. η_1 and η_2 .
- Different degrees of smoothing are allowed for LL and Δ .
- Also, this construction allows for different degrees of variation in the error terms for LL and the Δ variables.

The Estimator

• The model suggests an estimator of the form

$$\hat{\mathbf{Y}}_0 = \mathbf{T}_0 \hat{\boldsymbol{\beta}} + \mathbf{K}_0' \hat{\boldsymbol{\delta}},$$

where

$$\mathbf{K}_0' = \left[\begin{array}{cc} \eta_1 & \mathbf{0} \\ \mathbf{0} & \eta_2 \end{array} \right] \otimes \mathbf{K}.$$

- To fit the model, we must estimate:
 - $\eta_1,~\eta_2$ and s_{11}
 - $-\beta$, δ
 - ${\bf R}$ and the other entries of ${\bf S}$

REML

• Take the QR decomposition of ${f T}$

$$\mathbf{T} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}.$$

• Then $\mathbf{Q}_{2}'\mathbf{Y}$ has zero mean and covariance matrix given by

$$\mathbf{Q}_2'(\Sigma_{\mathsf{h}} + \Sigma_{\epsilon})\mathbf{Q}_2.$$

- Maximize (numerically) the likelihood based on ${
 m Q}_2'{
 m Y}$ which is only a function of the covariance parameters.
- Estimates of eta and δ follow directly

$$\hat{\boldsymbol{\beta}} = (\mathbf{T}'\hat{\boldsymbol{\Omega}}^{-1}\mathbf{T})^{-1}\mathbf{T}'\hat{\boldsymbol{\Omega}}^{-1}\mathbf{Y} \qquad \hat{\boldsymbol{\delta}} = \hat{\boldsymbol{\Omega}}^{-1}(\mathbf{Y} - \mathbf{T}\hat{\boldsymbol{\beta}}).$$

An Iterative Approach

- 0. Initialize: compute K and set S = I and R = I.
- 1. Estimate η_1 and η_2 (and s_{11}) via a simplified type of REML (grid search).
- 2. Then

$$\hat{\boldsymbol{\beta}} = (\mathbf{T}' \hat{\boldsymbol{\Omega}}^{-1} \mathbf{T})^{-1} \mathbf{T}^{-1} \hat{\boldsymbol{\Omega}}^{-1} \mathbf{Y} \qquad \hat{\boldsymbol{\delta}} = \hat{\boldsymbol{\Omega}}^{-1} (\mathbf{Y} - \mathbf{T} \hat{\boldsymbol{\beta}}).$$

- 3. Compute residuals and
 - a. Update S (R fixed) closed form solution.
 - b. Update R (S fixed) grid search for θ .
- 4. Repeat items 1-3 until convergence.

An Iterative Approach

- Let $Y = \mu + h + \epsilon$, where h and ϵ are independent Gaussian random variables; the conditional distribution of $Y \mu h$ given h is a zero mean Gaussian with covariance matrix ϵ .
- Thus, the log-likelihood associated with the residuals is given by

$$-rac{n}{2}|\mathbf{S}| - |\mathbf{R}| - \mathsf{vec}(\mathbf{U})'(\mathbf{S}^{-1}\otimes\mathbf{R}^{-1})\,\mathsf{vec}(\mathbf{U})$$

• The quadratic form can be written as

$$\operatorname{tr}(\mathbf{S}^{-1}\sum_{i}\sum_{j}r^{ij}\mathbf{u}_{j}\mathbf{u}_{i}')$$

where r^{ij} is the ijth element of \mathbf{R}^{-1} and \mathbf{u}_i is the bivariate, unstacked residual for the *i*th observation.

An Iterative Approach

 \bullet An update for ${\bf S}$ can be written as

$$\widehat{\mathbf{S}} = \frac{1}{n} \sum_{i} \sum_{j} r^{ij} \mathbf{u}_{j} \mathbf{u}_{i}'$$
$$= \frac{1}{n} \mathbf{U}' \mathbf{R}^{-1} \mathbf{U}$$

where U is the $n \times 2$ matrix of unstacked residuals.

• Again, a simple grid search for θ is used to obtain a new value for ${f R}.$

Parameter Estimates

	η_1	η_2	S_{11}	S ₂₂	S ₁₂	θ
REML	5.84	1.66	0.0765	0.0483	-0.0222	134.6
Iterative	5.74	2.21	0.0697	0.0445	-0.0217	144.2

Soil Composition and LL

Soil Composition and $\boldsymbol{\Delta}$

Soil Composition and LL/Δ

Organic Carbon and LL

orgC

Depth and Δ

depth

Residuals (Within Depth)

Spatial Covariance Across Depth

distance

Prediction Error

- The real benefit of considering our estimator as a spatial process is in the interpretation with respect to the uncertainty of the estimator:
 - The thin-plate spline is a biased estimator with uncorrelated error – not easy to quantify the bias (interpolation error and smoothing error).
 - The spatial process estimator is unbiased, but with correlated error – more complicated error structure but conceptually straightforward to work with.

Prediction Error

• The estimator can be written as

$$\begin{split} \widehat{\mathbf{Y}}_0 &= \mathbf{T}_0 \widehat{\boldsymbol{\beta}} + \mathbf{K}_0' \widehat{\boldsymbol{\delta}} \\ &= \mathbf{A}_0 \mathbf{Y}, \end{split}$$

where

$$\begin{array}{lll} \mathbf{A}_0 &=& \mathbf{T}_0(\mathbf{T}'\widehat{\boldsymbol{\Omega}}^{-1}\mathbf{T})^{-1}\mathbf{T}'\widehat{\boldsymbol{\Omega}}^{-1} \\ &+& \mathbf{K}_0\left(\widehat{\boldsymbol{\Omega}}^{-1}-\widehat{\boldsymbol{\Omega}}^{-1}\mathbf{T}(\mathbf{T}'\widehat{\boldsymbol{\Omega}}^{-1}\mathbf{T})^{-1}\mathbf{T}'\widehat{\boldsymbol{\Omega}}^{-1}\right). \end{array}$$

Prediction Error

• Hence,

$$\begin{aligned} \mathsf{Var}(\mathbf{Y}_0 - \widehat{\mathbf{Y}}_0) &= \mathsf{Var}(\mathbf{Y}_0 - \mathbf{A}_0 \mathbf{Y}) \\ &= \mathsf{Var}(\mathbf{Y}_0) + \mathbf{A}_0 \mathsf{Var}(\mathbf{Y}) \mathbf{A}_0' - 2\mathbf{A}_0 \mathsf{Cov}(\mathbf{Y}, \mathbf{Y}_0). \end{aligned}$$

- $Var(Y_0)$ and Var(Y) are computed by plugging in parameters estimates for Σ_h and Σ_{ϵ} .
- The covariance between \mathbf{Y}_0 and \mathbf{Y} comes from \boldsymbol{h} and is based on the distance between the transformed composition data.

Generation of Soil Profiles

- Simulations of log LL and log Δ were generated from a multivariate normal with mean A_0Y and variance given by the prediction error.
- We use an average soil composition profile computed from the data and assumed to constant across all depths,

 $D = \{5, 15, 30, 45, 60, 90, 120, 150\}.$

 Represent a draw from the posterior distribution of soil water profiles based on the estimated mean and covariance structure and the uncertainty gleaned from the data.

Generation of Soil Profiles

Application: Crop Models

- Two soils (SIL, S)
 - Given the soil composition, organic carbon, depth, etc.,
 100 soil profiles (LL, DUL) were generated.
- Twenty years of weather (solar radiation, temperature min/max, and precipitation).
- Yield output generated from the CERES-Maize crop model.

Crop Yields

• SIL (red), S (blue), total annual precipitation (solid line)

Crop Yields

• SIL (red), S (blue), average annual temperature (solid line)

Thanks!

ssain@ucar.edu www.image.ucar.edu/~ssain

 Sain, S.R., Mearns, L., Shrikant, J., and Nychka, D. (2006), "A multivariate spatial model for soil water profiles," *Journal of Agricultural*, *Biological, and Environmental Statistics*, **11**, 462-480.