

Multivariate Spatial Models

Stephan R. Sain
Geophysical Statistics Project
Institute for Mathematics Applied to Geosciences
National Center for Atmospheric Research
Boulder, CO

Outline

- Overview of multivariate spatial regression models.
- Case study: NC temperature and precipitation.
- Case study: pedotransfer functions and soil water profiles.

A Spatial Regression Model

- A spatial regression model:

$$
\underset{(n \times 1)}{\mathbf{Y}}=\underset{(n \times q)(q \times 1)}{\mathbf{X} \boldsymbol{\beta}}+\underset{(n \times 1)}{\mathbf{h}}+\underset{(n \times 1)}{\boldsymbol{\epsilon}}
$$

where
$-\mathrm{E}[\mathbf{h}]=\mathbf{0}, \operatorname{Var}[\mathbf{h}]=\boldsymbol{\Sigma}_{\mathbf{h}}$
$-\mathrm{E}[\epsilon]=0, \operatorname{Var}[\epsilon]=\sigma^{2} \mathrm{I}$.
$-\mathbf{h}$ and $\boldsymbol{\epsilon}$ are independent.

- $\mathbf{Y} \sim \mathcal{N}(\mathbf{X} \boldsymbol{\beta}, \mathbf{V}), \mathbf{V}=\boldsymbol{\Sigma}_{\mathbf{h}}+\sigma^{2} \mathbf{I}$
- $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{Y}, \widehat{\mathbf{h}}=\mathbf{\Sigma}_{\mathbf{h}} \mathbf{V}^{-1}(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})$

Multivariate Regression

- A multivariate, multiple regression model:

$$
\underset{(n \times p)}{\mathbf{Y}} \quad=\underset{(n \times q)(q \times p)}{\mathbf{X} \boldsymbol{\beta}} \quad+\underset{(n \times p)}{\boldsymbol{\epsilon}}
$$

where

- Each of the n rows of \mathbf{Y} represents a p-vector observation.
- Each of the p columns of $\boldsymbol{\beta}$ represent regression coefficients for each variable.
- The rows of $\boldsymbol{\epsilon}$ represents a collection of iid error vectors with zero mean and common covariance matrix, Σ.

Multivariate Regression

- MLEs are straightforward to obtain:

$$
\begin{aligned}
& \widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \\
&(q \times p) \\
& \widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \mathbf{Y}^{\prime} \mathbf{P Y} \\
&(p \times p) \\
& \text { where } \mathbf{P}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}
\end{aligned}
$$

- Note that the columns of $\widehat{\boldsymbol{\beta}}$ can be obtained through p univariate regressions.

Vec and Kronecker

- The Kronecker product of an $m \times n$ matrix \mathbf{A} and an $r \times q$ matrix B is an $m r \times n q$ matrix:

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{cccc}
a_{11} \mathbf{B} & a_{12} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\
a_{21} \mathbf{B} & a_{22} \mathbf{B} & \cdots & a_{2 n} \mathbf{B} \\
\vdots & & \ddots & \vdots \\
a_{m 1} \mathbf{B} & a_{m 2} \mathbf{B} & \cdots & a_{m n} \mathbf{B}
\end{array}\right]
$$

- Some properties:

$$
\begin{aligned}
\mathbf{A} \otimes(\mathbf{B}+\mathbf{C}) & =\mathbf{A} \otimes \mathbf{B}+\mathbf{A} \otimes \mathbf{C} \\
\mathbf{A} \otimes(\mathbf{B} \otimes \mathbf{C}) & =(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} \\
(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) & =\mathbf{A C} \otimes \mathbf{B D} \\
(\mathbf{A} \otimes \mathbf{B})^{\prime} & =\mathbf{A}^{\prime} \otimes \mathbf{B}^{\prime} \\
(\mathbf{A} \otimes \mathbf{B})^{-1} & =\mathbf{A}^{-1} \otimes \mathbf{B}^{-1} \\
|\mathbf{A} \otimes \mathbf{B}| & =|\mathbf{A}|^{m}|\mathbf{B}|^{n}
\end{aligned}
$$

Vec and Kronecker

- The vec-operator stacks the columns of a matrix:

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \operatorname{vec}(\mathbf{A})=\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{12} \\
a_{22}
\end{array}\right]
$$

- Some properties:

$$
\begin{aligned}
\operatorname{vec}(\mathbf{A X B}) & =\left(\mathbf{B}^{\prime} \otimes \mathbf{A}\right) \operatorname{vec} \mathbf{X} \\
\operatorname{tr}\left(\mathbf{A}^{\prime} \mathbf{B}\right) & =\operatorname{vec}(\mathbf{A})^{\prime} \operatorname{vec}(\mathbf{B}) \\
\operatorname{vec}(\mathbf{A}+\mathbf{B}) & =\operatorname{vec}(\mathbf{A})+\operatorname{vec}(\mathbf{B}) \\
\operatorname{vec}(\alpha \mathbf{A}) & =\alpha \operatorname{vec}(\mathbf{A})
\end{aligned}
$$

Multivariate Regression Revisited

- Rewrite the multivariate, multiple regression model:

$$
\underset{(n p \times 1)}{\operatorname{vec}(\mathbf{Y})}=\underset{(n p \times q p)(q p \times 1)}{\left(\mathbf{I}_{p} \otimes \mathbf{X}\right) \operatorname{vec}(\boldsymbol{\beta})}+\underset{(n p \times 1)}{\operatorname{vec}(\boldsymbol{\epsilon})}
$$

- What is $\operatorname{Var}[\operatorname{vec} \epsilon]$?
- What is the GLS estimator for $\operatorname{vec}(\boldsymbol{\beta})$?

A Multivariate Spatial Model

- Extend the multivariate, multiple regression model:

$$
\begin{aligned}
& \underset{(n p \times 1)}{\operatorname{vec}(\mathbf{Y})}=\underset{(n p \times q p)(q p \times 1)}{\left(\mathbf{I}_{p} \otimes \mathbf{X}\right) \operatorname{vec}(\boldsymbol{\beta})}+\underset{(n p \times 1)}{\operatorname{vec}(\mathbf{h})}+\underset{(n p \times 1),}{\operatorname{vec}(\boldsymbol{\epsilon})} \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}[\operatorname{vec}(\mathbf{h})]=\boldsymbol{\Sigma}_{\mathbf{h}}=\left[\begin{array}{cccc}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} & \cdots & \boldsymbol{\Sigma}_{1 p} \\
\boldsymbol{\Sigma}_{12}^{\prime} & \boldsymbol{\Sigma}_{22} & \cdots & \boldsymbol{\Sigma}_{2 p} \\
\vdots & & \ddots & \vdots \\
\boldsymbol{\Sigma}_{12}^{\prime} & \boldsymbol{\Sigma}_{2 p}^{\prime} & \cdots & \boldsymbol{\Sigma}_{p p}
\end{array}\right] \\
& \operatorname{Var}[\operatorname{vec}(\boldsymbol{\epsilon})]=\boldsymbol{\Sigma} \otimes \mathbf{I}_{n}
\end{aligned}
$$

A Multivariate Spatial Model

- One simplification to the spatial covariance matrix is to use a Kronecker form:

$$
\Sigma_{\mathbf{h}}=\rho \otimes \mathbf{K}
$$

where

- $\boldsymbol{\rho}$ is a $p \times p$ matrix of scale parameters
$-\mathbf{K}$ is an $n \times n$ spatial covariance.

A Multivariate Spatial Model

- Extend the multivariate, multiple regression model:

$$
\underset{(n p \times 1)}{\operatorname{vec}(\mathbf{Y})}=\underset{(n p \times q p)(q p \times 1)}{\left(\mathbf{I}_{p} \otimes \mathbf{X}\right) \operatorname{vec}(\boldsymbol{\beta})}+\underset{(n p \times 1)}{\operatorname{vec}(\mathbf{h})}+\underset{(n p \times 1)}{\operatorname{vec}(\boldsymbol{\epsilon})}
$$

OR

$$
\mathrm{Y}=\mathrm{X} \boldsymbol{\beta}+\mathrm{h}+\quad+
$$

- Now everything follows...

Case Study:

Pedotransfer Functions

- Soil characteristics such as composition (clay, silt, sand) are commonly measured and easily obtainable.
- Unfortunately, crop models require water holding characteristics such as the wilting point or lower limit (LL) and the drained upper limit (DUL) which are not so easy to obtain.
- Often the LL and DUL are a function of depth - soil water profile.

Case Study:
 Pedotransfer Functions

- Pedotransfer functions are commonly used to estimate LL and DUL.
- Differential equations, regression, nearest neighbors, neural networks, etc.
- Often specialized by soil type and/or region.
- Develop a new type of pedotransfer function that can capture the entire soil water profile (LL \& DUL as a function of depth).
- Characterize the variation!

Soil Water Profiles

The Big Picture

- Soil
- Water holding characteristics
- Bulk density
- Etc.
- Weather (20 years)
- Solar radiation
- Temperature max/min
- Precipitation

The CERES Crop Model

The Big Picture

- Given a complicated array of inputs, the CERES crop model will give the yields of, for example, maize.
- Deterministic output - variation in yields also of interest.
- Goals:
- Establish a framework to study sources of variation in crop yields.
- Assess impacts of climate change on crop yields.

Data

- $n=272$ measurements on $N=63$ soil samples
- Gijsman et al. (2002)
- Ratliff et al. (1983), Ritchie et al. (1987)
- Includes measurements of:
- depth,
- soil composition and texture
* percentages of clay, sand, and silt
- bulk density, organic matter, and
- field measured values of LL and DUL.

Data

- The soil texture measurements form a composition

$$
z_{\text {clay }}+z_{\text {silt }}+Z_{\text {sand }}=1
$$

and $Z_{\text {clay }}, Z_{\text {silt }}, Z_{\text {sand }}$ are the proportions of each soil component.

- Not really three variables...
- To remove the dependence, the additive log-ratio transformation (Aitchinson, 1986) is applied, defining two new variables

$$
X_{1}=\log \left(\frac{Z_{\text {sand }}}{Z_{\text {clay }}}\right) \quad X_{2}=\log \left(\frac{Z_{\text {silt }}}{Z_{\text {clay }}}\right)
$$

Data - Composition vs LL

Data - Composition vs LL

A Multi-objective Pedotransfer Function

- The model for the multi-objective pedotransfer function for a particular soil is

$$
\mathrm{Y}_{0}=\mathrm{T}_{0} \boldsymbol{\beta}+\mathbf{h}\left(\mathrm{X}_{0}\right)+\epsilon\left(\mathrm{D}_{0}\right)
$$

where

$$
\mathbf{Y}_{0}=\log \left[\begin{array}{c}
\mathrm{LL}_{1} \\
\vdots \\
\mathrm{LL} \\
\Delta_{1} \\
\vdots \\
\Delta_{d}
\end{array}\right]
$$

and d is the number of measurements (depths) and $\Delta_{i}=$ $\mathrm{DUL}_{i}-\mathrm{LL}_{i}$.

A Multi-objective Pedotransfer Function

- The model for the multi-objective pedotransfer function for a particular soil is

$$
\mathbf{Y}_{0}=\mathbf{T}_{0} \boldsymbol{\beta}+\mathbf{h}\left(\mathrm{X}_{0}\right)+\epsilon\left(\mathrm{D}_{0}\right)
$$

where

$$
\mathrm{T}_{0}=\left[\begin{array}{ccccc}
\mathbf{1} & \mathrm{X}_{0} & \mathrm{Z}_{\mathrm{LL}, 0} & & \\
& \mathbf{0} & \mathbf{1} & \mathrm{X}_{0} & \mathrm{Z}_{\Delta, 0}
\end{array}\right]
$$

and

- X_{0} is the transformed soil composition information
$-\mathrm{Z}_{\mathrm{LL}}$ and Z_{Δ} are additional covariates for LL and Δ.
* Z_{LL} includes organic carbon
* Z_{Δ} includes linear and quadratic terms for depth

A Multi-objective Pedotransfer Function

- The model for the multi-objective pedotransfer function for a particular soil is

$$
\mathrm{Y}_{0}=\mathrm{T}_{0} \boldsymbol{\beta}+\mathbf{h}\left(\mathrm{X}_{0}\right)+\epsilon\left(\mathrm{D}_{0}\right)
$$

where

- $\mathbf{h}\left(\mathrm{X}_{0}\right)$ is a two-dimensional spatial process that controls the smoothness of the contribution of \mathbf{X}
$-\epsilon\left(D_{0}\right)$ is an error process that
* accounts for the dependence in LL and Δ for a particular depth and
* accounts for dependence across depths (one-dimensional spatial process).

A Multi-objective Pedotransfer Function

- Letting
$\mathbf{Y}=\log \left[\begin{array}{lllllllllll}L_{11} & \cdots & L_{1 d_{1}} & L_{21} & \cdots & L_{N d_{N}} & \Delta_{11} & \cdots & \Delta_{1 d_{1}} & \Delta_{21} & \cdots\end{array} \Delta_{N d_{N}}\right]^{\prime}$, then Y is multivariate normal with

$$
\begin{aligned}
E[\mathbf{Y}]=\mathbf{T} \boldsymbol{\beta} & \quad \operatorname{Var}[\mathbf{Y}]=\boldsymbol{\Sigma}_{\mathbf{h}}+\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}} \\
\boldsymbol{\Sigma}_{\mathbf{h}} & =\left[\begin{array}{cc}
\rho_{1} & 0 \\
0 & \rho_{2}
\end{array}\right] \otimes \mathbf{K} \\
\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}} & =\mathbf{S} \otimes \mathbf{R} .
\end{aligned}
$$

with
$-K_{i j}=k\left(\mathbf{X}_{i}, \mathbf{X}_{j}\right)$

- S is the covariance of (LL, Δ) at a fixed depth
- \mathbf{R} is the (spatial) covariance across depths

Covariance Structures

- The covariance function for h is the Matern family

$$
C(d)=\sigma^{2} \frac{2(\theta d / 2)^{\nu} K_{\nu}(\theta d)}{\Gamma(\nu)}
$$

where σ^{2} is a scale parameter, θ represents the range, ν controls the smoothness.
$-\sigma^{2}=1$ (the ρ controls the variances), $\nu=1$, and θ is taken to be approximately the range of the data.

- These choices represent a covariance structure that is consistent with the thin-plate spline estimator (large range, more smoothness).
- Analogous to fixing the kernel and estimating the bandwidth with kernel estimators.

Covariance Structures

- The covariance function across depths is exponential

$$
C(d)=\sigma^{2} \exp (-d / \theta)
$$

where again σ^{2} is a scale parameter and θ represents the range.

- The parameters $\sigma^{2}=1$ (the matrix \mathbf{S} controls the variances) and θ is estimated from the data.
- The multiple realizations of the soils allow for improved ability to estimate both scale and range parameters.

Covariance Structures

Spatial Smoothing

- Write

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\mathbf{h}}+\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}} & =\left[\begin{array}{cc}
\rho_{1} & 0 \\
0 & \rho_{2}
\end{array}\right] \otimes \mathbf{K}+\left[\begin{array}{cc}
s_{11} & s_{12} \\
s_{12} & s_{22}
\end{array}\right] \otimes \mathbf{R} \\
& =s_{11}\left[\left[\begin{array}{cc}
\eta_{1} & 0 \\
0 & \eta_{2}
\end{array}\right] \otimes \mathbf{K}+\left[\begin{array}{cc}
1 & v_{12} \\
v_{12} & v_{22}
\end{array}\right] \otimes \mathbf{R}\right] \\
& =s_{11} \Omega
\end{aligned}
$$

- The amount of smoothing is due to the relative contributions of the variance components, i.e. η_{1} and η_{2}.
- Different degrees of smoothing are allowed for $L L$ and \triangle.
- Also, this construction allows for different degrees of variation in the error terms for LL and the Δ variables.

The Estimator

- The model suggests an estimator of the form

$$
\widehat{\mathbf{Y}}_{0}=\mathrm{T}_{0} \widehat{\boldsymbol{\beta}}+\mathbf{K}_{0}^{\prime} \widehat{\boldsymbol{\delta}}
$$

where

$$
\mathbf{K}_{0}^{\prime}=\left[\begin{array}{cc}
\eta_{1} & 0 \\
0 & \eta_{2}
\end{array}\right] \otimes \mathbf{K} .
$$

- To fit the model, we must estimate:
- η_{1}, η_{2} and s_{11}
$-\beta, \delta$
- \mathbf{R} and the other entries of \mathbf{S}

REML

- Take the QR decomposition of \mathbf{T}

$$
\mathrm{T}=\left[\begin{array}{ll}
\mathrm{Q}_{1} & \mathrm{Q}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{R} \\
0
\end{array}\right]
$$

- Then $\mathrm{Q}_{2}^{\prime} \mathrm{Y}$ has zero mean and covariance matrix given by

$$
\mathrm{Q}_{2}^{\prime}\left(\Sigma_{\mathbf{h}}+\Sigma_{\epsilon}\right) \mathrm{Q}_{2}
$$

- Maximize (numerically) the likelihood based on $\mathbf{Q}_{2}^{\prime} \mathbf{Y}$ which is only a function of the covariance parameters.
- Estimates of $\boldsymbol{\beta}$ and $\boldsymbol{\delta}$ follow directly

$$
\widehat{\boldsymbol{\beta}}=\left(\mathrm{T}^{\prime} \hat{\Omega}^{-1} \mathbf{T}\right)^{-1} \mathbf{T}^{\prime} \hat{\Omega}^{-1} \mathbf{Y} \quad \widehat{\delta}=\hat{\Omega}^{-1}(\mathbf{Y}-\mathbf{T} \widehat{\boldsymbol{\beta}})
$$

An Iterative Approach

0 . Initialize: compute \mathbf{K} and set $\mathbf{S}=\mathbf{I}$ and $\mathbf{R}=\mathbf{I}$.

1. Estimate η_{1} and η_{2} (and s_{11}) via a simplified type of REML (grid search).
2. Then

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{T}^{\prime} \hat{\Omega}^{-1} \mathbf{T}\right)^{-1} \mathbf{T}^{-1} \hat{\Omega}^{-1} \mathbf{Y} \quad \hat{\delta}=\hat{\Omega}^{-1}(\mathbf{Y}-\mathbf{T} \widehat{\boldsymbol{\beta}})
$$

3. Compute residuals and
a. Update \mathbf{S} (\mathbf{R} fixed) - closed form solution.
b. Update R (S fixed) - grid search for θ.
4. Repeat items 1-3 until convergence.

An Iterative Approach

- Let $\mathrm{Y}=\mu+\mathrm{h}+\boldsymbol{\epsilon}$, where h and $\boldsymbol{\epsilon}$ are independent Gaussian random variables; the conditional distribution of $\mathbf{Y}-\boldsymbol{\mu}-\mathbf{h}$ given h is a zero mean Gaussian with covariance matrix $\boldsymbol{\epsilon}$.
- Thus, the log-likelihood associated with the residuals is given by

$$
-\frac{n}{2}|\mathbf{S}|-|\mathbf{R}|-\operatorname{vec}(\mathbf{U})^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{R}^{-1}\right) \operatorname{vec}(\mathbf{U})
$$

- The quadratic form can be written as

$$
\operatorname{tr}\left(\mathbf{S}^{-1} \sum_{i} \sum_{j} r^{i j} \mathbf{u}_{j} \mathbf{u}_{i}^{\prime}\right)
$$

where $r^{i j}$ is the $i j$ th element of \mathbf{R}^{-1} and \mathbf{u}_{i} is the bivariate, unstacked residual for the i th observation.

An Iterative Approach

- An update for S can be written as

$$
\begin{aligned}
\widehat{\mathbf{S}} & =\frac{1}{n} \sum_{i} \sum_{j} r^{i j} \mathbf{u}_{j} \mathbf{u}_{i}^{\prime} \\
& =\frac{1}{n} \mathbf{U}^{\prime} \mathbf{R}^{-1} \mathbf{U}
\end{aligned}
$$

where \mathbf{U} is the $n \times 2$ matrix of unstacked residuals.

- Again, a simple grid search for θ is used to obtain a new value for \mathbf{R}.

Parameter Estimates

	η_{1}	η_{2}	S_{11}	S_{22}	S_{12}	θ
REML	5.84	1.66	0.0765	0.0483	-0.0222	134.6
Iterative	5.74	2.21	0.0697	0.0445	-0.0217	144.2

Soil Composition and LL

Soil Composition and Δ

Soil Composition and LL/D

Organic Carbon and LL

Depth and Δ

Residuals (Within Depth)

Spatial Covariance Across Depth

Prediction Error

- The real benefit of considering our estimator as a spatial process is in the interpretation with respect to the uncertainty of the estimator:
- The thin-plate spline is a biased estimator with uncorrelated error - not easy to quantify the bias (interpolation error and smoothing error).
- The spatial process estimator is unbiased, but with correlated error - more complicated error structure but conceptually straightforward to work with.

Prediction Error

- The estimator can be written as

$$
\begin{aligned}
\widehat{\mathbf{Y}}_{0} & =\mathbf{T}_{0} \widehat{\boldsymbol{\beta}}+\mathbf{K}_{0}^{\prime} \widehat{\boldsymbol{\delta}} \\
& =\mathbf{A}_{0} \mathbf{Y}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{A}_{0} & =\mathbf{T}_{0}\left(\mathbf{T}^{\prime} \hat{\Omega}^{-1} \mathbf{T}\right)^{-1} \mathbf{T}^{\prime} \hat{\Omega}^{-1} \\
& +\mathbf{K}_{0}\left(\hat{\Omega}^{-1}-\hat{\Omega}^{-1} \mathbf{T}\left(\mathbf{T}^{\prime} \hat{\Omega}^{-1} \mathbf{T}\right)^{-1} \mathbf{T}^{\prime} \hat{\Omega}^{-1}\right)
\end{aligned}
$$

Prediction Error

- Hence,

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{Y}_{0}-\hat{\mathbf{Y}}_{0}\right) & =\operatorname{Var}\left(\mathbf{Y}_{0}-\mathbf{A}_{0} \mathbf{Y}\right) \\
& =\operatorname{Var}\left(\mathbf{Y}_{0}\right)+\mathbf{A}_{0} \operatorname{Var}(\mathbf{Y}) \mathbf{A}_{0}^{\prime}-2 \mathbf{A}_{0} \operatorname{Cov}\left(\mathbf{Y}, \mathbf{Y}_{0}\right)
\end{aligned}
$$

- $\operatorname{Var}\left(\mathbf{Y}_{0}\right)$ and $\operatorname{Var}(\mathbf{Y})$ are computed by plugging in parameters estimates for $\boldsymbol{\Sigma}_{\mathbf{h}}$ and $\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}$.
- The covariance between \mathbf{Y}_{0} and \mathbf{Y} comes from \mathbf{h} and is based on the distance between the transformed composition data.

Generation of Soil Profiles

- Simulations of $\log L L$ and $\log \Delta$ were generated from a multivariate normal with mean $\mathbf{A}_{0} \mathbf{Y}$ and variance given by the prediction error.
- We use an average soil composition profile computed from the data and assumed to constant across all depths,

$$
D=\{5,15,30,45,60,90,120,150\} .
$$

- Represent a draw from the posterior distribution of soil water profiles based on the estimated mean and covariance structure and the uncertainty gleaned from the data.

Generation of Soil Profiles

Application: Crop Models

- Two soils (SIL, S)
- Given the soil composition, organic carbon, depth, etc., 100 soil profiles (LL, DUL) were generated.
- Twenty years of weather (solar radiation, temperature min/max, and precipitation).
- Yield output generated from the CERES-Maize crop model.

Crop Yields

- SIL (red), S (blue), total annual precipitation (solid line)

Crop Yields

- SIL (red), S (blue), average annual temperature (solid line)

Thanks!

ssain@ucar.edu www.image.ucar.edu/~ssain

- Sain, S.R., Mearns, L., Shrikant, J., and Nychka, D. (2006), "A multivariate spatial model for soil water profiles," Journal of Agricultural, Biological, and Environmental Statistics, 11, 462-480.

