

Case Study I: Combining Ensembles

Markov Random Fields and Regional Climate Models

Stephan R. Sain

Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO

Supported by NSF ATM/DMS. Thanks also to Reinhard Furrer and Noel Cressie.

International Graduate Summer School on Statistics and Climate Modeling, Boulder, CO, 8/12/08

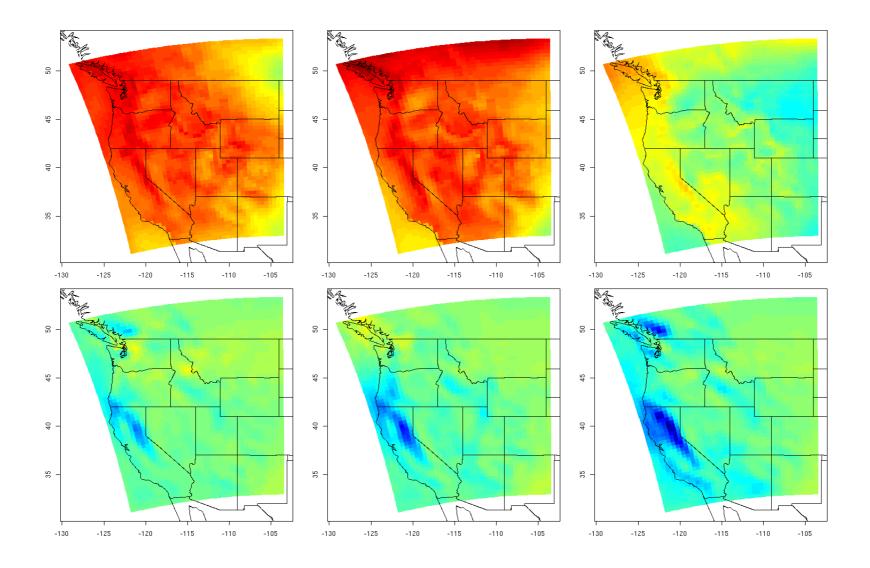
An RCM Example

- Driven by the NCAR/DOE Parallel Climate Model, the MM5 RCM was used to produce a control run and three future runs.
 - Control: 1995-2015
 - Future: 2040-2060
- Domain: western US, part of western Canada
- Climate scenario: "business as usual"
 - 1% yearly increase in greenhouse gasses
- Daily max/min temperature and precipitation

An RCM Example

- n = 2464 grid boxes on a regular lattice.
- Max/min temperature converted into midpoint (and range).
- 20-year winter (DJF) "averages" computed for each grid box.
- Two variables: Δ_{Tmid} , Δ_{Precip}
 - $-\Delta = Future_i Control, i = 1, 2, 3$

An RCM Example



A Hierarchical Model

• Data model:

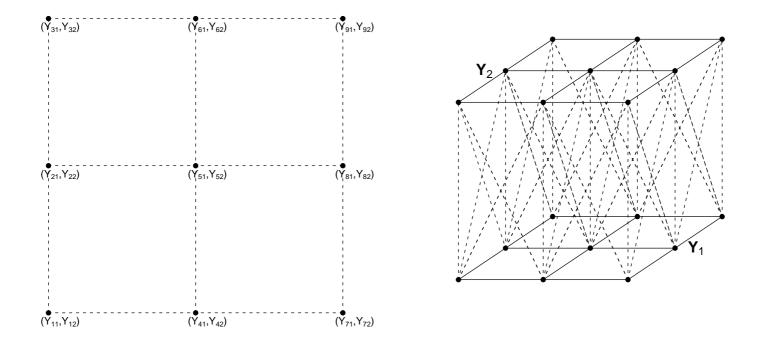
$$\mathbf{y}_{rj} \sim \mathcal{N} \left(\mathbf{X}_1 \boldsymbol{\alpha}_j + \mathbf{X}_2 \boldsymbol{\beta}_{rj} + \mathbf{h}_{rj}, \boldsymbol{\Sigma}_j \right), \ r = 1, \dots, m, \ j = 1, \dots, p,$$

- X includes intercept, longitude, latitude, and elevation.

• Process model:

$$\begin{pmatrix} \boldsymbol{\beta}_{r1} \\ \vdots \\ \boldsymbol{\beta}_{rp} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \boldsymbol{\beta}_{1} \\ \vdots \\ \boldsymbol{\beta}_{p} \end{pmatrix}, \boldsymbol{\Sigma}_{b} \right),$$
$$\begin{pmatrix} \boldsymbol{h}_{r1} \\ \vdots \\ \boldsymbol{h}_{rp} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \boldsymbol{h}_{1} \\ \vdots \\ \boldsymbol{h}_{p} \end{pmatrix}, \mathbf{V}\left(\{\tau_{j}^{2}\}, \{\rho_{j\ell}\}, \{\phi_{j\ell}\}\right) \right).$$

• Priors: Non-informative.



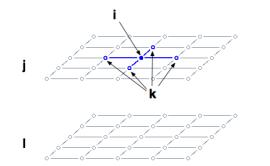
To improve interpretability and identifiability, rethink the lattice: rather than multivariate observations on a bivariate lattice, consider univariate observations on a stacked lattice.

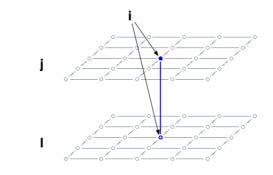
• Write the mean/variance of each conditional distribution as

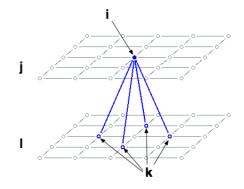
$$\begin{split} \mathsf{E}[y_{ij}|y_{-\{ij\}}] &= \mu_{ij} + \sum_{k} b_{ijkj}(y_{kj} - \mu_{kj}) \qquad (\text{left}) \\ &+ \sum_{\ell} b_{iji\ell}(y_{i\ell} - \mu_{i\ell}) \qquad (\text{middle}) \\ &+ \sum_{k,\ell} b_{ijk\ell}(y_{k\ell} - \mu_{k\ell}) \qquad (\text{right}) \end{split}$$

and

$$\operatorname{Var}[y_{ij}|y_{-\{ij\}}] = \tau_{ij}^2,$$







- This formulation gives rise to a joint distribution of the form $\mathcal{N}(\mu,\Sigma)$ where

$$\begin{split} \boldsymbol{\Sigma} &= \begin{bmatrix} \mathbf{I}_n \otimes \boldsymbol{\tau}^{1/2} \end{bmatrix} \begin{bmatrix} \mathbf{I}_n \otimes \mathbf{A} - \begin{bmatrix} \mathbf{0} & & \mathbf{B}I_{ij} \\ & \ddots & \\ \mathbf{B}'I_{ij} & & \mathbf{0} \end{bmatrix} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{I}_n \otimes \boldsymbol{\tau}^{1/2} \end{bmatrix}, \\ \text{where } \boldsymbol{\tau}^{1/2} &= [\tau_1, \dots, \tau_p]' \text{ and} \\ \mathbf{A} &= \begin{bmatrix} \mathbf{1} & & -\rho_{j\ell} \\ & \ddots & \\ -\rho_{j\ell} & & \mathbf{1} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} -\phi_{11} & & -\phi_{j\ell} \\ & \ddots & \\ -\phi_{\ell j} & & -\phi_{pp} \end{bmatrix}. \end{split}$$

Bayesian Computation

- Not much hope of computing posterior in closed form.
- Use computational methods (MCMC) to probe the posterior.
 - The Gibb's sampler.
 - Metropolis-Hastings accept/reject method.

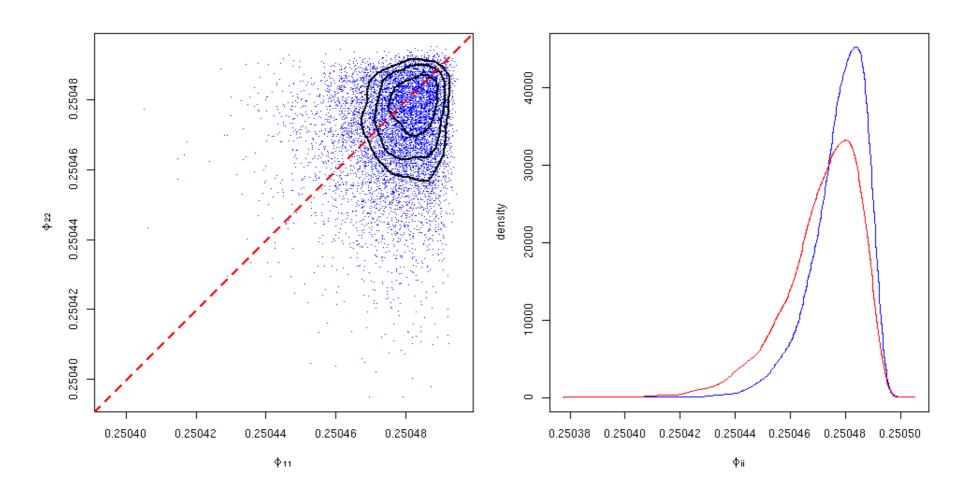
MCMC

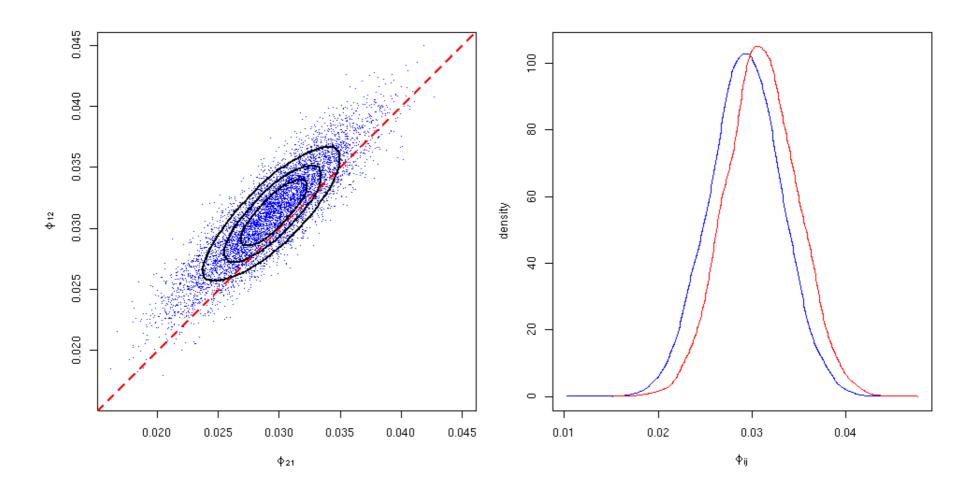
- 3 regimes of 10K iterations each
 - Regime 1: all single variable M-H with periodic updates of the proposal distribution.
 - Regime 2: ρ , ϕ_{12} , and ϕ_{21} blocked M-H with periodic updates of the proposal distribution.
 - Regime 3: $\rho,~\phi_{12},~{\rm and}~\phi_{21}$ blocked M-H with no further updates.
- 10 chains run with random starts from the prior.

– Choose ρ and ϕ to yield positive-definite H.

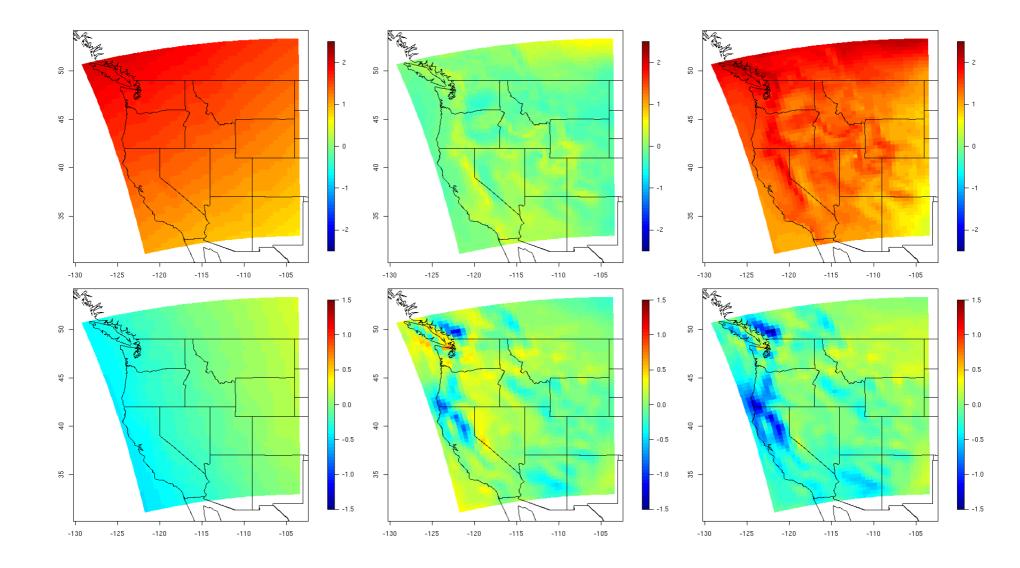
• Sparse matrix methods (spam) crucial to computation.

 ϕ_{11}, ϕ_{22}

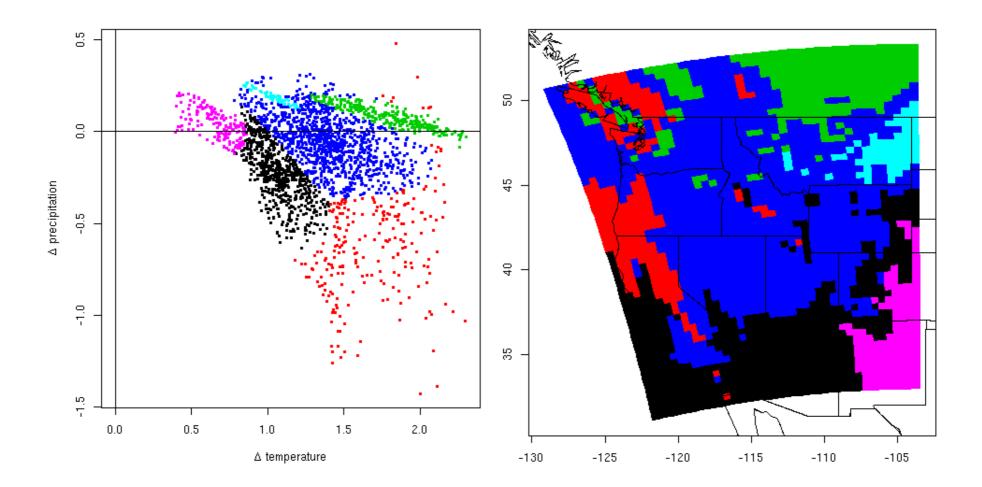


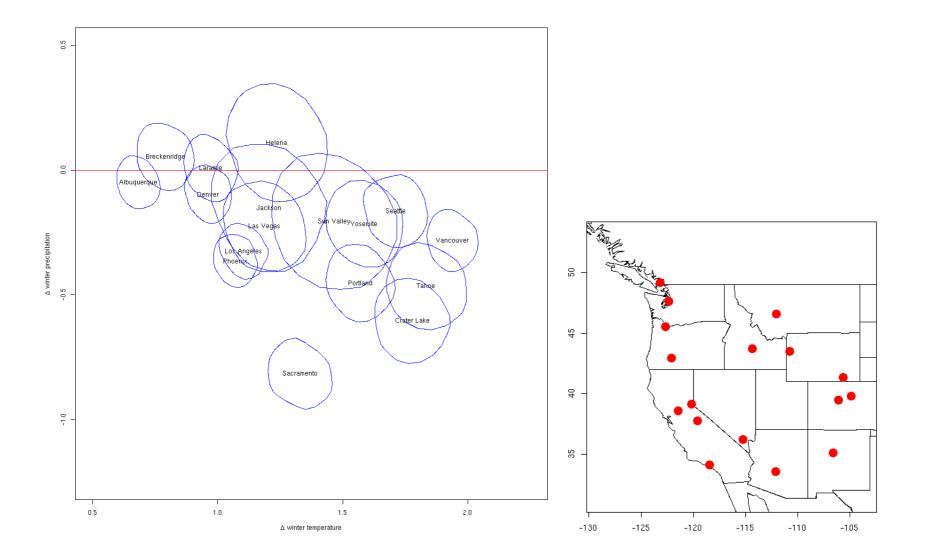


Posterior Means

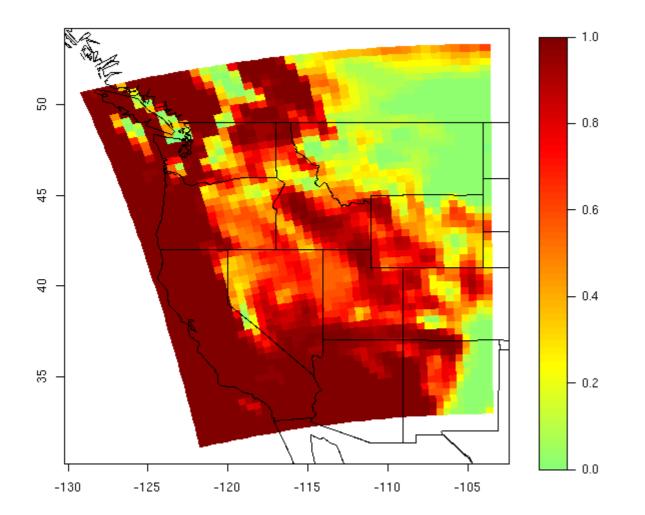


Clustering

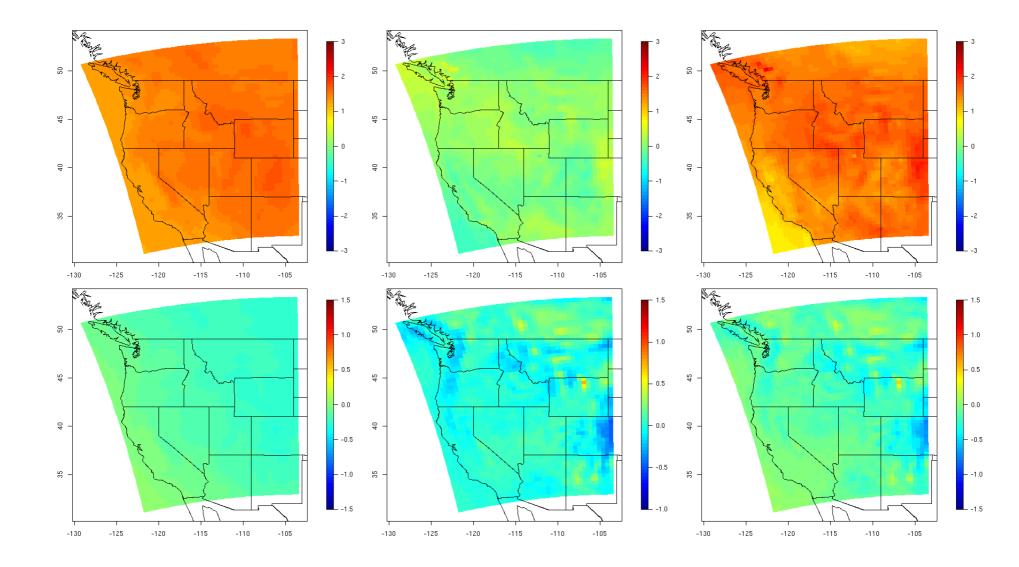




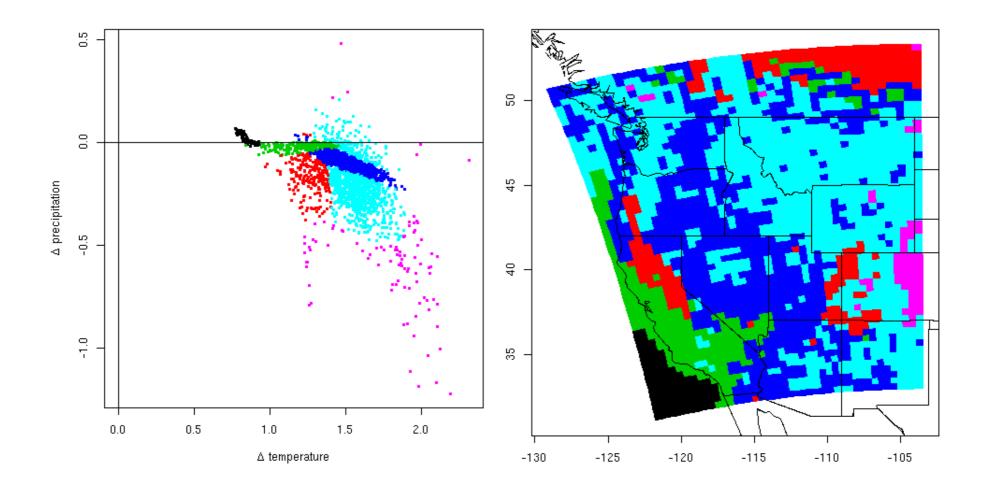
16

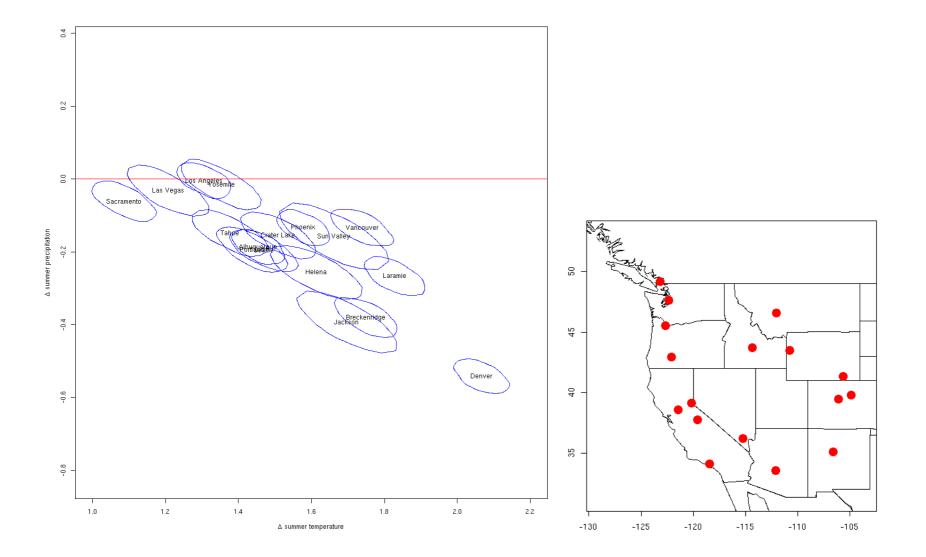


Posterior Means



Clustering





20

