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What are sparse matrices?

Why should we use sparse matrices?

What are sparse matrix formats?

What is spam?

Sparse matrices in statistics

Solving linear systems

Determinants and Cholesky factorization

fields upon spam

Finally, real examples

Beyond large sparse matrices
Thanks NSF!
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What is “sparse” or a sparse matrix?

According to Wiktionary/Wikipedia:

Sparse: (Adjective)

1. Having widely spaced intervals

2. Not dense; meager

Sparse matrix:

a matrix populated primarily with zeros.
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R> n <- 15

R> A <- array( runif(n^2), c(n,n)) + diag(n)

R> A[A < 0.75] <- 0
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R> n <- 15

R> A <- array( runif(n^2), c(n,n)) + diag(n)

R> A[A < 0.75] <- 0

R> AtA <- t(A) %*% A
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Why should we use sparse matrices?

1. Savings in storage

nonzeros vs total elements

2. Savings in computing time

0.066s vs 0.003 for 1,000× 1,000 matrix multiplication

To exploit the savings need to exploit the sparsity.

We need a clever storage format and fast algorithms.
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Let A = (aij) ∈ Rn×m and z the number of its nonzero elements.

1. Naive/“traditional”/classic format:

one vector of length n×m and a dimension attribute.

2. Triplet format:

three vectors of length z, (i, j, aij) and a dimension attribute.

3. Compressed sparse row (CSR) format:

eliminate redundant row indices.

4. and about 10 more . . .
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A =
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0.7 0.8 0 4 0
0.9 0 0.0 0 5
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A =


1 0.1 0 0.2 0.3
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Naive/traditional/classic:

1, .4, 0, .7, .9, .1, 2, 0, .8, 0, 0, 0, 3, 0, .0, .2, .5, 0, 4, 0, .3, 0, .6, 0, 5
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Triplet:
i : 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5
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i : 1 2 3 4 5
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5
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A =


1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6

0.7 0.8 0 4 0
0.9 0 0.0 0 5
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CSR:
ptr : 1 5 8 10 13 16
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5
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1. the nonzero values row by row

2. the (ordered) column indices of nonzero values

3. the position in the previous two vectors corresponding to new

rows, given as pointers

4. the column dimension of the matrix.

CSR:
ptr : 1 5 8 10 13 16
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5
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1. Naive format:

No savings in storage and computation (for sparse matrices)

Status quo

2. Triplet format:

Savings in storage and computation for sparse matrices

Loss in storage and computation for full matrices

Intuitive

3. Compressed sparse row (CSR) format:

Apart from intuitive, same as triplet

Faster element access

Available algorithms

Arbitrary choice for “dimension”
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With a new storage format new “algorithms” are required . . .

Is it worthwhile???



Timing

17

Setup:

R> timing <- function(expr)

+ as.vector( system.time( for (i in 1:N) expr)[1])

R> N <- 1000 # how many operations

R> n <- 999 # matrix dimension

R> cutoff <- 0.9 # what will be set to 0

R> A <- array( runif(n^2), c(n,n))

R> A[A < cutoff] <- 0

R> S <- somecalltomagicfunctiontogetsparseformat( A)

Compare timing for different operations on A and S.



Timing

18

R> timing(A + sqrt(A))

[1] 0.058

R> timing(S + sqrt(S))

[1] 0.061

R> timing(AtA <- t(A) %*% A)

[1] 0.467

R> timing(StS <- t(S) %*% S)

[1] 4.222
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R> timing(A[1,2] <- .5)

[1] 0.007

R> timing(A[n,n-1] <- .5)

[1] 0.001

R> timing(S[1,2] <- .5)

[1] 0.018

R> timing(S[n,n-1] <- .5)

[1] 0.012
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R> timing(solve(AtA, rep(1,n)))

[1] 1.116

R> timing(solve(StS, rep(1,n)))

[1] 1.51

R> timing(chol(AtA))

[1] 0.488

R> timing(chol(StS))

[1] 1.504



Timing

20

R> timing(solve(AtA, rep(1,n)))

[1] 1.116

R> timing(solve(StS, rep(1,n)))

[1] 1.51

R> timing(chol(AtA))

[1] 0.488

R> timing(chol(StS))

[1] 1.504

Is it really worthwhile? What is going on?
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With cutoff 0.99:

R> timing(AtA <- t(A) %*% A)

[1] 0.106

R> timing(StS <- t(S) %*% S)

[1] 0.089

R> timing(chol(AtA))

[1] 0.494

R> timing(chol(StS))

[1] 0.551
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With cutoff 0.99:

R> timing(AtA <- t(A) %*% A)

[1] 0.059

R> timing(StS <- t(S) %*% S)

[1] 0.002

R> timing(chol(AtA))

[1] 0.466

R> timing(chol(StS))

[1] 0.007
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Is it worthwhile??? Yes!
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With a new storage format new “algorithms” are required . . .

Is it worthwhile??? Yes!

Especially since

spam: R package for sparse matrix algebra.
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Some slides about spam?

. . . see inlet one.
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• Location matrices

• Design matrices
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Where do large matrices occur?

• Location matrices

• Design matrices

• Covariance matrices

• Precision matrices
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• Covariance matrices:

Compactly supported covariance functions

Tapering

• Precision matrices:

(Gaussian) Markov random fields

(Tapering???)

We have symmetric positive definite (spd) matrices.
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Some slides about tapering?

. . . see inlet two.
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A (large dimensional) covariance (often) appears in:

• drawing from a multivariate normal distribution

• calculating/maximizing the (log-)likelihood

• linear/quadratic Discrimination analysis

• PCA, EOF, . . .

But all boils down to solving a linear system and

possibly calculating the determinant . . .

Sparse PCA is sparse in a different sense . . .
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To solve the system Ax = b, we

• perform a Cholesky factorisation A = UTU

• solve two triangular systems UTz = b and Ux = z

But we need to “ensure” that U is as sparse as possible!
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To solve the system Ax = b, we

• perform a Cholesky factorisation A = UTU

• solve two triangular systems UTz = b and Ux = z

But we need to “ensure” that U is as sparse as possible!

Permute the rows and columns of A: PTAP = UTU.

spam performs Cholesky factorization very efficiently!
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det(C) = det(UT) det(U) =
n∏

i=1

U2
ii
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• fields is not bound to a specific sparse matrix format

• All heavy lifting is done in mKrig or Krig.engine.fixed

• For a specific sparse format, requires the methods:

chol, backsolve, forwardsolve and diag

as well as elementary matrix operations

need to exist

• If available uses operators to handle diagonal matrices quickly

 The covariance matrix has to stem from particular class.
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• fields is not bound to a specific sparse matrix format

• All heavy lifting is done in mKrig or Krig.engine.fixed

• For a specific sparse format, requires the methods:

chol, backsolve, forwardsolve and diag

as well as elementary matrix operations

need to exist

• If available uses operators to handle diagonal matrices quickly

 The covariance matrix has to stem from particular class.

fields uses spam as default package!
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With appropriate covariance function:

R> x <- USprecip[ precipsubset,1:2] # locations

R> Y <- USprecip[ precipsubset,4] # anomaly

R> lon <- seq(-125, to=-68, by=blat)

R> lat <- seq( 24.5, to=49, by=blat)

R> pred.x <- expand.grid(lon,lat)

R> out <- mKrig(x,Y, m=1, cov.function="wendland.cov")

R> pred.out <- predict(out, xnew=pred.x)
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Upper limit to create a large matrix is the minimum of:

(1) available memory (machine and OS/shell dependent)

Error: ’cannot allocate vector of size’

(2) addressing capacity (231 − 1)

Error: ’cannot allocate vector of length’

However, R is based on passing by value, calls create local copies

(often 3–4 times the space of the object is used).

R> help("Memory-limits")
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Parallelization:

nws, snow, Rmpi, . . .

Memory “Outsourcing”:

Matrices are not (entirely) kept in memory:

ff, filehash, biglm, . . .

(S+ has the library BufferedMatrix)
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Mixer!!


