Sparse Matrix Methods and Fields

The International Graduate Summer School on Statistics and Climate Modeling

NCAR – August 2008

Reinhard Furrer

E.

HTML

0

32

URL

Outline

What are sparse matrices? Why should we use sparse matrices? What are sparse matrix formats?

Outline

What are sparse matrices? Why should we use sparse matrices? What are sparse matrix formats?

What is spam? Sparse matrices in statistics Solving linear systems Determinants and Cholesky factorization

Outline

What are sparse matrices? Why should we use sparse matrices? <u>Mat are sparse matrix formats</u>?

What is spam? Sparse matrices in statistics Solving linear systems Determinants and Cholesky factorization

fields Upon spam Finally, Teal examples Beyond large sparse matrices

Thanks NSF! DMS-0621118

What is "sparse" or a sparse matrix?

According to Wiktionary/Wikipedia:

Sparse: (Adjective)1. Having widely spaced intervals2. Not dense; meager

Sparse matrix: a matrix populated primarily with zeros.

- R> n <- 15
- $R > A <- array(runif(n^2), c(n,n)) + diag(n)$
- R > A[A < 0.75] <- 0

column

- R> n <- 15
- $R > A <- array(runif(n^2), c(n,n)) + diag(n)$
- R > A[A < 0.75] <- 0

R> AtA <- t(A) %*% A

Why should we use sparse matrices?

Why should we use sparse matrices?

1. Savings in storage

2. Savings in computing time

Why should we use sparse matrices?

- 1. Savings in storage nonzeros vs total elements
- 2. Savings in computing time 0.066s vs 0.003 for $1,000 \times 1,000$ matrix multiplication

Why should we use sparse matrices?

- 1. Savings in storage nonzeros vs total elements
- 2. Savings in computing time 0.066s vs 0.003 for $1,000 \times 1,000$ matrix multiplication

To exploit the savings need to exploit the sparsity.

Why should we use sparse matrices?

- 1. Savings in storage nonzeros vs total elements
- 2. Savings in computing time 0.066s vs 0.003 for $1,000 \times 1,000$ matrix multiplication

To exploit the savings need to exploit the sparsity.

We need a clever storage format and fast algorithms.

Let $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times m}$ and z the number of its nonzero elements.

1. Naive/ "traditional" /classic format: one vector of length $n \times m$ and a dimension attribute.

Let $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times m}$ and z the number of its nonzero elements.

- 1. Naive/ "traditional" /classic format: one vector of length $n \times m$ and a dimension attribute.
- 2. Triplet format: three vectors of length z, (i, j, a_{ij}) and a dimension attribute.

Let $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times m}$ and z the number of its nonzero elements.

- 1. Naive/ "traditional" /classic format: one vector of length $n \times m$ and a dimension attribute.
- 2. Triplet format: three vectors of length z, (i, j, a_{ij}) and a dimension attribute.
- 3. Compressed sparse row (CSR) format: eliminate redundant row indices.

Let $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times m}$ and z the number of its nonzero elements.

- 1. Naive/ "traditional" /classic format: one vector of length $n \times m$ and a dimension attribute.
- 2. Triplet format: three vectors of length z, (i, j, a_{ij}) and a dimension attribute.
- 3. Compressed sparse row (CSR) format: eliminate redundant row indices.

4. and about 10 more . . .

Naive/traditional/classic: 1, .4, 0, .7, .9, .1, 2, 0, .8, 0, 0, 0, 3, 0, .0, .2, .5, 0, 4, 0, .3, 0, .6, 0, 5

Compressed Sparse Row Format

- 1. the nonzero values row by row
- 2. the (ordered) column indices of nonzero values
- 3. the position in the previous two vectors corresponding to new rows, given as pointers
- 4. the column dimension of the matrix.

1. Naive format:

No savings in storage and computation (for sparse matrices) Status quo

1. Naive format:

No savings in storage and computation (for sparse matrices) Status quo

2. Triplet format:

Savings in storage and computation for sparse matrices Loss in storage and computation for full matrices Intuitive

1. Naive format:

No savings in storage and computation (for sparse matrices) Status quo

2. Triplet format:

Savings in storage and computation for sparse matrices Loss in storage and computation for full matrices Intuitive

3. Compressed sparse row (CSR) format: Apart from intuitive, same as triplet

1. Naive format:

No savings in storage and computation (for sparse matrices) Status quo

2. Triplet format:

Savings in storage and computation for sparse matrices Loss in storage and computation for full matrices Intuitive

3. Compressed sparse row (CSR) format: Apart from intuitive, same as triplet Faster element access Available algorithms
Arbitrary choice for "dimension"

Implications

With a new storage format new "algorithms" are required ...

Is it worthwhile???

Setup:

- R> timing <- function(expr)</pre>
- + as.vector(system.time(for (i in 1:N) expr)[1])
- R > N < -1000 # how many operations
- R> n <- 999 # matrix dimension
- R> cutoff <- 0.9 # what will be set to 0

 $R > A <- array(runif(n^2), c(n,n))$

- R > A[A < cutoff] <- 0
- R> S <- somecalltomagicfunctiontogetsparseformat(A)

Compare timing for different operations on A and S.

```
R> timing(A + sqrt(A))
[1] 0.058
R> timing(S + sqrt(S))
[1] 0.061
```

```
R> timing(AtA <- t(A) %*% A)
[1] 0.467
R> timing(StS <- t(S) %*% S)
[1] 4.222</pre>
```

```
R> timing(A[1,2] <- .5)
[1] 0.007
R> timing(A[n,n-1] <- .5)
[1] 0.001</pre>
```

```
R> timing(S[1,2] <- .5)
[1] 0.018
R> timing(S[n,n-1] <- .5)
[1] 0.012</pre>
```

R> timing(solve(AtA, rep(1,n)))
[1] 1.116
R> timing(solve(StS, rep(1,n)))
[1] 1.51

R> timing(chol(AtA))
[1] 0.488
R> timing(chol(StS))
[1] 1.504

R> timing(solve(AtA, rep(1,n)))
[1] 1.116
R> timing(solve(StS, rep(1,n)))
[1] 1.51

R> timing(chol(AtA))
[1] 0.488
R> timing(chol(StS))
[1] 1.504

Is it really worthwhile? What is going on?

0

100

-72

With cutoff 0.99:

R> timing(AtA <- t(A) %*% A)
[1] 0.106
R> timing(StS <- t(S) %*% S)
[1] 0.089</pre>

R> timing(chol(AtA))
[1] 0.494
R> timing(chol(StS))
[1] 0.551

With cutoff 0.99:

R> timing(AtA <- t(A) %*% A)
[1] 0.059
R> timing(StS <- t(S) %*% S)
[1] 0.002</pre>

R> timing(chol(AtA))
[1] 0.466
R> timing(chol(StS))
[1] 0.007

Implications

With a new storage format new "algorithms" are required ...

Is it worthwhile??? Yes!

Implications

With a new storage format new "algorithms" are required ...

Is it worthwhile??? Yes!

Especially since

spam: R package for sparse matrix algebra.

Some slides about spam?

... see inlet one.

Sparse Matrices in Statistics

Where do large matrices occur?

- Location matrices
- Design matrices

Sparse Matrices in Statistics

Where do large matrices occur?

- Location matrices
- Design matrices
- Covariance matrices
- Precision matrices

Sparse Matrices in Statistics

- Covariance matrices: Compactly supported covariance functions Tapering
- Precision matrices: (Gaussian) Markov random fields (Tapering???)

We have symmetric positive definite (spd) matrices.

Some slides about tapering?

... see inlet two.

Positive Definite Matrices

A (large dimensional) covariance (often) appears in:

- drawing from a multivariate normal distribution
- calculating/maximizing the (log-)likelihood
- linear/quadratic Discrimination analysis
- PCA, EOF, ...

But all boils down to solving a linear system and possibly calculating the determinant ...

Sparse PCA is sparse in a different sense . . .

Solving Linear Systems

To solve the system Ax = b, we

- perform a Cholesky factorisation $\mathbf{A} = \mathbf{U}^{\mathsf{T}}\mathbf{U}$
- solve two triangular systems $\mathbf{U}^{\mathsf{T}}\mathbf{z} = \mathbf{b}$ and $\mathbf{U}\mathbf{x} = \mathbf{z}$

But we need to "ensure" that **U** is as sparse as possible!

Solving Linear Systems

To solve the system Ax = b, we

- perform a Cholesky factorisation $\mathbf{A} = \mathbf{U}^{\mathsf{T}}\mathbf{U}$
- solve two triangular systems $\mathbf{U}^{\mathsf{T}}\mathbf{z} = \mathbf{b}$ and $\mathbf{U}\mathbf{x} = \mathbf{z}$

But we need to "ensure" that **U** is as sparse as possible! Permute the rows and columns of \mathbf{A} : $\mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P} = \mathbf{U}^{\mathsf{T}}\mathbf{U}$.

spam performs Cholesky factorization very efficiently!

Determinant

0

$$det(\mathbf{C}) = det(\mathbf{U}^{\mathsf{T}}) det(\mathbf{U}) = \prod_{i=1}^{n} \mathbf{U}_{ii}^{2}$$

Sparse Matrices and fields

- fields is not bound to a specific sparse matrix format
- All heavy lifting is done in mKrig Or Krig.engine.fixed
- For a specific sparse format, requires the methods: chol, backsolve, forwardsolve and diag as well as elementary matrix operations need to exist
- If available uses operators to handle diagonal matrices quickly
- \rightsquigarrow The covariance matrix has to stem from particular class.

Sparse Matrices and fields

- fields is not bound to a specific sparse matrix format
- All heavy lifting is done in mKrig Or Krig.engine.fixed
- For a specific sparse format, requires the methods: chol, backsolve, forwardsolve and diag as well as elementary matrix operations need to exist
- If available uses operators to handle diagonal matrices quickly
- \rightsquigarrow The covariance matrix has to stem from particular class.

fields uses spam as default package!

Example

With appropriate covariance function:

R> x <- USprecip[precipsubset,1:2] # locations
R> Y <- USprecip[precipsubset,4] # anomaly</pre>

```
R> lon <- seq(-125, to=-68, by=blat)
R> lat <- seq( 24.5, to=49, by=blat)</pre>
```

R> pred.x <- expand.grid(lon,lat)</pre>

R> out <- mKrig(x,Y, m=1, cov.function="wendland.cov")
R> pred.out <- predict(out, xnew=pred.x)</pre>

Example

How Big is Big?

Upper limit to create a large matrix is the minimum of:

- (1) available memory (machine and OS/shell dependent)Error: 'cannot allocate vector of size'
- (2) addressing capacity $(2^{31} 1)$ Error: 'cannot allocate vector of length'

However, R is based on passing by value, calls create local copies (often 3–4 times the space of the object is used).

R> help("Memory-limits")

And Beyond?

Parallelization: nws, snow, Rmpi, ...

Memory "Outsourcing": Matrices are not (entirely) kept in memory: ff, filehash, biglm, ...

(S+ has the library BufferedMatrix)

And Now?

Mixer!!

