
Sparse Matrix Methods

and Fields

The International Graduate Summer School on

Statistics and Climate Modeling

NCAR – August 2008

Reinhard Furrer

Outline

2

WWW

HTML

URL

Outline

3

What are sparse matrices?

Why should we use sparse matrices?

What are sparse matrix formats?

Outline

3

What are sparse matrices?

Why should we use sparse matrices?

What are sparse matrix formats?

What is spam?

Sparse matrices in statistics

Solving linear systems

Determinants and Cholesky factorization

Outline

3

What are sparse matrices?

Why should we use sparse matrices?

What are sparse matrix formats?

What is spam?

Sparse matrices in statistics

Solving linear systems

Determinants and Cholesky factorization

fields upon spam

Finally, real examples

Beyond large sparse matrices
Thanks NSF!

DMS-0621118

Sparse Matrices

4

What is “sparse” or a sparse matrix?

According to Wiktionary/Wikipedia:

Sparse: (Adjective)

1. Having widely spaced intervals

2. Not dense; meager

Sparse matrix:

a matrix populated primarily with zeros.

Sparse Matrices

5

R> n <- 15

R> A <- array(runif(n^2), c(n,n)) + diag(n)

R> A[A < 0.75] <- 0

column

ro
w

2 4 6 8 10 12 14

14
12

10
8

6
4

2

Sparse Matrices

6

R> n <- 15

R> A <- array(runif(n^2), c(n,n)) + diag(n)

R> A[A < 0.75] <- 0

R> AtA <- t(A) %*% A

column

ro
w

2 4 6 8 10 12 14

14
12

10
8

6
4

2

Sparse Matrices

7

Why should we use sparse matrices?

Sparse Matrices

7

Why should we use sparse matrices?

1. Savings in storage

2. Savings in computing time

Sparse Matrices

8

Why should we use sparse matrices?

1. Savings in storage

nonzeros vs total elements

2. Savings in computing time

0.066s vs 0.003 for 1,000× 1,000 matrix multiplication

Sparse Matrices

8

Why should we use sparse matrices?

1. Savings in storage

nonzeros vs total elements

2. Savings in computing time

0.066s vs 0.003 for 1,000× 1,000 matrix multiplication

To exploit the savings need to exploit the sparsity.

Sparse Matrices

8

Why should we use sparse matrices?

1. Savings in storage

nonzeros vs total elements

2. Savings in computing time

0.066s vs 0.003 for 1,000× 1,000 matrix multiplication

To exploit the savings need to exploit the sparsity.

We need a clever storage format and fast algorithms.

Storage Formats

9

Let A = (aij) ∈ Rn×m and z the number of its nonzero elements.

1. Naive/“traditional”/classic format:

one vector of length n×m and a dimension attribute.

Storage Formats

9

Let A = (aij) ∈ Rn×m and z the number of its nonzero elements.

1. Naive/“traditional”/classic format:

one vector of length n×m and a dimension attribute.

2. Triplet format:

three vectors of length z, (i, j, aij) and a dimension attribute.

Storage Formats

9

Let A = (aij) ∈ Rn×m and z the number of its nonzero elements.

1. Naive/“traditional”/classic format:

one vector of length n×m and a dimension attribute.

2. Triplet format:

three vectors of length z, (i, j, aij) and a dimension attribute.

3. Compressed sparse row (CSR) format:

eliminate redundant row indices.

Storage Formats

9

Let A = (aij) ∈ Rn×m and z the number of its nonzero elements.

1. Naive/“traditional”/classic format:

one vector of length n×m and a dimension attribute.

2. Triplet format:

three vectors of length z, (i, j, aij) and a dimension attribute.

3. Compressed sparse row (CSR) format:

eliminate redundant row indices.

4. and about 10 more . . .

Storage Formats, Example

10

A =

1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6

0.7 0.8 0 4 0
0.9 0 0.0 0 5

column

ro
w

1 2 3 4 5

5
4

3
2

1

Storage Formats, Example

10

A =

1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6

0.7 0.8 0 4 0
0.9 0 0.0 0 5

column

ro
w

1 2 3 4 5

5
4

3
2

1

Naive/traditional/classic:

1, .4, 0, .7, .9, .1, 2, 0, .8, 0, 0, 0, 3, 0, .0, .2, .5, 0, 4, 0, .3, 0, .6, 0, 5

Storage Formats, Example

11

A =

1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6

0.7 0.8 0 4 0
0.9 0 0.0 0 5

column

ro
w

1 2 3 4 5

5
4

3
2

1

Triplet:
i : 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5

Storage Formats, Example

12

A =

1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6

0.7 0.8 0 4 0
0.9 0 0.0 0 5

column

ro
w

1 2 3 4 5

5
4

3
2

1

i : 1 2 3 4 5
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5

Storage Formats, Example

13

A =

1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6

0.7 0.8 0 4 0
0.9 0 0.0 0 5

column

ro
w

1 2 3 4 5

5
4

3
2

1

CSR:
ptr : 1 5 8 10 13 16
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5

Compressed Sparse Row Format

14

1. the nonzero values row by row

2. the (ordered) column indices of nonzero values

3. the position in the previous two vectors corresponding to new

rows, given as pointers

4. the column dimension of the matrix.

CSR:
ptr : 1 5 8 10 13 16
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5

(Dis)Advantages

15

1. Naive format:

No savings in storage and computation (for sparse matrices)

Status quo

(Dis)Advantages

15

1. Naive format:

No savings in storage and computation (for sparse matrices)

Status quo

2. Triplet format:

Savings in storage and computation for sparse matrices

Loss in storage and computation for full matrices

Intuitive

(Dis)Advantages

15

1. Naive format:

No savings in storage and computation (for sparse matrices)

Status quo

2. Triplet format:

Savings in storage and computation for sparse matrices

Loss in storage and computation for full matrices

Intuitive

3. Compressed sparse row (CSR) format:

Apart from intuitive, same as triplet

(Dis)Advantages

15

1. Naive format:

No savings in storage and computation (for sparse matrices)

Status quo

2. Triplet format:

Savings in storage and computation for sparse matrices

Loss in storage and computation for full matrices

Intuitive

3. Compressed sparse row (CSR) format:

Apart from intuitive, same as triplet

Faster element access

Available algorithms

Arbitrary choice for “dimension”

Implications

16

With a new storage format new “algorithms” are required . . .

Is it worthwhile???

Timing

17

Setup:

R> timing <- function(expr)

+ as.vector(system.time(for (i in 1:N) expr)[1])

R> N <- 1000 # how many operations

R> n <- 999 # matrix dimension

R> cutoff <- 0.9 # what will be set to 0

R> A <- array(runif(n^2), c(n,n))

R> A[A < cutoff] <- 0

R> S <- somecalltomagicfunctiontogetsparseformat(A)

Compare timing for different operations on A and S.

Timing

18

R> timing(A + sqrt(A))

[1] 0.058

R> timing(S + sqrt(S))

[1] 0.061

R> timing(AtA <- t(A) %*% A)

[1] 0.467

R> timing(StS <- t(S) %*% S)

[1] 4.222

Timing

19

R> timing(A[1,2] <- .5)

[1] 0.007

R> timing(A[n,n-1] <- .5)

[1] 0.001

R> timing(S[1,2] <- .5)

[1] 0.018

R> timing(S[n,n-1] <- .5)

[1] 0.012

Timing

20

R> timing(solve(AtA, rep(1,n)))

[1] 1.116

R> timing(solve(StS, rep(1,n)))

[1] 1.51

R> timing(chol(AtA))

[1] 0.488

R> timing(chol(StS))

[1] 1.504

Timing

20

R> timing(solve(AtA, rep(1,n)))

[1] 1.116

R> timing(solve(StS, rep(1,n)))

[1] 1.51

R> timing(chol(AtA))

[1] 0.488

R> timing(chol(StS))

[1] 1.504

Is it really worthwhile? What is going on?

Timing

21

Timing

22

Timing

23

With cutoff 0.99:

R> timing(AtA <- t(A) %*% A)

[1] 0.106

R> timing(StS <- t(S) %*% S)

[1] 0.089

R> timing(chol(AtA))

[1] 0.494

R> timing(chol(StS))

[1] 0.551

Timing

24

Timing

25

With cutoff 0.99:

R> timing(AtA <- t(A) %*% A)

[1] 0.059

R> timing(StS <- t(S) %*% S)

[1] 0.002

R> timing(chol(AtA))

[1] 0.466

R> timing(chol(StS))

[1] 0.007

Timing

26

Implications

27

With a new storage format new “algorithms” are required . . .

Is it worthwhile??? Yes!

Implications

27

With a new storage format new “algorithms” are required . . .

Is it worthwhile??? Yes!

Especially since

spam: R package for sparse matrix algebra.

28

Some slides about spam?

. . . see inlet one.

Sparse Matrices in Statistics

29

Where do large matrices occur?

• Location matrices

• Design matrices

Sparse Matrices in Statistics

29

Where do large matrices occur?

• Location matrices

• Design matrices

• Covariance matrices

• Precision matrices

Sparse Matrices in Statistics

30

• Covariance matrices:

Compactly supported covariance functions

Tapering

• Precision matrices:

(Gaussian) Markov random fields

(Tapering???)

We have symmetric positive definite (spd) matrices.

31

Some slides about tapering?

. . . see inlet two.

Positive Definite Matrices

32

A (large dimensional) covariance (often) appears in:

• drawing from a multivariate normal distribution

• calculating/maximizing the (log-)likelihood

• linear/quadratic Discrimination analysis

• PCA, EOF, . . .

But all boils down to solving a linear system and

possibly calculating the determinant . . .

Sparse PCA is sparse in a different sense . . .

Solving Linear Systems

33

To solve the system Ax = b, we

• perform a Cholesky factorisation A = UTU

• solve two triangular systems UTz = b and Ux = z

But we need to “ensure” that U is as sparse as possible!

Solving Linear Systems

33

To solve the system Ax = b, we

• perform a Cholesky factorisation A = UTU

• solve two triangular systems UTz = b and Ux = z

But we need to “ensure” that U is as sparse as possible!

Permute the rows and columns of A: PTAP = UTU.

spam performs Cholesky factorization very efficiently!

Determinant

34

det(C) = det(UT) det(U) =
n∏

i=1

U2
ii

Sparse Matrices and fields

35

• fields is not bound to a specific sparse matrix format

• All heavy lifting is done in mKrig or Krig.engine.fixed

• For a specific sparse format, requires the methods:

chol, backsolve, forwardsolve and diag

as well as elementary matrix operations

need to exist

• If available uses operators to handle diagonal matrices quickly

 The covariance matrix has to stem from particular class.

Sparse Matrices and fields

35

• fields is not bound to a specific sparse matrix format

• All heavy lifting is done in mKrig or Krig.engine.fixed

• For a specific sparse format, requires the methods:

chol, backsolve, forwardsolve and diag

as well as elementary matrix operations

need to exist

• If available uses operators to handle diagonal matrices quickly

 The covariance matrix has to stem from particular class.

fields uses spam as default package!

Example

36

With appropriate covariance function:

R> x <- USprecip[precipsubset,1:2] # locations

R> Y <- USprecip[precipsubset,4] # anomaly

R> lon <- seq(-125, to=-68, by=blat)

R> lat <- seq(24.5, to=49, by=blat)

R> pred.x <- expand.grid(lon,lat)

R> out <- mKrig(x,Y, m=1, cov.function="wendland.cov")

R> pred.out <- predict(out, xnew=pred.x)

Example

37

How Big is Big?

38

Upper limit to create a large matrix is the minimum of:

(1) available memory (machine and OS/shell dependent)

Error: ’cannot allocate vector of size’

(2) addressing capacity (231 − 1)

Error: ’cannot allocate vector of length’

However, R is based on passing by value, calls create local copies

(often 3–4 times the space of the object is used).

R> help("Memory-limits")

And Beyond?

39

Parallelization:

nws, snow, Rmpi, . . .

Memory “Outsourcing”:

Matrices are not (entirely) kept in memory:

ff, filehash, biglm, . . .

(S+ has the library BufferedMatrix)

And Now?

40

And Now?

40

Mixer!!

