
A Bayesian view of climate change:

assessing uncertainties of general

circulation model projections

The International Graduate Summer School on

Statistics and Climate Modeling

NCAR – August 2008

Reinhard Furrer



2

We present probabilistic projections for
spatial patterns of future temperature change
using a hierarchical Bayesian model.

Collaboration with: Reto Knutti - ETHZ

Stephan Sain, Doug Nychka, Claudia Tebaldi,

Jerry Meehl, Linda Mearns, . . . - NCAR

NSF DMS-0621118



Outline of the Talk
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• Climate projection data

• A simple hierarchical Bayesian model

• Presenting uncertainty results

• Model extensions



Studying Climate with AOGCMs
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AOGCM: Atmosphere-Ocean General Circulation Models

Numerical models that calculate the detailed large-scale

motions of the atmosphere and the ocean explicitly from

hydrodynamical equations.
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Source: AR4, IPCC
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Data
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Data provided for the Fourth Assessment Report of IPCC:

• 21 models (CCSM, GFDL, HADCM, PCM, . . . )

• Around 2.8◦ × 2.8◦ resolution (8192 data points, T42)

• Different scenarios (A2: “business as usual”, A1B, B1)

• Temperature, precipitation, pressure, winds. . .
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Data provided for the Fourth Assessment Report of IPCC:

• 21 models (CCSM, GFDL, HADCM, PCM, . . . )

• Around 2.8◦ × 2.8◦ resolution (8192 data points, T42)

aggregate to 5◦ × 5◦ and omit the “poles” (3264 points).

• Different scenarios (A2: “business as usual”, A1B, B1)

• Temperature, precipitation, pressure, winds. . .

seasonal averages over years 1980–1999 and 2080–2099
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Given AOGCM output construct a statistical model to describe

climate change probabilistically while accounting for all (most?)

underlying uncertainties.
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Given AOGCM output construct a statistical model to describe

climate change probabilistically while accounting for all (most?)

underlying uncertainties.

For models i = 1, . . . , N , stack the gridded seasonal temperature

into vectors:

Xi = simulated present climatei

Yi = simulated future climatei

PDF and probabilistic description of climate change

Di = Yi −Xi



Hierarchical Model
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Separate the statistical modeling of a complex process

into different levels consisting of:

Data level: Classical geostatistics (variogram, kriging)

Process level: Multivariate analysis (EOF, PCA)

Prior level: Bayesian statistics (priors, MCMC)

 hierarchical Bayesian modeling
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{ Data level | Process level | Prior level }

Di = Yi −Xi = simulated climate change
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{ Data level | Process level | Prior level }

Di = Yi −Xi = simulated climate change

= large scale structure + small scale structure

= climate signal + model bias and internal variability

= µi + εi

Di | µi, φi
iid∼ Nn( µi, φiΣ ) φi > 0 i = 1, . . . , N

for given Σ



Process Level
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{ Data level | Process level | Prior level }

µi = Mθi

for given M
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{ Data level | Process level | Prior level }

µi = Mθi

for given M

θi | ν, ψi
iid∼ Np( ν, ψiI ) ψi > 0 i = 1, . . . , N



Prior Level
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{ Data level | Process level | Prior level }

φi
iid∼ IΓ( ξ1, ξ2 ) ξ1, ξ2 > 0 i = 1, . . . , N

ψi
iid∼ IΓ( ξ3, ξ4 ) ξ3, ξ4 > 0 i = 1, . . . , N

ν ∼ Np( 0, ξ5I ) ξ5 > 0

for given ξ1, . . . , ξ5



Initial Parameters
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For the different levels we need to specify:

Data level Covariance model for φiΣ:

spatial coherence of internal variability and bias

Process level Basis functions used in M:

practical decompostion of possible signals,

dimension reduction

Prior level Hyperparameters ξ1, ξ2, ξ3, ξ4, ξ5:

tuning parameters



Covariance Model for φiΣ
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{ Data level | Process level | Prior level }

For the covariance matrices φiΣ, we need positive definite

functions on the sphere (by restricting one on R3 to S2):

c(h;φi, τ) = φi exp
(
−τ sin(h/2)

)
Individual variances φi are modelled.

Common range τ is choosen according to an “empirical Bayes”

approach.



Basis Functions Used in M
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{ Data level | Process level | Prior level }

1. Spherical harmonics (here shown 4 out of 121)
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{ Data level | Process level | Prior level }

1. Spherical harmonics

2. Indicator functions (28)



Hyperparameters ξ1, . . . , ξ5
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{ Data level | Process level | Prior level }

To make sure that variability around the truth

is smaller than bias and internal variability

φi > ψi

Choose ξ1, ξ2, ξ3 small, ξ4 ∈ [ 1, 2.5 ], ξ5 large.



PDF of Climate Change
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The goal is the (posterior) PDF of the climate change signal

given the AOGCM data and model parameters:

[ climate change | AOGCM data,model parameters . . . ]

[ Mν | D1, . . . ,DN , . . . ]
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The goal is the (posterior) PDF of the climate change signal

given the AOGCM data and model parameters:

[ climate change | AOGCM data,model parameters . . . ]

[ Mν | D1, . . . ,DN , . . . ]

Via Bayes’ theorem, the (posterior) PDF is

[ process | data, parameters ]

∝ [ data | process, parameters ]

· [ process | parameters ] · [ parameters ]



Computational Approach
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No closed form of the posterior density.

Use a computational approach: Markov Chain Monte Carlo

(MCMC), here a Gibbs sampler.

1. Express the distribution of each parameter conditional

on everything else (full conditionals).

2. Cycle through the parameters: draw a new value based on the

full conditional and the current values of the other parameters.

3. Repeat, . . .



Full Conditionals
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Full conditionals for all parameters have been derived:

ν | . . . ∼ Np(A−1b, A−1)

A =
1

ξ5
I +

N∑
i=1

1

ψi
I b =

N∑
i=1

1

ψi
θi

i = 1, . . . , N : θi | . . . ∼ Np(A−1b, A−1)

A =
1

ψ i
I +

1

φi
MTΣ−1M b =

1

ψ i
ν +

1

φi
MTΣ−1Di

i = 1, . . . , N : φi | . . . ∼ IΓ
(
ξ1 +

n

2
, ξ2 +

1

2
(Di −Mθi)

TΣ−1(Di −Mθi)
)

i = 1, . . . , N : ψi | . . . ∼ IΓ
(
ξ3 +

p

2
, ξ4 +

1

2
(θi − ν)T(θi − ν)

)



Full Conditionals
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Full conditionals for all parameters have been derived:

ν | . . . ∼ Np( , )

i = 1, . . . , N : θi | . . . ∼ Np( , )

i = 1, . . . , N : φi | . . . ∼ IΓ
(

,

)
i = 1, . . . , N : ψi | . . . ∼ IΓ

(
,

)



Computational Aspects
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• Gibbs sampler programmed in R

free software environment for statistical computing and graphics

• Run 20000 iterations

10000 burn-in, keep every 20th, takes a few hours

• Visual/primitive inspection of convergence
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• Gibbs sampler programmed in R

free software environment for statistical computing and graphics

• Run 20000 iterations

10000 burn-in, keep every 20th, takes a few hours

• Visual/primitive inspection of convergence
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Posterior Draws
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Temperature Change Quantiles
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Exceedance Probabilities
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Exceedance Probabilities
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Exceedance Fractions
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Regional Assessment
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Global Assessment
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Source: AR4, IPCC



Model Extensions
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• Use “more” data

 ensemble runs, model bias and internal variability,

model present and future individually, . . .

• Use AOGCM specific weighting

 performance, “core” simililarities, . . .

• Parameterize covariance matrices

 built in range, nonstationarity, . . .

• Building bi-/multivariate models

 use temperature for precipitation prediction, . . .

• Address computational complexity

 sparsity, GMRF, Metropolis-Hastings steps, . . .
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