A Bayesian view of climate change: assessing uncertainties of general circulation model projections

The International Graduate Summer School on Statistics and Climate Modeling

• NCAR – August 2008

F

Reinhard Furren min min

We present probabilistic projections for spatial patterns of future temperature change using a hierarchical Bayesian model.

Collaboration with: Reto Knutti - ETHZ

Stephan Sain, Doug Nychka, Claudia Tebaldi, Jerry Meehl, Linda Mearns, ... - NCAR

NSF DMS-0621118

Outline of the Talk

- Climate projection data
- A simple hierarchical Bayesian model
- Presenting uncertainty results
- Model extensions

Studying Climate with AOGCMs

AOGCM: Atmosphere-Ocean General Circulation Models

Numerical models that calculate the detailed large-scale motions of the atmosphere and the ocean explicitly from hydrodynamical equations.

Studying Climate with AOGCMs

AOGCM: Atmosphere-Ocean General Circulation Models

Studying Climate with AOGCMs

AOGCM: Atmosphere-Ocean General Circulation Models

CCSM3 DJF temperature change 2080-2100 vs 1980-2000

Models Do Not Agree

CCSM3 DJF temp change difference to sample mean (21 models)

Models Do Not Agree

Source: AR4, IPCC

Quantifying Uncertainty

Source: AR4, IPCC

Quantifying Uncertainty

Data

Data provided for the Fourth Assessment Report of IPCC:

- 21 models (CCSM, GFDL, HADCM, PCM, ...)
- Around $2.8^{\circ} \times 2.8^{\circ}$ resolution (8192 data points, T42)

- Different scenarios (A2: "business as usual", A1B, B1)
- Temperature, precipitation, pressure, winds...

Data

Data provided for the Fourth Assessment Report of IPCC:

- 21 models (CCSM, GFDL, HADCM, PCM, ...)
- Around $2.8^{\circ} \times 2.8^{\circ}$ resolution (8192 data points, T42) aggregate to $5^{\circ} \times 5^{\circ}$ and omit the "poles" (3264 points).
- Different scenarios (A2: "business as usual", A1B, B1)
- Temperature, precipitation, pressure, winds... seasonal averages over years 1980–1999 and 2080–2099

Statistical Model

Given AOGCM output construct a statistical model to describe climate change probabilistically while accounting for all (most?) underlying uncertainties.

Statistical Model

Given AOGCM output construct a statistical model to describe climate change probabilistically while accounting for all (most?) underlying uncertainties.

For models i = 1, ..., N, stack the gridded seasonal temperature into vectors:

 $\mathbf{X}_i = \text{simulated present climate}_i$

 $\mathbf{Y}_i = \text{simulated future climate}_i$

Hierarchical Model

Separate the statistical modeling of a complex process into different levels consisting of:

Data level: Classical geostatistics (variogram, kriging)Process level: Multivariate analysis (EOF, PCA)Prior level: Bayesian statistics (priors, MCMC)

→ hierarchical Bayesian modeling

{ Data level | Process level | Prior level }

 $\mathbf{D}_i = \mathbf{Y}_i - \mathbf{X}_i = \text{simulated climate change}$

{ Data level | Process level | Prior level }

 $\mathbf{D}_i = \mathbf{Y}_i - \mathbf{X}_i$ = simulated climate change = large scale structure + small scale structure

{ Data level | Process level | Prior level }

 $\mathbf{D}_i = \mathbf{Y}_i - \mathbf{X}_i = \text{simulated climate change}$

- = large scale structure + small scale structure
- = climate signal + model bias and internal variability

{ Data level | Process level | Prior level }

Process Level

{ Data level | Process level | Prior level }

 $\mu_i = \mathbf{M}\theta_i$ for given **M**

Process Level

{ Data level | Process level | Prior level }

 $\mu_i = \mathbf{M} \theta_i$ for given \mathbf{M}

 $\boldsymbol{\theta}_i \mid \boldsymbol{\nu}, \ \psi_i \stackrel{\text{iid}}{\sim} \mathcal{N}_p(\boldsymbol{\nu}, \ \psi_i \mathbf{I}) \qquad \psi_i > 0 \qquad i = 1, \dots, N$

Prior Level

{ Data level | Process level | Prior level }

 $\begin{array}{ll} \phi_i \stackrel{\text{iid}}{\sim} \mbox{I} \Gamma(\xi_1, \xi_2) & \xi_1, \xi_2 > 0 & i = 1, \dots, N \\ \\ \psi_i \stackrel{\text{iid}}{\sim} \mbox{I} \Gamma(\xi_3, \xi_4) & \xi_3, \xi_4 > 0 & i = 1, \dots, N \\ \\ \nu &\sim \mathcal{N}_p(\mathbf{0}, \xi_5 \mathbf{I}) & \xi_5 > 0 \end{array}$

for given ξ_1, \ldots, ξ_5

Initial Parameters

For the different levels we need to specify:

Data level Covariance model for $\phi_i \Sigma$: spatial coherence of internal variability and bias

Process level Basis functions used in M: practical decomposition of possible signals, dimension reduction

Prior level Hyperparameters $\xi_1, \xi_2, \quad \xi_3, \xi_4, \quad \xi_5$: tuning parameters

Covariance Model for $\phi_i \Sigma$

{ Data level | Process level | Prior level }

For the covariance matrices $\phi_i \Sigma$, we need positive definite functions on the sphere (by restricting one on \mathbb{R}^3 to \mathbb{S}^2):

$$c(h;\phi_i,\tau) = \phi_i \exp\left(-\tau \sin(h/2)\right)$$

Individual variances ϕ_i are modelled.

Common range τ is choosen according to an "empirical Bayes" approach.

Basis Functions Used in M

{ Data level | Process level | Prior level }

1. Spherical harmonics (here shown 4 out of 121)

Basis Functions Used in M

{ Data level | Process level | Prior level }

- 1. Spherical harmonics
- 2. Indicator functions (28)

Hyperparameters ξ_1, \ldots, ξ_5

{ Data level | Process level | Prior level }

To make sure that variability around the truth is smaller than bias and internal variability

 $\phi_i > \psi_i$

Choose ξ_1, ξ_2, ξ_3 small, $\xi_4 \in [1, 2.5]$, ξ_5 large.

PDF of Climate Change

The goal is the (posterior) PDF of the climate change signal given the AOGCM data and model parameters:

[climate change | AOGCM data, model parameters ...]

[M u	D_1,\ldots,D_N ,	· · · ·]	
	· · · ·			

PDF of Climate Change

The goal is the (posterior) PDF of the climate change signal given the AOGCM data and model parameters:

[climate change | AOGCM data, model parameters ...]

[$M\nu$ | D_1, \dots, D_N , ...] Via Bayes' theorem, the (posterior) PDF is

Computational Approach

No closed form of the posterior density.

Repeat, ...

Use a computational approach: Markov Chain Monte Carlo (MCMC), here a Gibbs sampler.

- 1. Express the distribution of each parameter conditional on everything else (full conditionals).
- 2. Cycle through the parameters: draw a new value based on the full conditional and the current values of the other parameters.

Full Conditionals

Full conditionals for all parameters have been derived:

$$\nu \mid \dots \sim \mathcal{N}_{p}(\mathbf{A}^{-1}\mathbf{b}, \mathbf{A}^{-1})$$

$$\mathbf{A} = \frac{1}{\xi_{5}}\mathbf{I} + \sum_{i=1}^{N} \frac{1}{\psi_{i}}\mathbf{I} \qquad \mathbf{b} = \sum_{i=1}^{N} \frac{1}{\psi_{i}}\theta_{i}$$

$$i = 1, \dots, N: \ \theta_{i} \mid \dots \sim \mathcal{N}_{p}(\mathbf{A}^{-1}\mathbf{b}, \mathbf{A}^{-1})$$

$$\mathbf{A} = \frac{1}{\psi_{i}}\mathbf{I} + \frac{1}{\phi_{i}}\mathbf{M}^{\mathsf{T}}\Sigma^{-1}\mathbf{M} \qquad \mathbf{b} = \frac{1}{\psi_{i}}\nu + \frac{1}{\phi_{i}}\mathbf{M}^{\mathsf{T}}\Sigma^{-1}\mathbf{D}_{i}$$

$$i = 1, \dots, N: \ \phi_{i} \mid \dots \sim \mathrm{Ir}\left(\xi_{1} + \frac{n}{2}, \xi_{2} + \frac{1}{2}(\mathbf{D}_{i} - \mathbf{M}\theta_{i})^{\mathsf{T}}\Sigma^{-1}(\mathbf{D}_{i} - \mathbf{M}\theta_{i})\right)$$

$$i = 1, \dots, N: \ \psi_{i} \mid \dots \sim \mathrm{Ir}\left(\xi_{3} + \frac{p}{2}, \xi_{4} + \frac{1}{2}(\theta_{i} - \nu)^{\mathsf{T}}(\theta_{i} - \nu)\right)$$

Full Conditionals

Full conditionals for all parameters have been derived:

$$oldsymbol{
u} \mid \ldots \sim \mathcal{N}_p(\quad,\quad)$$

$$i = 1, \dots, N$$
: $\boldsymbol{\theta}_i \mid \dots \sim \mathcal{N}_p(\quad,\quad)$

$$i = 1, \dots, N$$
: $\phi_i \mid \dots \sim I\Gamma \left(\quad , \\ i = 1, \dots, N$: $\psi_i \mid \dots \sim I\Gamma \left(\quad , \right)$

Computational Aspects

- Gibbs sampler programmed in R free software environment for statistical computing and graphics
- Run 20000 iterations
 10000 burn-in, keep every 20th, takes a few hours
- Visual/primitive inspection of convergence

Computational Aspects

• Visual/primitive inspection of convergence

Posterior Draws

MPI ECHAM5

Temperature Change Quantiles

20% quantile of temperature change [°C] (2080-2100 vs 1980-2000)

Exceedance Probabilities

Probability of exceeding 2°C temperature change (2080-2100 vs 1980-2000)

DJF

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Exceedance Probabilities

10-11

Exceedance Fractions

32

Regional Assessment

33

Global Assessment

 \mathbf{a}

Source: AR4, IPCC

Model Extensions

- Use "more" data
 - ↔ ensemble runs, model bias and internal variability, model present and future individually, . . .
- Use AOGCM specific weighting
 - → performance, "core" simililarities, ...
- Parameterize covariance matrices
 ~> built in range, nonstationarity, ...
- Building bi-/multivariate models
 v> use temperature for precipitation prediction, ...

Address computational complexity \longrightarrow sparsity, GMRF, Metropolis-Hastings steps, ...

References

Furrer, Knutti, Sain, Nychka, Meehl, (2007). Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis, *Geophys. Res. Lett.*, 34, L06711, doi:10.1029/2006GL027754.

Furrer, Sain, Nychka, Meehl, (2007). Multivariate Bayesian Analysis of Atmosphere-Ocean General Circulation Models, to appear in *Environmental and Ecological Statistics*.

Furrer, Sain, (2007). Spatial Model Fitting for Large Datasets with Applications to Climate and Microarray Problems, submitted to *Statistics and Computing*.

Sain, Furrer, Cressie, (2007). Combining Regional Climate Model Output via a Multivariate Markov Random Field Model. 56th Session of the International Statistical Institute, Lisbon, Portugal.