A Bayesian view of climate change:
assessing uncertainties of general

circulation model projections
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We present probabilistic projections for
spatial patterns of future temperature change
using a hierarchical Bayesian model.

Collaboration with: Reto Knutti - ETHZ

Stephan Sain, Doug Nychka, Claudia Tebaldi,
Jerry Meehl, Linda Mearns, ... - NCAR




Outline of the Talk

e Climate projection data
e A simple hierarchical Bayesian model

e Presenting uncertainty results

e Model extensions




Studying Climate with AOGCMSs

AOGCM: Atmosphere-Ocean General Circulation Models

Numerical models that calculate the detailed l|arge-scale
motions of the atmosphere and the ocean explicitly from
hydrodynamical equations.
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Studying Climate with AOGCMSs

AOGCM: Atmosphere-Ocean General Circulation Models

CCSM3 DJF temperature change 2080-2100 vs 1980-2000
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Models Do Not Agree

CCSM3 DJF temp change difference to sample mean (21 models)
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Quantifying

Relative Probability
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Quantifying Uncertainty
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Data

Data provided for the Fourth Assessment Report of IPCC:

e 21 models (CCSM, GFDL, HADCM, PCM, ...)

e Around 2.8° x 2.8° resolution (8192 data points, T42)

e Different scenarios (A2: “business as usual”, A1B, B1)

e [emperature, precipitation, pressure, winds. ..




Data

Data provided for the Fourth Assessment Report of IPCC:

e 21 models (CCSM, GFDL, HADCM, PCM, ...)

e Around 2.8° x 2.8° resolution (8192 data points, T42)
aggregate to 5° x 5° and omit the “poles” (3264 points).

e Different scenarios (A2: “business as usual”, A1B, B1)

e [emperature, precipitation, pressure, winds. ..
seasonal averages over years 1980—1999 and 2080—2099




Statistical Model

Given AOGCM output construct a statistical model to describe
climate change probabilistically while accounting for all (most?)
underlying uncertainties.




Statistical Model

Given AOGCM output construct a statistical model to describe
climate change probabilistically while accounting for all (most?)
underlying uncertainties.

For models + = 1,..., N, stack the gridded seasonal temperature
into vectors:

X; = simulated present climate;
Y, = simulated future climate;

PDF and probabilistic description of climate change




Hierarchical Model

Separate the statistical modeling of a complex process
into different levels consisting of:

Data level: Classical geostatistics (variogram, kriging)
Process level: Multivariate analysis (EOF, PCA)

Prior level: Bayesian statistics (priors, MCMCQ)

~ hierarchical Bayesian modeling




Data Level

{ Data level | Process level | Prior level }

D, =Y, — X, =simulated climate change
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Data Level

{ Data level | Process level | Prior level }

D, =Y, — X, =simulated climate change

large scale structure + small scale structure

climate signal + model bias and internal variability
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Process Level

{ Data level | Process level | Prior level }

p; = M6,
for given M




Process Level

{ Data level | Process level | Prior level }

p; = M6,
for given M
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Prior Level

{ Data level | Process level | Prior level }
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Initial Parameters

For the different levels we need to specify:

Data level Covariance model for ¢;3::
spatial coherence of internal variability and bias

Process |level Basis functions used in M:
practical decompostion of possible signals,
dimension reduction

Prior level Hyperparameters &1,&2, &3,&, &s:
= tuning parameters




Covariance Model for ¢;=

{ Data level | Process level | Prior level }

For the covariance matrices ¢;3, we need positive definite
functions on the sphere (by restricting one on R3 to S2):

c(h; ¢i,7) = b; exp(~7sin(h/2))

Individual variances ¢; are modelled.

Common range 7 is choosen according to an ‘“empirical Bayes
approach.




Basis Functions Used in M

{ Data level | Process level | Prior level }

1. Spherical harmonics (here shown 4 out of 121)




Basis Functions Used In

{ Data level | Process level | Prior level }

1. Spherical harmonics

2. Indicator functions (28)




Hyperparameters &1, ...,¢&s

{ Data level | Process level | Prior level }

To make sure that variability around the truth
IS smaller than bias and internal variability

i > U,

Choose £1,&5,&3 small, &4 € [1, 2.5], &5 large.




PDF of Climate Change

The goal is the (posterior) PDF of the climate change signal
given the AOGCM data and model parameters:

[ climate change | AOGCM data, model parameters ... ]

[ My | Di,...,Dy , ]




PDF of Climate Change

The goal is the (posterior) PDF of the climate change signal
given the AOGCM data and model parameters:

[ climate change | AOGCM data, model parameters ... ]
[ Muv | Di,...,Dy , ]

Via Bayes' theorem, the (posterior) PDF is

[ process | data, parameters |
x [ data | process, parameters |
- [ process | parameters | - [ parameters |




Computational Approach

No closed form of the posterior density.

Use a computational approach: Markov Chain Monte Carlo
(MCMCQC), here a Gibbs sampler.

1. Express the distribution of each parameter conditional
on everything else (full conditionals).

2. Cycle through the parameters: draw a new value based on the
full conditional and the current values of the other parameters.

3. Repeat, ...




Full Conditionals

Full conditionals for all parameters have been derived:
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Full Conditionals

Full conditionals for all parameters have been derived:




Computational Aspects

e Gibbs sampler programmed in R
free software environment for statistical computing and graphics

e Run 20000 iterations
10000 burn-in, keep every 20th, takes a few hours

e Visual/primitive inspection of convergence




Computational Aspects
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e Visual/primitive inspection of convergence

and graphics



Posterior Draws
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Temperature Change Quantiles

20% quantile of temperature change [°C]
e (2080-2100 vs 1980-2000)
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Exceedance Probabilities

Probability of exceeding 2°C temperature change

DJF

(2080-2100 vs 1980-2000)
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Exceedance Fractions
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Regional Assessment




Global Assessment

¢+ B12020-2029

Knutti 2003
— Wigley 2001
Stott 2006
Harris 2006
A2 2090-2099 Furrer 2007

AR4 AOGCMs




Model Extensions

e Use "more”’ data
~~ ensemble runs, model bias and internal variability,
model present and future individually, . . .

e Use AOGCM specific weighting
~ performance, ‘“core” simililarities, . ..

e Parameterize covariance matrices
~~ built in range, nonstationarity, ...

e Building bi-/multivariate models
~~ use temperature for precipitation prediction, ...

| i-; Address computational complexity
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