
Inlet one:

spam: a SparseMatrix RPackage

with Emphasis on MCMC Methods for

Gaussian Markov Random Fields

NCAR – August 2008

Reinhard Furrer



What is spam?

2

• an R package for sparse matrix algebra

– publicly available from CRAN

– platform independent and documented



What is spam?

2

• an R package for sparse matrix algebra

– publicly available from CRAN

– platform independent and documented

• storage economical and fast

– uses “old Yale sparse format”

– most routines are in Fortran, adapted for spam

– balance between readability and overhead

– flags for “expert” users



What is spam?

2

• an R package for sparse matrix algebra

– publicly available from CRAN

– platform independent and documented

• storage economical and fast

– uses “old Yale sparse format”

– most routines are in Fortran, adapted for spam

– balance between readability and overhead

– flags for “expert” users

• versatile, intuitive and simple

– wrap an as.spam( ) and go

– S4 and S3 syntax



What is spam?

2

• an R package for sparse matrix algebra

– publicly available from CRAN

– platform independent and documented

• storage economical and fast

– uses “old Yale sparse format”

– most routines are in Fortran, adapted for spam

– balance between readability and overhead

– flags for “expert” users

• versatile, intuitive and simple

– wrap an as.spam( ) and go

– S4 and S3 syntax

• situated between SparseM and Matrix



What is spam?

3

Package: spam

Version: 0.15-0

Date: 2008-06-10

Author: Reinhard Furrer

Maintainer: Reinhard Furrer <rfurrer@mines.edu>

Depends: R (>= 2.4), methods

Suggests: SparseM (>= 0.72), Matrix

Description: Set of function for sparse matrix algebra.

Differences with SparseM/Matrix are:

(1) we only support (essentially) one sparse matrix format,

(2) based on transparent and simple structure(s),

(3) tailored for MCMC calculations within GMRF.

(4) S3 and S4 like-"compatible" ... and it is fast.

LazyLoad: Yes

LazyData: Yes

License: GPL | file LICENSE

Title: SPArse Matrix

URL: http://www.mines.edu/~rfurrer/software/spam/



Representation of Sparse Matrices

4

spam defines a S4 class spam containing the vectors:

“entries”, “colindices”, “rowpointers” and ”dimension”.

R> slotNames("spam")

[1] "entries" "colindices" "rowpointers" "dimension"

R> getSlots( "spam")

entries colindices rowpointers dimension

"numeric" "integer" "integer" "integer"



Representation of Sparse Matrices

5

R> A

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0 0.1 0 0.2 0.3

[2,] 0.6 2.0 0 0.5 0.0

[3,] 0.0 0.0 3 0.0 0.6

[4,] 0.7 0.8 0 4.0 0.0

[5,] 0.9 0.0 1 0.0 5.0

Class ’spam’

R> slotNames(A)

[1] "entries" "colindices" "rowpointers" "dimension"

R> A@entries

[1] 1.0 0.1 0.2 0.3 0.6 2.0 0.5 3.0 0.6 0.7 0.8 4.0 0.9 1.0 5.0

R> A@colindices

[1] 1 2 4 5 1 2 4 3 5 1 2 4 1 3 5

R> A@rowpointers

[1] 1 5 8 10 13 16

R> A@dimension

[1] 5 5



Creating Sparse Matrices

6

Similar coercion techniques as with matrix:

• spam(...)

• as.spam(...)

Special functions:

• diag.spam(...)

• nearest.dist(...)



Methods for spam

7

• Similar behavior as with matrices

plot; dim; determinant; %*%; +; ...

• Slightly enhanced behavior

print; dim<-; chol;

• Specific behavior

Math; Math2; Summary; ...

• New methods

display; ordering;



Create Covariance Matrices

8

Covariance matrix:

nearest.dist and applying a covariance function:

R> C <- nearest.dist(x)

R> C@entries <- Wendland( C@entries, dim=2, k=1)

Precision matrix (GMRF):

— regular grids: nearest.dist with different cutoffs

R> diag.spam(n) + b1 * nearest.dist(x, delta=1) +

+ b2 * nearest.dist(x, delta=sqrt(2))

— irregular grids: using incidence list and spam



Solving Linear Systems

9

A key feature of spam is to solve efficiently linear systems.

To solve the system Ax = b, we

• perform a Cholesky factorisation A = UTU

• solve two triangular systems UTz = b and Ux = z

But we need to “ensure” that U is as sparse as possible!



Solving Linear Systems

9

A key feature of spam is to solve efficiently linear systems.

To solve the system Ax = b, we

• perform a Cholesky factorisation A = UTU

• solve two triangular systems UTz = b and Ux = z

But we need to “ensure” that U is as sparse as possible!

Permute the rows and columns of A: PTAP = UTU.



Cholesky

10

Some technical details about a Cholesky decomposition:

[1] Determine permutation and

permute the input matrix A to obtain PTAP

[2] Symbolic factorization:

the sparsity structure of U is constructed

[3] Numeric factorization:

the elements of U are computed



Cholesky

11

spam knows Cholesky!

— Several methods to construct permutation matrices P

— update to perform only ‘partial’ Cholesky factors

— Flags for avoiding sanity checks



Cholesky

12



Cholesky

13

5 10 20 50 100 200

L (log scale)

se
co

n
d

s 
(l
o

g
 s

ca
le

)

.0
1

.1
1

1
0

1
0

0

5 10 20 50 100 200

L (log scale)

M
b

yt
e

s 
(l
o

g
 s

ca
le

)

1
1

0
1

0
0

1
0

0
0

Time and memory usage for 101 Cholesky factorizations (solid)

and one factorization and 100 updates (dashed) of a precision

matrix from different sizes L of regular L×L grids with a second

order neighbor structure.

(The precision matrix from L = 200 has L4 = 1.6 · 109 elements)



Cholesky

14

Gain of time and memory usage with different options and ar-

guments in the case of a second order neighbor structure of a

regular 50×50 grid and of the US counties. The time and mem-

ory usage for the generic call chol are 6.2 seconds, 174.5 Mbytes

and 15.1 seconds, 416.6 Mbytes, respectively.

Regular grid US counties
Options or arguments time memory time memory
Using the specific call chol.spam 1.001 0.992 0.954 1.004
Option safemode=c(FALSE,FALSE,FALSE) 0.961 1.002 0.988 0.997
Option cholsymmetrycheck=FALSE 0.568 0.524 0.646 0.493
Passing memory=list(nnzR=..., nnzcolindices=...) 0.969 0.979 0.928 0.972
All of the above 0.561 0.508 0.618 0.490
All of the above and passing pivot=... to chol.spam 0.542 0.528 0.572 0.496
All of the above and option cholpivotcheck=FALSE 0.510 0.511 0.557 0.489
Numeric update only using update 0.132 0.070 0.170 0.063



Options

15

For “experts”, flags to speed up the code . . .

R> noquote(unlist(format(spam.options())) )

eps drop printsize

2.220446e-16 FALSE 100

imagesize trivalues cex

10000 FALSE 1200

safemode dopivoting cholsymmetrycheck

TRUE, TRUE, TRUE TRUE TRUE

cholpivotcheck cholupdatesingular cholincreasefactor

TRUE warning 1.25, 1.25

nearestdistincreasefactor nearestdistnnz

1.25 160000, 400



Limits

16

What can spam not do (yet)?

• LU/SVD decompositions

• Eigendecompositions

• Non double elements

• . . .

But, please, comments to rfurrer@mines.edu!



Reference

17

For example:

Furrer, R. and Sain, S. R. (2008). spam: A Sparse Matrix R

Package with Emphasis on MCMC Methods for Gaussian Markov

Random Fields. Submitted.

Furrer, R. and Sain, S. R. (2008). Spatial Model Fitting for Large

Datasets with Applications to Climate and Microarray Problems.

Statistics and Computing, doi:10.1007/s11222-008-9075-x.


