

Markov Random Fields and Regional Climate Models

Stephan R. Sain

Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO

Supported by NSF ATM/DMS.

Outline

- Overview of Markov random fields.
- Case study I: A multivariate analysis of a regional climate model ensemble.
- Case study II: Spatial extremes.
- Case study III: Functional ANOVA and NARCCAP.

The Movie

(jan2002ncep.mov)

The Sequel

(jan2002models.mov)

Spatial Data

- Let $\mathbf{s} \in \Re^d$ indicate a generic data location in a d-dimensional space.
 - Typically, d = 1, 2, or 3.
- Let s vary over an index set $D \subset \Re^d$ to generate a random field $\{\mathbf{Y}(\mathbf{s}) : \mathbf{s} \in D \subset \Re^d\}$.
 - -Y(s) is an feature observed at location s.
- Three types of spatial data:
 - Geostatistical data
 - Lattice or areal/regional data
 - Point patterns

Geostatistical Data

- Let s vary over an index set $D \subset \Re^d$ to generate a random field $\{\mathbf{Y}(s) : s \in D \subset \Re^d\}$.
 - D is a continuous, fixed set:

* Y(s) can be observed everywhere within D

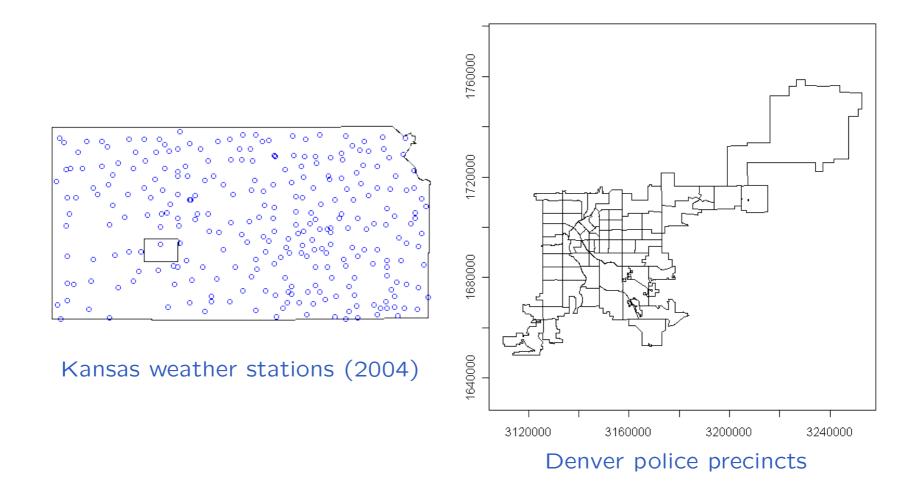
* the points in D are non-stochastic.

- -Y can either be continuous or discrete.
- Generally, some assumption of stationarity is made, a covariance function is adopted, and the goal is to reconstruct the underlying process that generated \mathbf{Y} (Kriging).
 - Covariance is a function of the distance and/or direction between locations.

Lattice Data

- Let s vary over an index set $D \subset \Re^d$ to generate a random field $\{\mathbf{Y}(\mathbf{s}) : \mathbf{s} \in D \subset \Re^d\}$.
- *D* is fixed and discrete, i.e. non-random and countable
- Y can either be continuous or discrete.
- Lattices can be regular, as on a grid, or irregular where there is no predictable pattern.
 - Examples: remote sensing, police precincts, zip-codes, census divisions, etc.
- Also referred to as regional or areal data.

Geostatistical vs Lattice Data



Kriging Lattice Data?

- The goals of a spatial analysis of lattice data can be similar to geostatistical data, i.e. prediction, modeling, etc., but...
- The notation of Y(s) might be somewhat misleading or confusing: is s a point location?
- Often, analysts define a representative point for a lattice site and use traditional geostatistical methods for analysis.
 - Many issues arise, in particular for irregular lattices: arbitrariness of representative points and distances, aggregation (e.g. unequal variances, observations not continuous, etc.), lack of well-defined locations for prediction, etc.
- Need for more formal approaches...

Spatial Autoregressive Models

- Geostatistical methods model spatial dependence through specification of a covariance function based on the distances between points.
- Spatial autoregressive models represent the data at a spatial location as a linear combination of neighboring locations.
 - Spatial dependence is induced through this autoregression and the neighborhood structure in the data.
- Two formulations: simultaneous autoregressive (SAR) models and conditional autoregressive (CAR) models.
 - Unlike temporal autoregressive models, these formulations do not necessarily yield the same model.

A Look Back...

 Consider a simple AR(1) time series model through a simultaneous specification:

$$Z_t = \mu + \rho(Z_{t-1} - \mu) + \epsilon_t, \qquad i = 1, ..., n,$$

where ϵ_t is a white-noise process.

• In matrix form:

$$\mathbf{Z} = \boldsymbol{\mu} + \rho \mathbf{H} (\mathbf{Z} - \boldsymbol{\mu}) + \boldsymbol{\epsilon}$$

where

$$\mathbf{H} = \left(\begin{array}{cc} \mathbf{0}' & \mathbf{0} \\ \mathbf{I} & \mathbf{0} \end{array}\right)$$

A Look Back...

• We can also define the conditional distributions:

$$f(Z_t|Z_{t-1}) \sim \mathcal{N}\left(\rho Z_{t-1}, \sigma^2\right), \quad i = 1, \dots, n.$$

• Both specifications give rise to a joint distribution:

 $\mathrm{Z} \sim \mathcal{N}(oldsymbol{\mu}, \Sigma)$

where

$$\Sigma = \frac{\sigma^2}{1 - \rho^2} \begin{pmatrix} 1 & \rho & \rho^2 & \cdots & \rho^{n-1} \\ \rho & 1 & \rho & \cdots & \rho^{n-2} \\ \rho^2 & \rho & 1 & \cdots & \rho^{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \cdots & 1 \end{pmatrix}$$

SARs

• The SAR model is specified via

$$y_i = \mu_i + \sum_{j=1}^n g_{ij}(y_j - \mu_j) + \epsilon_i, \qquad i = 1, \dots, n,$$

where

$$-\mu_i$$
 is the mean of y_i

- ϵ_i are zero-mean, uncorrelated random shocks
- $-g_{ij}$ are spatial weights
 - * $g_{ii} = 0$
 - * In general, g_{ij} does not have to equal g_{ji} .
 - * Typically, $g_{ij} = 0$ if $j \notin N_i$.

SARs

• In matrix form,

$$Y - \mu = G(Y - \mu) + \epsilon$$

 $(I - G)(Y - \mu) = \epsilon.$

- Some properties:
 - $E[\mathbf{Y}] = \boldsymbol{\mu}$
 - $var[Y] = (I G)^{-1}S(I G')^{-1}$ with $S = var(\epsilon)$ (diagonal)

$$-\operatorname{cov}[\epsilon, \mathbf{Y}] = \operatorname{cov}[\epsilon, (\mathbf{I} - \mathbf{G})^{-1}\epsilon] = (\mathbf{I} - \mathbf{G})^{-1}\mathbf{S}$$

Note that ε and Y are not independent, i.e. the shock at the *i*th site is not independent of the autoregressive variable at the *j*th site.

MRFs and **CARs**

- Besag (1974) showed that the collection of conditional distributions $f(y_i|y_{-i})$, i = 1, ..., n can be combined to form a joint distribution $f(y_1, ..., y_n)$.
- The collection of Gaussian conditionals with

$$E[y_i|y_{-i}] = \mu_i + \sum_{j=1}^n b_{ij}(y_j - \mu_j)$$
 and $Var[y_i|y_{-i}] = \tau_i^2$,

gives rise to a joint Gaussian distribution,

$$\mathcal{N}(\boldsymbol{\mu}, (\mathbf{I} - \mathbf{B})^{-1}\mathbf{M}),$$

so long as some symmetry conditions are met and the b_{ij} are chosen to ensure a positive-definite covariance matrix.

Factorization Theorem

• Assume we have a family of one-dimensional conditional distributions of the form $p(x_i|x_j, j \neq i)$. Then, for some fixed reference point (x_1^*, \ldots, x_n^*) ,

$$\frac{p(x_1, \dots, x_n)}{p(x_1^*, \dots, x_n^*)} = \prod_{i=0}^{n-1} \frac{p(x_1^*, \dots, x_i^*, x_{i+1}, x_{i+2}, \dots, x_n)}{p(x_1^*, \dots, x_i^*, x_{i+1}^*, x_{i+2}, \dots, x_n)} \\
= \prod_{i=0}^{n-1} \frac{p(x_{i+1}|x_1^*, \dots, x_i^*, x_{i+2}, \dots, x_n)}{p(x_{i+1}^*|x_1^*, \dots, x_i^*, x_{i+2}, \dots, x_n)}$$

MRFs and CARs

• Some conditions on $\{b_{ij}\}$:

$$-b_{ii} = 0$$
 and $b_{ij} = 0$ if $j \notin N_i$

$$- b_{ij}\tau_j^2 = b_{ji}\tau_i^2$$
 (symmetry)

- Generally, the non-zero b_{ij} are assumed to be proportional to some fixed constants.
- The off-diagonal elements of the inverse covariance matrix are either:
 - zero, implying conditional independence between observations that are not neighbors, or
 - $-b_{ij}/\tau_i^2$, implying conditional dependence.

CAR vs SAR

• A matrix representation for the CAR model gives

$$Y - \mu = B(Y - \mu) + \delta$$

where $\delta = (I - B)(Y - \mu)$ are "pseudo-errors".

Note that

 $\operatorname{cov}[\delta, Y] = \operatorname{cov}[(I - B)(Y - \mu), Y] = (I - B)\operatorname{var}[Y] = M$

 The matrix M is diagonal, suggesting that the shock at location i is independent of the autoregressive variable at the jth site.

More on CAR vs SAR

 Assuming the means are the same, then the SAR and the CAR specification are the same if and only if

$$(I - B)^{-1}M = (I - G)^{-1}S(I - G')^{-1}$$

- Since M is diagonal, any SAR can be represented as a CAR, but not vice versa hence the CAR is more general.
- The CAR model immediately gives rise to the best (mean squared prediction error) predictor.
- There are issues with identifiability and consistency when estimating spatial dependence parameters g_{ij} for SAR models.

More on CAR vs SAR

- Likelihood computations with both SAR and CAR models are expensive, but the spatial dependence matrices (G and B) are typically sparse, making storage and computation more efficient.
- The conditional nature of the CAR specification and its interpretation has advantages when extending to multivarate spatial models and in conjunction with a hierarchical Bayesian model.

MRFs and CARs

• A very simple CAR covariance can be written as

$$(\mathbf{I} - \mathbf{B})^{-1}\mathbf{M} = \sigma^2(\mathbf{I} - \phi\mathbf{C})^{-1}$$

where

– $M = \sigma^2 I$ (homogeneity) and C is an adjacency matrix

 $-\phi$ is a spatial dependence parameter ($b_{ij} = \phi I_{j \in N_i}$)

• The conditional mean simplifies to

$$E[y_i|y_{-i}] = \mu_i + \phi \sum_{j \in N_i} (y_j - \mu_j)$$

• ϕ can be interpreted as partial or conditional correlation between two neighboring locations.

• Let \mathbf{Y}_i be a *p*-dimensional random vector with a Gaussian conditional distribution with

$$E[\mathbf{Y}_i|\mathbf{Y}_{-i}] = \boldsymbol{\mu}_i + \sum_{j \in N_i} \Lambda_{ij}(\mathbf{Y}_j - \boldsymbol{\mu}_j) \quad \text{var}[\mathbf{Y}_i|\mathbf{Y}_{-i}] = \Gamma_i.$$

• Assuming

$$\begin{split} &-\Lambda_{ij}\Gamma_j = \Gamma_i\Lambda'_{ji} \text{ for } i, j = 1, \dots, n \text{ (symmetry)} \\ &*\Lambda_{ii} = -\text{I and } \Lambda_{ij} = 0 \text{ for } j \notin N_i \\ &-\text{Block}(-\Gamma_i^{-1}\Lambda_{ij}) \text{ or } \text{Block}(-\Lambda_{ij}) \text{ is positive-definite} \\ &\text{then } \mathbf{Y} = (\mathbf{Y}'_1, \dots, \mathbf{Y}'_n)' \text{ is } \mathsf{N}_{np}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \text{ where} \\ &\mu = (\boldsymbol{\mu}'_1, \dots, \boldsymbol{\mu}'_n)' \quad \text{ and } \quad \boldsymbol{\Sigma} = \left(\mathsf{Block}(-\Gamma_i^{-1}\Lambda_{ij}) \right)^{-1} \end{split}$$

• The joint distribution:
$$\mathbf{Y} \sim \mathsf{N}_{np}\left(oldsymbol{\mu}, \left(\mathsf{Block}(-\Gamma_i^{-1} oldsymbol{\Lambda}_{ij})
ight)^{-1}
ight).$$

• Let:

 $-\mu'_i = \mathbf{X}'_i \boldsymbol{\beta}$ where \mathbf{X}_i is a known *q*-vector for location *i* and $\boldsymbol{\beta}$ is a $q \times p$ matrix of parameters.

$$-\Gamma_i = \Gamma$$

$$-\Lambda_{ij} = \Lambda \text{ for } i < j, \ j \in N_i.$$
$$* \Lambda_{ji} = \Lambda'.$$

• The joint covariance can be written as

$$\Sigma = \Gamma^* \mathbf{H}^{-1} \Gamma^{*\prime}$$

where

$$\Gamma = \mathrm{I}_n \otimes \Gamma^{1/2}$$

and

$$\mathbf{H} = \begin{bmatrix} \mathbf{I} & -\mathbf{B}I(2 \in N_1) & \dots & -\mathbf{B}I(n \in N_1) \\ -\mathbf{B}'I(1 \in N_2) & \mathbf{I} & \dots & -\mathbf{B}I(n \in N_2) \\ \vdots & \vdots & \ddots & \vdots \\ -\mathbf{B}'I(1 \in N_n) & -\mathbf{B}'I(2 \in N_n) & \dots & \mathbf{I} \end{bmatrix}$$

• Note the reparameterization: $\mathbf{B}=\Gamma^{-1/2}\Lambda\Gamma^{1/2}$

- The form and value of B ensures H (and Σ) is positive-definite and controls the nature of the spatial dependence and interactions.
- The conditional mean can still be thought of as a weighted average of the observations at neighboring locations.
 - Weights are complicated functions of the within location correlation and spatial dependence parameters.
- The conditional or partial correlation is a function of both Γ and B.

Thanks!

ssain@ucar.edu www.image.ucar.edu/~ssain

- Sain, S.R., Furrer, R., and Cressie, N. (2008), "Combining ensembles of regional climate model output via a multivariate Markov random field model."
- Cooley, D. and Sain, S.R. (2008), "Spatial hierarchical modeling of precipitation extremes from a regional climate model."
- Kaufman, C. and Sain, S. (2008), "Bayesian functional ANOVA modeling using Gaussian process prior distributions."