
by
Amik St-Cyr

National Center for Atmospheric Research 
CISL/SCD/CSS 

From classical to 
optimized Schwarz

Plan of presentation

Motivation of DDM

Partitioning algorithms

Classical Schwarz algorithm

Matrix/discrete level

Convergence 

Two level approach

Part 1:

Plan of presentation
Part 2:

The Robin method

Fourier analysis of Classical Schwarz

Fourier analysis for optimized Schwarz

Optimization over all Fourier modes

Examples FDM

High-Order methods (HOMs)

Optimized Schwarz in a massively parallel GCM

Conclusion

Motivation of DDM

Partitioning algorithms

Classical Schwarz algorithm

Matrix/discrete level

Convergence 

Two level approach

Part 1:

Part 1:



Part 1:

Motivation of DDM

Partitioning algorithms

Classical Schwarz algorithm

Matrix/discrete level

Convergence

Two level approach

DDM Motivation

The global problem cannot fit into main memory, out of core 
computations: very slow swapping to disk

(AND|OR) Concurrency can be exploited to solve the global 
problem: solving problem faster on parallel computers

(AND|OR) The solution of the subproblems is “easier” than the 
global problem: direct methods on smaller subproblems      
cache friendly
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Domain Decomposition

Divide and conquer applied to PDEs:

Decompose domain into many sub-domains 

Solve independently each smaller problem

Glue the solutions together: convergence?
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Mesh partitioning: decompose the domain 
•Geometric Based Algorithms

•Coordinate bisection

•Inertia bisection

•Graph Theory Based Algorithms

•Graph bisection

•Greedy algorithm

•Spectral bisection

•K-L algorithm

•Other Partitioning Algorithms

•Global optimization algorithms

•Reducing the bandwidth of the matrix

•Index based algorithms

•The State of the Art

•Hybrid approach

•Multilevel approach

•Parallel partitioning algorithms

Example: spectral bisection
Laplacian
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x = λx

n∑

i=1

(xi)
2 = n

n∑

i=1

(xi) = 0

•Needs to be an eigenvector of Laplacian

•If composed of half +1 and half -1 it satisfies the two constraints

•Finding the Fielder vector:  Lanczos algorithm

•Proceed recursively...

Practical DDM
Each part of problem solved on a 
compute node:

Interconnect

Partitioned meshes
Examples from Computational Fluid Dynamics: ParMetis

Courtesy of McGill’s CFD laboratory



Mesh partitioning

Represents only the technical part of DDM

Has deep ties with parallel computing: MIMD

DDM denotes also the development of special algorithms to 
solve decomposed problems

Algorithms: Schwarz, FETI, sub-structuring ...

Domain Decomposition

Divide and conquer applied to PDEs

Decompose domains into many sub-domains 

Solve independently each smaller problem

Glue the solutions together: convergence?

Basic DD methods

(Overlapping) Schwarz (1870): existence of elliptic problems on 
non trivial domains

(Non-overlapping) Schur / sub-structuring methods

2 classes of methods: overlapping and non-overlapping

Kron (53)
Przemieniecki 

(63)

Classical Schwarz

Lu = f in Ω, Bu = g on ∂Ω

Suppose we need to solve:

Partition the original domain into 2 domains:
Lun+1

1 = f in Ω1, Lun+1
2 = f in Ω2,

B(un+1
1 ) = g on ∂Ω1, B(un+1

2 ) = g on ∂Ω2,

un+1
1 = un

2 on Γ12, un+1
2 = un

1 on Γ21.

Ω1 Ω2

Γ21 Γ12
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Schwarz no overlap
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Does not converge

Matrix formulation

Lun+1
1 = f in Ω1, Lun+1

2 = f in Ω2,

B(un+1
1 ) = g on ∂Ω1, B(un+1

2 ) = g on ∂Ω2,

un+1
1 = un

2 on Γ12, un+1
2 = un

1 on Γ21.

A2u
n+1
2 = f2 + B12u

n

1A1u
n+1
1 = f1 + B21u

n

2

Continuous problem:

Partition of unity: e = R̃
T

1 e1 + R̃
T

2 e2 → u
n+1

= R̃
T

1 u
n+1
1 + R̃

T

2 u
n+1
2

Restriction operator: u
n
k = Rku



Matrix formulation
If consistent then: A1R1 − B21R2 = R1A, A2R2 − B12R1 = R2A.

Leading to:

RAS: Restricted Additive Schwarz
•Nonsymmetric
•Default option in PETSC 
•Cai and Sarkis (1997)
•Equivalent to continuous

AS: Additive Schwarz 
•Symmetric  
•No continuous equivalent (EG02)
•Use with Krylov accelerator
•Nepomnyaschikh (86)

R̃
T

i → R
T

i

un+1 = un +
2∑

i=1

R̃T

i A−1
i

Ri(f − Aun)

Matrix formulation
On multiple domains:

un+1 = un +
K∑

i=1

R̃T
i A−1

i
Ri(f − Aun)

M
−1

RAS
=

K∑

i=1

R̃
T
i A

−1

i
Ri M

−1

AS
=

K∑

i=1

R
T
i A

−1

i
Ri

Preconditioning in Krylov methods:

•In practice the restriction and extension are not created
•Matrix Problem can be reformulated: lower operation counts

Convergence theory

For symmetric positive definite matrices

No results for Restricted Additive Schwarz

Convergence rate not optimal

Convergence rate not scalable

Developed by Lions, Dryja, Widlund, BRamble, Pasciak, Wang, 
Xu, Zhang etc ...

Solved by using 
a coarse solver

Convergence additive Schwarz

Convergence of PCG:

γ =

√

κ(M−1A) − 1
√

κ(M−1A) + 1
where

Subdomain diameter: H = max
1≤i≤K

diam(Ωi)

Mesh size: h

Overlap size:

||u(k) − u
∗|| ≤ 2γ

k||u(0) − u
∗||

βH, β ∈ (0, 1]



Convergence additive Schwarz

κ(M−1

AS
A) ≤ CH−2(1 + β−1)

Diameter tends to zero as the number of subdomain increases

The overlap size does not remove the diameter problem

Estimate worsen when A has varying coefficients: 

Diameter dependence prevents algorithmic scalability

Schwarz didn't care about the scalability!

∇ · (a(x)∇u)
The first definition involves 

Scalable/Optimal DDM algorithm

A DDM is scalable if its rate of convergence does not deteriorate 
when the number of subdomains grows. 

A DDM for the solution of a linear system is optimal if its rate of 
convergence to the exact solution is independent of the size of 
the system.

The second involves 

H

h

Practical scalability
1 2

3 4

1 2

3 4

Ω

Lu = f

If scalable the solution is 
reached 4 times faster!

If additive Schwarz is used it 
takes the half time to solve!!

1

16

16

1

Two level methods

Add a very coarse problem solved on the entire domain

Removes completely the subdomain diameter problem

Not easy to parallelize! (Duplication of coarse solves)

M
−1

AS,2 = R
T
HA

−1

H RH +

K∑

i=1

R
T
i A

−1

i Ri =

K∑

i=0

R
T
i A

−1

i Ri

κ(M−1

AS,2A) ≤ C(1 + β−1)Condition number:

Varying coefficients: C(β)(1 + log(H/h), C(β)(H/h)



Still not perfect since overlap must be kept constant!

The perfect method would have zero overlap and a condition 
number independent of       and 

Is it possible to construct such a Schwarz method ?? 

If not how close can we get?

Two level methods

H h
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