From classical to optimized Schwarz

by Amik St-Cyr National Center for Atmospheric Research CISL/SCD/CSS

Plan of presentation

<u>Part 1:</u>

Motivation of DDM Partitioning algorithms Classical Schwarz algorithm

Matrix/discrete level

Convergence

Two level approach

Plan of presentation

<u>Part 1:</u>

Motivation of DDM
Partitioning algorithms
Classical Schwarz algorithm
Matrix/discrete level
Convergence
Two level approach

I	Part 2:
	The Robin method
	Fourier analysis of Classical Schwarz
	Fourier analysis for optimized Schwarz
	Optimization over all Fourier modes
	Examples FDM
	High-Order methods (HOMs)
	Optimized Schwarz in a massively para

Conclusion

parallel GCM

<u>Part 1:</u>

<u>Part 1:</u>

Motivation of DDM

- Partitioning algorithms
- Classical Schwarz algorithm
- Matrix/discrete level
- Convergence
- Two level approach

DDM Motivation

- The global problem cannot fit into main memory, out of core computations: very slow swapping to disk
- (AND | OR) Concurrency can be exploited to solve the global problem: solving problem faster on parallel computers
- (AND | OR) The solution of the subproblems is "easier" than the global problem: direct methods on smaller subproblems cache friendly

DDM Motivation

- The global problem cannot fit into main memory, out of core computations: very slow swapping to disk
- (AND | OR) Concurrency can be exploited to solve the global problem: solving problem faster on parallel computers

(AND | OR) The solution of the subproblems is "easier" than the global problem: direct methods on smaller subproblems cache friendly

Domain Decomposition

Divide and conquer applied to PDEs:

- Decompose domain into many sub-domains
- Solve independently each smaller problem
 - Glue the solutions together: convergence?

Mesh partitioning: decompose the domain

- Geometric Based Algorithms
 - Coordinate bisection
 - Inertia bisection
- Graph Theory Based Algorithms
 - Graph bisection
 - Greedy algorithm
 - Spectral bisection
- K-L algorithm
- Other Partitioning Algorithms
 - Global optimization algorithms
 - Reducing the bandwidth of the matrix
 - Index based algorithms
- The State of the Art
 - Hybrid approach
 - Multilevel approach
 - Parallel partitioning algorithms

Example: spectral bisection

- Needs to be an eigenvector of Laplacian
- If composed of half +1 and half -1 it satisfies the two constraints
- Finding the Fielder vector: Lanczos algorithm
- Proceed recursively...

0

Practical DDM

Each part of problem solved on a compute node:

Partitioned meshes

Examples from Computational Fluid Dynamics: ParMetis

Mesh partitioning

- Represents only the technical part of DDM
- Has deep ties with parallel computing: MIMD
- DDM denotes also the development of special algorithms to solve decomposed problems
- Algorithms: Schwarz, FETI, sub-structuring ...

Domain Decomposition

- Divide and conquer applied to PDEs
- Decompose domains into many sub-domains
- Solve independently each smaller problem
- Glue the solutions together: convergence?

Basic DD methods

(Overlapping) Schwarz (1870): existence of elliptic problems on non trivial domains

(Non-overlapping) Schur / sub-structuring methods

Kron (53)

Przemieniecki (63)

2 classes of methods: overlapping and non-overlapping

Classical Schwarz

Suppose we need to solve:

$$\mathcal{L}u = f \quad \text{in } \Omega, \quad \mathcal{B}u = g \quad \text{on } \partial \Omega$$

Partition the original domain into 2 domains:

Schwarz with large overlap

Schwarz with large overlap

Schwarz with large overlap

Schwarz with large overlap

Schwarz with large overlap

Schwarz with large overlap

Schwarz no overlap

Schwarz no overlap

Schwarz no overlap

Matrix formulation

Continuous problem:

Matrix formulation

Leading to:

$$\underline{\mathbf{u}}^{n+1} = \underline{\mathbf{u}}^n + \sum_{i=1}^2 \tilde{R}_i^T A_i^{-1} R_i (f - A \underline{\mathbf{u}}^n)$$

$$\underline{\mathsf{RAS: Restricted Additive Schwarz}}_{\bullet \text{ Nonsymmetric}} \bullet \underline{\mathsf{Nonsymmetric}}_{\bullet \text{ Default option in PETSC}} \bullet \underline{\mathsf{Cai and Sarkis}} (1997) \bullet \underline{\mathsf{LST}}_{\bullet} \bullet \underline{\mathsf{Symmetric}}$$

If consistent then: $A_1R_1 - B_{21}R_2 = R_1A$. $A_2R_2 - B_{12}R_1 = R_2A$.

• Nepomnyaschikh (86)

Matrix formulation

$$\underline{\mathbf{u}}^{n+1} = \underline{\mathbf{u}}^n + \sum_{i=1}^K \tilde{R}_i^T A_i^{-1} R_i (f - A \underline{\mathbf{u}}^n)$$
reconditioning in Krylov methods:
$$M_{RAS}^{-1} = \sum_{i=1}^K \tilde{R}_i^T A_i^{-1} R_i \quad M_{AS}^{-1} = \sum_{i=1}^K R_i^T A_i^{-1} R_i$$

• In practice the restriction and extension are not created

• Matrix Problem can be reformulated: lower operation counts

Convergence theory

For symmetric positive definite matrices

No results for Restricted Additive Schwarz

Solved by using a coarse solver

Convergence rate not scalable.

Convergence rate not optimal -

Developed by Lions, Dryja, Widlund, BRamble, Pasciak, Wang, Xu, Zhang etc

Convergence additive Schwarz

Convergence additive Schwarz

 $\kappa(M_{AS}^{-1}A) \leq CH^{-2}(1 + \beta^{-1})$

Diameter tends to zero as the number of subdomain increases
The overlap size does not remove the diameter problem
Estimate worsen when A has varying coefficients: ∇ · (a(x)∇u)
Diameter dependence prevents algorithmic scalability
Schwarz didn't care about the scalability!

Scalable/Optimal DDM algorithm

- <u>A DDM is scalable</u> if its rate of convergence does not deteriorate when the number of subdomains grows.
- A DDM for the solution of a linear system is <u>optimal</u> if its rate of convergence to the exact solution is independent of the size of the system.

The first definition involvesHThe second involvesh

Practical scalability

If scalable the solution is reached <u>4 times faster</u>!

If additive Schwarz is used it takes the half time to solve!!

Two level methods

Add a very coarse problem solved on the entire domain
 Removes completely the subdomain diameter problem
 Not easy to parallelize! (Duplication of coarse solves)

$$M_{AS,2}^{-1} = R_H^T A_H^{-1} R_H + \sum_{i=1}^K R_i^T A_i^{-1} R_i = \sum_{i=0}^K R_i^T A_i^{-1} R_i$$

Condition number: Varying coefficients: $\kappa(M_{AS,2}^{-1}A) \le C(1+\beta^{-1})$ $C(\beta)(1+\log(H/h), \ C(\beta)(H/h)$

Two level methods

- Still not perfect since overlap must be kept constant!
- The perfect method would have zero overlap and a condition number independent of H and h
- Is it possible to construct such a Schwarz method ??
- If not how close can we get?

Part 2:

 Image: Construct of the construction of the constructio

DDM sources

DDM sources

DDM sources

DDM sources

www.ddm.org