

Plan of presentation

Part 1:

Motivation of DDM

Partitioning algorithms

Classical Schwarz algorithm

Matrix/discrete level
Convergence
Two level approach

Part 1:

Parit 1:

Motivation of DDM
Partitioning algorithms
Classical Schwarz algorithm
Matrix/discrete level
Convergence
Two level approach

DDM Motivation

The global problem cannot fit into main memory, out of core computations: very slow swapping to disk
(AND \mid OR) Concurrency can be exploited to solve the global problem: solving problem faster on parallel computers
(AND | OR) The solution of the subproblems is "easier" than the global problem: direct methods on smaller subproblems cache friendly

DDM Motivation

The global problem cannot fit into main memory, out of core computations: very slow swapping to disk
(AND $\mid O R$) Concurrency can be exploited to solve the global problem: solving problem faster on parallel computers

- ($A N D \mid O R$) The solution of the subproblems is "easier" than the global problem: direct methods on smaller subproblems cache friendly

Domain Decomposition

Divide and conquer applied to PDEs:

Decompose domain into many sub-domains
Solve independently each smaller problem
Glue the solutions together: convergence?

Mesh partifioning: decompose the domain

- Geometric Based Algorithms

Practical DDM

Each part of problem solved on a compute node:

- Coordinate bisection
- Inertia bisection
- Graph Theory Based Algorithms
- Graph bisection
- Greedy algorithm
- Spectral bisection
- K-L algorithm
- Other Partitioning Algorithms
- Global optimization algorithms
- Reducing the bandwidth of the matrix
- Index based algorithms
- The State of the Art
- Hybrid approach
- Multilevel approach
- Parallel partitioning algorithms

Example: spectral bisection

Laplacian

$$
\begin{aligned}
& L x=\left[\begin{array}{ccccccc}
\ddots & \ddots & \ddots & \ddots & \ddots & & \\
& -1 & -1 & 4 & -1 & -1 & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right] x=\lambda x \\
& \sum_{i=1}^{n}\left(x_{i}\right)=0 \quad \sum_{i=1}^{n}\left(x_{i}\right)^{2}=n
\end{aligned}
$$

- Needs to be an eigenvector of Laplacian
- If composed of half +1 and half- 1 it satisfies the two constraints
- Finding the Fielder vector: Lanczos algorithm
- Proceed recursively...

Partifioned meshes

Examples from Computational Fluid Dynamics: ParMetis

Mesh partitioning

Represents only the technical part of DDM
Has deep ties with parallel computing: MIMD
DDM denotes also the development of special algorithms to solve decomposed problems

Algorithms: Schwarz, FETI, sub-structuring ...

Basic DD methods

(Overlapping) Schwarz (1870): existence of elliptic problems on non trivial domains
(Non-overlapping) Schur / sub-structuring methods
Kron (53)

Przemieniecki (63)

2 classes of methods: overlapping and non-overlapping

Domain Decomposition

Divide and conquer applied to PDEs

Decompose domains into many sub-domains
Solve independently each smaller problem
Glue the solutions together: convergence?

Classical Schwarz

Suppose we need to solve:

$$
\mathcal{L} u=f \quad \text { in } \Omega, \quad \mathcal{B} u=g \quad \text { on } \partial \Omega
$$

Partition the original domain into 2 domains:

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz wihh large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$$
\Delta u=0, \text { on }[-1,1] \text { with } u(-1)=u(1)=0
$$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$$
\Delta u=0, \text { on }[-1,1] \text { with } u(-1)=u(1)=0
$$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz with large overlap

$$
\Delta u=0, \text { on }[-1,1] \text { with } u(-1)=u(1)=0
$$

Schwarz with large overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz no overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Schwarz no overlap

Schwarz no overlap

$\Delta u=0$, on $[-1,1]$ with $u(-1)=u(1)=0$

Matrix formulation

Continuous problem:

$$
\begin{aligned}
& \begin{array}{rllllll}
\mathcal{L} u_{1}^{n+1} & =f & \text { in } \Omega_{1}, & \mathcal{L} u_{2}^{n+1} & =f & \text { in } \Omega_{2}, \\
\mathcal{B}\left(u_{1}^{n+1}\right) & =g & \text { on } \partial \Omega_{1}, & \mathcal{B}\left(u_{2}^{n+1}\right) & =g & \text { on } \partial \Omega_{2}, \\
u_{1}^{n+1} & =u_{2}^{n} & \text { on } \Gamma_{12}, & u_{2}^{n+1} & =u_{1}^{n} & \text { on } \Gamma_{21},
\end{array} \\
& A_{1} \underline{u}_{1}^{n+1}=\underline{\mathrm{f}}_{1}+B_{21} \underline{\mathrm{u}}_{2}^{n} \quad A_{2} \underline{\mathrm{u}}_{2}^{n+1}=\underline{\mathrm{f}}_{2}+B_{12} \underline{\mathrm{u}}_{1}^{n}
\end{aligned}
$$

Partition of unity: $\quad e=\tilde{R}_{1}^{T} e_{1}+\tilde{R}_{2}^{T} e_{2} \rightarrow \underline{u}^{n+1}=\tilde{R}_{1}^{T} \underline{u}_{1}^{n+1}+\tilde{R}_{2}^{T} \underline{u}_{2}^{n+1}$ Restriction operator:

$$
\underline{\mathrm{u}}_{k}^{n}=R_{k} \underline{\mathbf{u}}
$$

Matrix formulation

If consistent then: $A_{1} R_{1}-B_{21} R_{2}=R_{1} A, \quad A_{2} R_{2}-B_{12} R_{1}=R_{2} A$. Leading to:

$$
\underline{\mathrm{u}}^{n+1}=\underline{\mathrm{u}}^{n}+\sum_{i=1}^{2} \tilde{R}_{i}^{T} \underbrace{A_{i}^{-1} R_{i}\left(f-A \underline{u}^{n}\right)}
$$

RAS: Restricted Additive Schwarz

- Nonsymmetric
- Default option in PETSC
- Cai and Sarkis (1997)
- Equivalent to continuous

AS: Additive Schwarz $\tilde{R}_{i}^{T} \rightarrow R_{i}^{T}$

- Symmetric
- No continuous equivalent (EGO2)
- Use with Krylov accelerator
- Nepomnyaschikh (86)

Convergence theory

For symmetric positive definite matrices
No results for Restricted Additive Schwarz
Solved by using
Convergence rate not optimal a coarse solver

Convergence rate not scalable
Developed by Lions, Dryia, Widlund, BRamble, Pasciak, Wang, Xu, Zhang etc ...

Matrix formulation

On multiple domains:

$$
\underline{\mathrm{u}}^{n+1}=\underline{\mathrm{u}}^{n}+\sum_{i=1}^{K} \tilde{R}_{i}^{T} A_{i}^{-1} R_{i}\left(f-A \underline{\mathrm{u}}^{n}\right)
$$

Preconditioning in Krylov methods:

$$
M_{R A S}^{-1}=\sum_{i=1}^{K} \tilde{R}_{i}^{T} A_{i}^{-1} R_{i} \quad M_{A S}^{-1}=\sum_{i=1}^{K} R_{i}^{T} A_{i}^{-1} R_{i}
$$

- In practice the restriction and extension are not created
- Matrix Problem can be reformulated: lower operation counts

Convergence addifive Schwarz

$$
\begin{array}{r}
\text { Convergence of PCG: }\left\|\underline{u}^{(k)}-\underline{u}^{*}\right\| \leq 2 \gamma^{k}\left\|\underline{u}^{(0)}-u^{*}\right\| \\
\text { where } \gamma=\frac{\sqrt{\kappa\left(M^{-1} A\right)}-1}{\sqrt{\kappa\left(M^{-1} A\right)}+1}
\end{array}
$$

Subdomain diameter:	$H=\max _{1 \leq i \leq K} \operatorname{diam}\left(\Omega_{i}\right)$
Mesh size:	h
Overlap size:	$\beta H, \beta \in(0,1]$

Convergence addifive Schwarz

$$
\kappa\left(M_{A S}^{-1} A\right) \leq C H^{-2}\left(1 \pm \beta^{-1}\right)
$$

Diameter tends to zero as the number of subdomain increases
The overlap size does not remove the diameter problem
Estimate worsen when A has varying coefficients: $\nabla \cdot(a(\mathbf{x}) \nabla u)$
Diameter dependence prevents algorithmic scalability
Schwarz didn't care about the scalability!

Practical scalability

If scalable the solution is reached 4 times faster!

If additive Schwarz is used it takes the half time to solve!!

Scalable/Opimal DDM algorihm

A DDM is scalable if its rate of convergence does not deteriorate when the number of subdomains grows.

A DDM for the solution of a linear system is optimal if its rate of convergence to the exact solution is independent of the size of the system.

The first definition involves H
The second involves $\quad h$

Two level methods

Add a very coarse problem solved on the entire domain
Removes completely the subdomain diameter problem
Not easy to parallelize! (Duplication of coarse solves)
$M_{A S, 2}^{-1}=R_{H}^{T} A_{H}^{-1} R_{H}+\sum_{i=1}^{K} R_{i}^{T} A_{i}^{-1} R_{i}=\sum_{i=0}^{K} R_{i}^{T} A_{i}^{-1} R_{i}$
Condition number:

$$
\kappa\left(M_{A S, 2}^{-1} A\right) \leq C\left(1+\beta^{-1}\right)
$$

Varying coefficients:
$C(\beta)(1+\log (H / h), C(\beta)(H / h)$

Two level methods

Still not perfect since overlap must be kept constant!
The perfect method would have zero overlap and a condition number independent of H and h

Is it possible to construct such a Schwarz method ??
If not how close can we get?

DDM sources

Part 2.

The Robin method

Fourier analysis of Classical Schwarz

Fourier analysis for optimized Schwarz
Optimization over all Fourier modes
Examples FDM
High-Order methods (HOMs)
Optimized Schwarz in a massively parallel GCM
Conclusion

DDM sources

Domein

Deaminusition

DDM sources

Domail
Derominusition
Paylal Mniliev Malinis ini

Bary Smill, Prilep igitiri airil liniliin livin

DDM sources

www.ddm.org

