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Abstract:

A discontinuous Galerkin (DG) prototype for the com-
pressible Euler equations Is presented In its explicit
version. In order to avoid aliasing issues, all integrals
appearing in the weak form are performed exactly.
he resulting mass matrix of the DG method Is block
diagonal and therefore invertible once and for all. Ini-
tial numerical experiments without any filtering nor ar-
tificial diffusion demonstrate the feasibility of the
method.

High-order Discontinuous Galerkin method:
High-order finite element methods are currently gar-

nering a great deal of attention in the atmospheric
modeling community due to their desirable numerical
properties and inherent parallelism. The discontinuous
Galerkin method combines ideas from spectral meth-
ods, finite-elements and finite volumes methods. It
leads to a stable, high-order accurate and locally con-
servative finite element method whose approximate
solution is discontinuous across inter-element bounda-
ries: this property renders the method ideally suited for
hp-adaptivity. The basis used to represent fields con-
sist of Lagrange polynomials passing through Gauss-
Legendre-Lobatto (GLL) or Gauss-Legendre quadra-
ture points. The physical domain ()is partitioned into
K elements Qk On each element unknowns, for
instance velocity, are expanded in terms of the N-th

degree Lagrangian <
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where x — (£°(x),n"(x)) is an afine transforma-

tion from element Qk
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Numerous equations modeling physical phenomenon

can be written as systems of conservation laws:

d
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For simplicity consider the scalar case

ur + V- Flu) = S(u)
A weak form on each element is obtained by multiply-
ing the last equation by a suitable test function
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At inter-element boundaries, the solution is multi-
valued and a Riemann problem needs to be approxi-
mately solved. This is accomplished using the simple

Lax-Friedrichs numerical flux:

(F(upy) + F(uy) -7 — aluy —uy)]

The spatial discretization, performed using Gauss

quadrature, results in a system of ordinary differential

equations
dU;y,
—— = L (Uy).
dt h(Un)
Time-stepping:

Strong-stability preserving (SSP) time discretization
methods were developed for semi-discrete method of
lines approximation (13) of hyperbolic PDE’s in con-
servative form, Gottlieb et al (2001). SSP methods en-
sure stability in an arbitrary norm once the forward
Euler time discretization is shown to be strongly sta-
ble. In its general form, a SSP Runge-Kutta ODE

solver Is written as
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Compressible Euler equations:
Atmospheric models rarely use the full meteorological
equations. Reasons for this include stringent Courant

condition imposed by meteorologically irrelevant

sound waves and savings imposed by solving a series

of 2D problems instead of 3D coupled equations. The

equations,
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Include a conserved generalized potential temperature
which is the potential temperature multiplied by den-
sity. A hydrostatically balanced state is removed nu-

merically from the equations once they are discretized.

Numerical experiment:

A warm bubble is introduced in a dry isentropic at-
mosphere by perturbing an hydrostatically balanced
state. The perturbation is set to 0.5 Celsius uniformly
inside a radius of 50 meters and decays from this cir-
cle following a smooth Gaussian profile. Solid, reflec-
tive boundaries are imposed on all walls. This is a dif-
ficult test since the entrainment is a function of the
numerical viscosity built into the scheme. The DG
method is diffusive at element boundaries and solid
walls. Initially, the bubble is 'momentum-dominated’

and becomes 'buoyancy-dominated'.

Conclusions:

Initial results of a high-order DG model for the com-
Bressmle Euler equations were shown. With compara-

le number of unknowns, a high polynomial degree
within each element seems to give beter results. No
filtering Is employed during the simulations of a warm
bubble experiment suggested by Robert (1993). From
the experiments, it seems that a less diffusive numeri-
cal flux Is required. To be efficient, a better time-
stepping strategy Is required: this will be the subject of
future work.
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