
High-order Discontinuous Galerkin method:
High-order finite element methods are currently gar-
nering a great deal of attention in the atmospheric 
modeling community due to their desirable numerical 
properties and inherent parallelism. The discontinuous 
Galerkin method combines ideas from spectral meth-
ods, finite-elements and finite volumes methods. It 
leads to a stable, high-order accurate and locally con-
servative finite element method whose approximate 
solution is discontinuous across inter-element bounda-
ries: this property renders the method ideally suited for 
hp-adaptivity. The basis used to represent fields con-
sist of Lagrange polynomials passing through Gauss-
Legendre-Lobatto (GLL) or Gauss-Legendre quadra-
ture points. The physical domain is partitioned into   

elements . On each element unknowns, for 
instance velocity, are expanded in terms of the N-th 
degree Lagrangian <

w h e r e is an afine transforma-
tion from element    
to the reference element 
on      :

Numerous equations modeling physical phenomenon 
can be written as systems of conservation laws:

For simplicity consider the scalar case

A weak form on each element is obtained by multiply-
ing  the last equation by a suitable test function

At inter-element boundaries, the solution is multi-
valued and a Riemann problem needs to be approxi-
mately solved. This is accomplished using the simple 
Lax-Friedrichs numerical flux:

The spatial discretization, performed using Gauss 
quadrature, results in a system of ordinary differential 
equations

Time-stepping:
Strong-stability preserving (SSP) time discretization 
methods were developed for semi-discrete method of 
lines approximation (13) of hyperbolic PDE’s in con-
servative form, Gottlieb et al (2001). SSP methods en-
sure stability in an arbitrary norm once the forward 
Euler time discretization is shown to be strongly sta-
ble. In its general form, a SSP Runge-Kutta ODE 
solver is written as

where α is the upper bound for the absolute value of eigenvalues of the flux Jacobian
F ′(u) in the direction n̂. Boundary integrals are computed using Gaussian quadrature.
The semi-discrete form of (4) – (6) is then given by

duh

dt
= Lh(uh). (13)

4 Time discretization

Strong-stability preserving (SSP) time discretization methods were developed for semi-
discrete method of lines approximation (13) of hyperbolic PDE’s in conservative form,
Gottlieb et al (2001). SSP methods ensure stability in an arbitrary norm once the for-
ward Euler time discretization is shown to be strongly stable, i.e. ‖un+∆tL(un)‖ ≤ ‖un‖.
Higher order SSP integrators are obtained by convex combinations of first-order forward
Euler steps. For a sufficiently small time step dictated by the Courant Friedrichs Levy
(CFL) condition, ∆t ≤ ∆tFE. High-order SSP Runge-Kutta or multistep time discretiza-
tions maintain the strong stability property with a modified CFL restriction, ∆t ≤ c∆tFE.
Strong stability is a monotonicity property for the internal stages and the numerical so-
lution. A general m-stage SSP Runge-Kutta method is given by

u(0) = un

u(i) =
i−1∑

k=0

αiku
(k) + ∆tβikL(u(k)), i = 1, . . . ,m, (14)

un+1 = u(m).

If all βik ≥ 0 and by consistency
∑

αik = 1, then the u(i) are convex combinations of
forward Euler steps with ∆t replaced by βik∆t/αik. Gottlieb et al (2001) provide necessary
conditions for (15) to be SSP, and in particular c = min αik/βik. To compute u(i) for each
stage requires up to m evaluations of the right-hand side L(u(k)). Thus, higher-order
SSP Runge-Kutta methods can be expensive, in terms of the number of floating point
operations, memory to store intermediate stages and parallel communication overhead
per time step. Linear multistep methods (LMM) substitute time levels for stages,

un+1 =
m∑

i=1

αiu
n+1−i + ∆tβiL(un+1−i), αi ≥ 0. (15)

The main advantage of Runge-Kutta schemes is a less restrictive CFL condition. Second
order SSP multistep methods consisting of two or three steps have Courant numbers
C = 1/2, with one right-hand side evaluation per time step. Whereas C = 1 for two or
three stage Runge-Kutta schemes of equivalent order. By observing the link between step
size restrictions for monotonicity and those already known for contractivity, Higueras
(2004) was able to discover second and third order SSP Runge-Kutta methods with
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Compressible Euler equations:
Atmospheric models rarely use the full meteorological 
equations. Reasons for this include stringent Courant 
condition imposed by meteorologically irrelevant 
sound waves and savings imposed by solving a series 
of 2D problems instead of 3D coupled equations. The 
equations, 

include a conserved generalized potential temperature 
which is the potential temperature multiplied by den-
sity. A hydrostatically balanced state is removed nu-
merically from the equations once they are discretized. 

Numerical experiment: 
A warm bubble is introduced in a dry isentropic at-
mosphere by perturbing an hydrostatically balanced 
state. The perturbation is set to 0.5 Celsius uniformly 
inside a radius of 50 meters and decays from this cir-
cle following a smooth Gaussian profile. Solid, reflec-
tive boundaries are imposed on all walls. This is a dif-
ficult test since the entrainment is a function of the 
numerical viscosity built into the scheme. The DG 
method is diffusive at element boundaries and solid 
walls. Initially, the bubble is  'momentum-dominated' 
and  becomes 'buoyancy-dominated'.

Conclusions:
Initial results of a high-order DG model for the com-
pressible Euler equations were shown. With compara-
ble number of unknowns, a high polynomial degree 
within each element seems to give beter results. No 
filtering is employed during the simulations of a warm 
bubble experiment suggested by Robert (1993). From 
the experiments, it seems that a less diffusive numeri-
cal flux is required. To be efficient, a better time-
stepping strategy is required: this will be the subject of 
future work.
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Abstract:
A discontinuous Galerkin (DG) prototype for the com-
pressible Euler equations is presented in its explicit 
version. In order to avoid aliasing issues, all integrals 
appearing in the weak form are performed exactly. 
The resulting mass matrix of the DG method is block 
diagonal and therefore invertible once and for all. Ini-
tial numerical experiments without any filtering nor ar-
tificial diffusion demonstrate the feasibility of the 
method.

x → (ξk(x), ηk(x))
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where

A =
∂Lh(U)

∂U
|U=Un

h
(18)

k1

∆t
= Lh(U

¯
n
h) + γAk1 (19)

k2

∆t
= Lh(U

¯
n
h + ∆tk1)− 2γAk1 + γAk2 (20)

The Jacobian can be exact or an approximation. For instance, the same Jaco-
bian free approach used in implicit can be used for the Rosenbrock method:

Aki ≈
Lh(U

¯
n
h + ε∗ki)− Lh(U

¯
n
h − ε∗ki)

2ε∗
. (21)

Therefore, the efficiency problem is now relegated to the use of efficient precon-
ditioning for the matrix I

∆t − γA. Preconditioning the problem can be done by
using a block approximation of the Jacobian and the the diagonal

(I − γ∆t
∂Lh(Un

h )
∂U

)ej ≈
εej − γ∆t(Lloc

h (U
¯

n
h + εej)− Lh(U

¯
n
h))

ε
. (22)

where ε is the square root of the machine epsilon and Lloc
h is the local application

of the rhs: the solution is supposed continuous at the boundaries and the cor-
responding approximate Riemann solvers are simplified. The preconditioning
setup cost stays the same for any number stages employed in the Rosenbrock
method.

2D equations

U
¯
≡ (ρ, ρu, ρw, Θ)T = (ρ, U, W, Θ)T (23)

F(U
¯
) ≡ (F,G) (24)

F = (U,
UU

ρ
+ p,

WU

ρ
,
UΘ
ρ

)T (25)

G = (W,
UW

ρ
,
WW

ρ
+ p,

WΘ
ρ

)T (26)

S(U
¯
) = (0, 0,−gρ, 0)T (27)

p = p0(
RΘ
p0

)γ (28)

where γ = cp/cv.
Pressure can be replaced with :

•20x30 elements

•3rd degree polynomials

•SSP RK 2nd order

•3x9 elements

•11th degree polynomials

•SSP RK 2nd order
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