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A well-balanced discontinuous Galerkin (DG) flux-form shallow-water (SW) model on the
sphere is developed and compared with a nodal DG SW model cast in the vector-invariant
form for accuracy and conservation properties. A second-order diffusion scheme based on
the local discontinuous Galerkin (LDG) method is added to the viscous version of the
SW model and tested for conservation behaviors. The inviscid flux-form SW model is
found to have better conservation of total energy and zonal angular momentum while the
vector-invariant form provides better ability of conserving potential enstrophy. The inviscid
flux-form tends to generate spurious vorticity but the LDG scheme combined with a well-
balanced treatment can effectively eliminate the small-scale noise and generate smooth
and accurate results.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The shallow-water equations (SWEs) are considered to be a testbed for numerical methods for global atmospheric mod-
eling, as they mimic their important features of the horizontal aspects of the dynamics. The SWEs describe the evolution
of a homogeneous, hydrostatic, nonlinear fluid in the ocean or atmosphere on the sphere, and can be derived by vertically-
integration of the Navier–Stokes equations under the assumption that the horizontal length scale is much larger than the
vertical [1]. The shallow water system provides a framework to develop numerical schemes for atmospheric computation,
before testing the proposed numerical approaches in a full climate model. Although numerous formulations of SWEs on the
sphere are available (see, for example, [2]), we are particularly interested in the flux-form formulation which are amenable
to the development of numerically conservative models. The conservative form of the equations typically refers to the strong
conservative form, where the source terms are absent [3]. However, we use the term “flux-form” or “conservative form” in-
terchangeably here to refer the conservative formulation with source terms.

Conservation of global integral invariants such as mass, momentum and energy is very important for climate modeling
where the model may be integrated of the order of hundreds of years. In a recent review, Thuburn [4] underscores the
importance of conservation in dynamical cores which are used for climate simulations. Mass is a robust invariant and should
be conserved by the numerical scheme. It is well known that the total potential energy is responsible for the global mean
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temperature, and a proper treatment of the kinetic energy is important for capturing the dynamics [4]. Vorticity is a kinetic
quantity and the conservation of vorticity is particularly important for long-time scale evolutions since vorticity is associated
with slow modes in the flow, and the spurious generation of vorticity tends to accumulate over long times [5]. Conservation
of angular momentum is particularly important for the zonal wind strength, particularly in the case of mid-latitude jets
and trade winds [4]. Angular momentum has three components: two equatorial components, and the zonal (axial) angular
momentum. The zonal angular momentum of the atmosphere and its relationship with the rotating Earth have been a
popular topic of meteorology since the 1950s [6]. For global SWEs, mass, total energy, potential enstrophy and zonal angular
momentum are conserved quantities [2], and the choice of equation set, grid system and numerical schemes is crucial for
their conservation.

Many formulations of the SWEs on a rotating sphere are available for numerical modeling [2]. This includes the 3D
vector formulation of flux-form SWEs, which is a general approach, free of singularities, that can be used for various spher-
ical mesh types as shown in [7,8]. Nevertheless, this formulation changes the dimensionality of the problem from 2D to
3D, and requires a Lagrange multiplier approach that constrains the motion to follow the sphere [9]. Because of the polar
singularities associated with the regular latitude–longitude grid system, new models are being developed based on an alter-
native scalable spherical grid system such as the cubed-sphere [10–12] amongst other options. The cubed-sphere geometry
removes these singularities and provides an alternative mesh comprised of the quasi-uniform rectangular tiling. Due to its
grid structure, the cubed-sphere geometry is very popular for atmospheric model development based on numerical methods
such as the element-based Galerkin methods [13,14] and various finite-volume methods [15–19].

In this paper we consider the full flux-form SWEs on the cubed-sphere. For the full flux-form SWEs, the prognostic
variables (state vector) are [uh, vh,h]T , where u and v are the wind vector components and h is the height field. For
the vector-invariant form [20] the prognostic variables are [u, v,h]T . The flux-form has an explicit rigorous treatment of
momentum which leads to better momentum conservation. However, in non-orthogonal curvilinear geometry such as the
cubed-sphere, the momentum equations are in tensor form consisting of several metric terms. The vector-invariant form
preserves the original form, as its name implies, and is relatively easy to solve. Both formulations have their strengths and
weaknesses. In this paper we make a rigorous comparison of the two by solving them using a high-order nodal Discontin-
uous Galerkin (DG) method on the cubed-sphere.

The discontinuous Galerkin (DG) method can be viewed as a combination of the finite-element and finite-volume meth-
ods, which retains the best features of each [21]. Due to its advantages such as data locality (parallel efficiency), high-order
accuracy and geometric flexibility, it has become a method of choice for many scientific and engineering problems. Shallow
water (SW) models based on a high-order DG discretization method have been developed [7,14,22], including a viscous
formulation [23] for global modeling. However, when applied to SWEs, traditional DG formulations are not “well-balanced”
in the presence of non-smooth bottom topography. Recently, a well-balanced DG scheme for SWEs was developed by Xing
and Shu [24,25] in the 2D plane in Cartesian coordinates. Here, we extend this approach for our flux-form SW model on
the cubed-sphere. We also consider a viscous formulation produced by the addition of a second-order diffusion term, using
a local DG (or LDG) approach. The time integration procedure utilizes an explicit Runge–Kutta integration scheme [26]. The
conservation properties of the flux-form SW model are compared with the vector-invariant form, as described in [23], using
several benchmark tests [2,27].

The remainder of the paper is organized as follows. In Section 2, we briefly introduce the two forms of the shallow-water
model and set up some basic notations. The discretization of the well-balanced viscous flux form of shallow-water model
(based on LDG approach) is discussed in Section 3, as is its implementation on the cubed-sphere. Numerical experiments
and results are discussed in Section 4. Section 5 provides the summary and conclusions.

2. Shallow-water equations on the rotating sphere

The system of SWEs consists of the continuity and momentum equations. The continuity equation is accountable for the
conservation of mass, and is formulated as follows,

∂h

∂t
+ ∇ · (hv) = 0. (1)

Usually, the momentum equations are written in vector form [2]. In the context of numerical modeling, two forms of
momentum equations are widely used. They are the conservative form (2) and the vector-invariant form (3),

∂hv

∂t
+ ∇ ·

(
vhv + 1

2
gh2I

)
= − f k̂ × hv−gh∇hs, (2)

∂v

∂t
+ ∇

(
v · v

2

)
= −(ζ + f )k̂ · v − ∇Φ. (3)

Here, h is the depth of the fluid above the solid surface, hs is the height of the bottom topography, which may be a river
bed or an underlying mountain. v is the horizontal wind vector, f is the Coriolis parameter, k̂ is the unit vector along the
outward radial direction, and I is the 2×2 identity matrix. Φ = g(hs +h) is the geopotential height at the free surface of the
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Fig. 1. A schematic of a cubed-sphere grid with quadrilateral elements is shown in the left panel. The right panel shows a reference element Ωe with 5 × 5
GLL quadrature grid points. Each element Ωi j on the cube face of the physical domain is mapped onto a unique reference element ΩR . The mapping from
the physical domain to the reference element is given in (16).

fluid (above sea level). ζ = k̂ · (∇ × v) denotes the relative vorticity. Note that, divergence (∇·) and gradient (∇) operators
are defined in general cases. In other words, they are not specific to a particular grid system.

The flux-form of SWEs consists of (1) and (2), while the vector-invariant form of SWEs is composed of (1) and (3).
In the continuous sense, both forms are mathematically equivalent for smooth waves, while in the discrete settings, they
are not identical and they have their own focuses. For the flux-form, the rigorous form of momentum appears in the
momentum equations. It states the conservation of momentum physically. The state variables for the momentum equations
in the conservative form and the vector-invariant form are hv and v, respectively. The advantage of choosing hv as a
prognostic variable is that, if letting h → 0, the prognostic variable goes to zero as long as v stays bounded. Note that h → 0
corresponds to a massless layer in numerical modeling. By employing the conservative form of momentum equations, the
discrete system is still well-behaved even we evacuate the mass of a given layer [5].

Moreover, since (3) expresses the conservation of particle velocity v, which is physically meaningless, the vector-invariant
form is, in some sense, mathematically conservative but not physically conservative [28]. In the presence of shock waves,
the two forms can lead to two different solutions. The flux-form tends to be a better shock capturing method, whereas
numerical solution from vector-invariant form will still produce shocks but with wrong propagation speed, even employing
conservative numerical methods [28].

On the other hand, the vector-invariant form is a popular choice in climate modeling. It is very difficult to find the
shortcomings of this form in numerical computing [5]. In addition, if we take ∇× of momentum equation (3), we can
immediately obtain a vorticity equation while the same manipulation on (2) does not. In other words, discrete systems
based on the conservative form of the momentum equation (2) do not guarantee the conservation of vorticity. Every term
in (2) tends to introduce spurious vorticity into the system [5]. If no treatment is applied to suppress the noise, the flux-form
may eventually produce an inaccurate and unacceptable numerical solution [5].

2.1. Cubed-sphere geometry

The cubed-sphere was originally introduced by Sadourny [10], and variants including equiangular projection were de-
veloped by Ronchi et al. [11] and Ranc̆iċ et al. [12]. Let sphere S be the physical domain, which is the surface of the
planet earth. The left panel in Fig. 1 is a schematic of physical domain on a cubed-sphere grid. S is partitioned into six
identical patches that are obtained by the projection of the faces of an inscribed cube. In the present model, we consider
the gnomonic (equiangular) central projection [10], which is non-orthogonal but more uniform than the conformal map-
ping [12]. The salient features of the resulting gnomonic coordinate system on S are a global grid system without polar
singularities, and identical metric terms on each panel with quasi-uniform grid cells [14].

We define the local equiangular coordinate system of each face as x1 = x1(λ, θ), x2 = x2(λ, θ), where x1, x2 ∈ [−π/4,π/4]
and λ, θ are the longitude and latitude of a sphere with radius R . Let a1,a2 be the covariant base vectors of the transforma-
tion between the inscribed cube C and the spherical surface S , then the corresponding transformation matrix is defined
as:

A =
[

cos θ∂λ/∂x1 cos θ∂λ/∂x2

∂θ/∂x1 ∂θ/∂x2

]
= [ a1 a2 ] .

The corresponding metric tensor Gij is

Gij = R2 sec2 x1 sec2 x2

2 1 2 2

(
1 + tan2 x1 − tan x2 tan x1

1 2 2 2

)
= AT A,
1 + tan x + tan x − tan x tan x 1 + tan x
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where i, j ∈ {1,2}, and the Jacobian of the transformation is
√

G = [det(Gij)]1/2. Details of the local transformation can be
found in [29], and we will not further discuss herein.

The transformation of the horizontal wind vector v = (u, v) to local cubed-sphere contravariant components (u1, u2) and
covariant components (u1, u2), respectively, can be written as:[

u

v

]
= A

[
u1

u2

]
, AT

[
u

v

]
=

[
u1

u2

]
,

and the covariant components and contravariant components are related via ui = Giju j, ui = Giju j , and Gij = G−1
i j .

2.2. SWEs on the cubed-sphere

Two forms of SWEs on the cubed-sphere are expressed in the curvilinear equiangular (x1, x2) coordinate system.

2.2.1. Flux-form of SWEs on the cubed-sphere
In the curvilinear coordinates generated by cubed-sphere geometry, the flux-form of SWEs can be written in terms of

contravariant components [15] as follows,

∂

∂t

⎡
⎣

h

hu1

hu2

⎤
⎦ + 1√

G

∂

∂x1

⎡
⎣

√
Ghu1

√
Gτ 11

√
Gτ 21

⎤
⎦ + 1√

G

∂

∂x2

⎡
⎣

√
Ghu2

√
Gτ 12

√
Gτ 22

⎤
⎦ = ΦC + ΦT +

⎡
⎢⎣

0

−Γ 1
i j τ

ji

−Γ 2
i j τ

ji

⎤
⎥⎦ (4)

where the tensor τ i j = huiu j + 1/2gh2Gij , with i, j,k ∈ {1,2}.
The last term on the right-hand side of (4) can be viewed as the source term due to the curvature of the chosen

coordinate system. Here, the Christoffel symbols Γ k
i j are needed to define the differential operators of contravariant vectors

in curvilinear coordinates [30,15], noting that under the gnomonic mapping GijΓ k
i j = 0 [17]:

Γ 1
11 = 2 tan x1 tan2 x2

1 + tan2 x1 + tan2 x2
, Γ 1

12 = − tan x2 sec2 x2

1 + tan2 x1 + tan2 x2
, Γ 1

22 = 0,

Γ 2
22 = 2 tan2 x1 tan x2

1 + tan2 x1 + tan2 x2
, Γ 2

12 = − tan x1 sec2 x1

1 + tan2 x1 + tan2 x2
, Γ 2

11 = 0.

ΦC and ΦT denote the source term due to Coriolis force and the source term due to bottom topography, respectively,

ΦC = −
⎡
⎣

0

f
√

G(G12hu1 − G11hu2)

f
√

G(G22hu1 − G12hu2)

⎤
⎦ , (5)

ΦT = −
⎡
⎢⎣

0

gh(G11 ∂hs
∂x1 + G12 ∂hs

∂x2 )

gh(G12 ∂hs
∂x1 + G22 ∂hs

∂x2 )

⎤
⎥⎦ . (6)

2.2.2. Vector-invariant form of SWEs on the cubed-sphere
The vector-invariant form of SWEs is cast in terms of covariant components, which is in the following simple form [14],

∂

∂t

⎡
⎣

√
Gh

u1

u2

⎤
⎦ + ∂

∂x1

⎡
⎣

√
Ghu1

E

0

⎤
⎦ + ∂

∂x2

⎡
⎣

√
Ghu2

0

E

⎤
⎦ =

⎡
⎣

0√
Gu2( f + ζ )

−√
Gu1( f + ζ )

⎤
⎦ . (7)

The energy term E and relative vorticity ζ on S are defined as

E = Φ + 1

2

(
u1u1 + u2u2), (8)

ζ = 1√
G

[
∂u2

∂x1
− ∂u1

∂x2

]
. (9)

Note that for the vector-invariant form, the fluxes used are the energy fluxes not the momentum fluxes.
Both (4) and (7) can be generalized in the following compact form:

∂

∂t
U + ∂

∂x1
F1(U) + ∂

∂x2
F2(U) = S(U). (10)
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3. Nodal discontinuous Galerkin discretization

Implementation of nodal DG discretization of (10) follows the same idea of [23].

3.1. DG discretization

Let the computational domain D be the surface of the inscribed (logical) cube C , which consists of six identical
non-overlapping patches, i.e. D = ⋃6

p=1 Ω p . The discretization for each patch is identical and thus we only consider the
discretization for a single face, denoted by Ω . The square subdomain Ω is divided into Ne × Ne non-overlapping rectangular
elements Ωi j such that,

Ωi j = [(
x1, x2)∣∣x1 ∈ (

x1
i−1/2, x1

i+1/2

)
, x2 ∈ (

x2
j−1/2, x2

j+1/2

)]
, where i, j = 1,2, . . . , Ne.

So, M = 6N2
e elements in total which span the whole spherical domain S .

DG discretization to a scalar component of (10) is illustrated here for the purpose of simplicity:

∂

∂t
U + ∇ · F(U ) = S(U ), in D × (0, T ], (11)

where U is a scalar variable, which may include the metric term
√

G , F = (F1, F2) is the flux function, S(U ) is the source
term, T is the total time period, and ∇ = (∂/∂x1, ∂/∂x2) is the Cartesian-like gradient operator [29].

In a DG method, we solve for an approximate solution Uh , which belongs to a finite-dimensional space Vh consisting of
polynomials of degree up to N:

Vh = VN
h = {

ϕ: ϕ
∣∣
Ωe

∈ P N(Ωe), ∀ Ωe ∈ D
}
, (12)

where

P N(Ω) = span
{(

x1)k(
x2)l

: 0 � k, l � N, ∀ (
x1, x2) ∈ Ω

}
.

The semidiscretized weak formulation for (11) on each element Ωe is given by [21]:

d

dt

∫
Ωe

Uhϕh dΩ −
∫
Ωe

F(Uh) · ∇ϕh dΩ +
∫
Γe

F̂ · nϕh dΓ =
∫
Ωe

S(Uh)ϕh dΩ, (13)

where ϕh is a test function from test space Vh , F̂ is the numerical flux as defined below and n is the outward unit normal
vector along the element boundary Γe .

For simplicity, we choose Lax–Friedrichs numerical flux here:

F̂(Uh) = 1

2

{[
F
(
U−

h

) + F
(
U+

h

)] · n − α
(
U+

h − U−
h

)}
, (14)

where U−
h and U+

h are the left and right limits of Uh evaluated along Γe such that U−
h is inside the element Ωe and U+

h is
outside of Ωe , α is the maximum of the absolute value of eigenvalues of the flux Jacobian in the direction n. α is identical
for both flux-form and vector-invariant form of SWEs. The formulations of α in x1 and x2 directions are given by (detailed
derivation can be found in [14]),

α|x1 = max
{∣∣u1

∣∣ +
√

G11 gh
}
,

α|x2 = max
{∣∣u2

∣∣ +
√

G22 gh
}
. (15)

The choice of a suitable set of basis functions for Vh is also vital for an accurate and efficient evaluation of the integrals
in the weak form (13). An orthogonal polynomial basis set, such as Lagrange–Legendre polynomial, is highly preferred for
efficiency. Levy et al. [31] has shown that the nodal DG exhibits better computational efficiency than the modal version,
therefore, we consider the nodal DG version in the present paper.

3.2. Numerical integration

To make use of an efficient quadrature rule, consider a one-to-one mapping (16) from an element Ωi j to a reference
element ΩR = [−1,1] × [−1,1], as shown in Fig. 1:

ξ1 = 2(x1 − x1
i )

�x1
i

, x1
i = (

x1
i+1/2 + x1

i−1/2

)
/2,

ξ2 = 2(x2 − x2
j )

�x2
, x2

j = (
x2

j+1/2 + x2
j−1/2

)
/2, (16)
j
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where (ξ1, ξ2) ∈ ΩR . The nodal basis functions are chosen as the Lagrange–Legendre polynomials φm(ξ i), with roots located
at the Gauss–Legendre–Lobatto (GLL) quadrature points,

φm
(
ξ i) = (ξ i − 1)(ξ i + 1)L′

N(ξ i)

N(N + 1)LN (ξ i
m)(ξ i − ξ i

m)
, (17)

1∫
−1

φm
(
ξ i)φn

(
ξ i)dξ i 	 wmδmn, 0 � m,n � N, (18)

where LN is the N-th order Legendre polynomial, wk is the weight associated with GLL quadrature rule and δmn is the
Kronecker delta function.

The tensor-product of polynomials φm(ξ1)φn(ξ2) forms the nodal basis set which spans P N (Ωe) in (12). Hence, the
approximate solution Uh can be expressed as the linear combination of the nodal basis set:

Uh
(
ξ1, ξ2) =

N∑
m=0

N∑
n=0

Uh
(
ξ1

m, ξ2
n

)
φm

(
ξ1)φn

(
ξ2), (19)

where {ξ i
m}N

m=0 are Nv = N + 1 GLL quadrature points for i ∈ {1,2}. There are Nv × Nv GLL points on ΩR , and the total
degrees of freedom on D are 6N2

e N2
v with this configuration.

The bottom topography function hs is also projected into the same space Vh and is defined to be

hs
(
ξ1, ξ2) =

N∑
m=0

N∑
n=0

hs
(
ξ1

m, ξ2
n

)
φm

(
ξ1)φn

(
ξ2). (20)

The discretization of the source term bottom topography ΦT requires special treatment and is discussed in Section 3.4 in
detail.

The same order of quadrature rule is adopted both for the internal surface integrals in Ωe and for the boundary flux
integrals along the boundary Γe . Because, this setting is significantly efficient at the cost of negligible inaccuracy due to
the inexact integration [23]. Substituting (17), (19) and (20) into the weak formulation (13) and simplifying the resulting
equation lead to an ODE system in time,

dUmn

dt
= L(Umn), in (0, T ], (21)

where {Umn} are time-dependent values of Uh at the grid points (x1
m, x2

n).

3.3. Time integration

Strong stability-preserving (SSP) Runge–Kutta schemes are widely used in practice because they preserve stability and
are flexible to increase temporal accuracy [26]. We employ a third-order accurate SSP Runge–Kutta scheme for the time
integration in the present paper:

U (1) = Un + �tL
(
Un),

U (2) = 3

4
Un + 1

4

[
U (1) + �tL

(
U (1)

)]
,

Un+1 = 1

3
Un + 2

3

[
U (2) + �tL

(
U (2)

)]
. (22)

Although efficient time stepping schemes, such as the implicit and semi-implicit time integration approaches, are avail-
able for DG methods, for simplicity, we consider only explicit SSP-RK method. The explicit time stepping method has a
stringent CFL stability restriction for the DG methods, nevertheless, it offers high-order temporal accuracy. Note that, we
use relatively small time steps for the numerical experiments for minimizing the possible temporal error associated with
the numerical integration. However, for practical applications employing high-order DG methods, this may be suboptimal or
computationally prohibitive.

Slope limiter procedure is an important component for many DG schemes, and a filter is also widely chosen for high-
order DG schemes (see for example [7]). Because the solution contains no strong shocks or discontinuities, we adopt (22)
directly without a limiter or filter.
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3.4. Discretization of source term due to bottom topography

Bermudez and Vazquez [32] proposed the idea of the “exact C-property”, which stands for the ability of the numerical
scheme to exactly preserve the steady-state equilibrium solution for the still water at rest:

v = 0, and H = h + hs = constant. (23)

The numerical approaches which satisfy “exact C-property” are often referred as the well-balanced methods. When a non-
smooth bottom topography is present in the flux-form of SWEs (4), the spatial discretization must obey the well-balanced
property to avoid spurious oscillations into the flow near the non-smooth region of the bottom topography. For non-
smoothness, we refer to non-differentiable function, which can also be discontinuous. The traditional DG method (13)
is well-balanced for smooth bottom topography but not for the non-smooth bottom topography [24]. Well-balanced DG
schemes for the SWEs are an active research area and a detailed discussion can be found in [33]. As observed in [24], a
small modification on the flux term can make the traditional DG scheme well-balanced. Inspired by [24,25], we consider a
well-balanced DG scheme for our flux-form SW model with a minor change in the flux term.

We define the numerical flux as F̃(Uh), and the modification in the flux term is carried out in the following steps:

• After computing the boundary value of Uh|Γe , define:

h∗,±∣∣
Γe

= H±∣∣
Γe

− max
(
h+

s

∣∣
Γe

,h−
s

∣∣
Γe

)
. (24)

• Modify the prognostic variable U along the boundary Γe:

U∗,±
h |Γe =

⎡
⎣

h∗,±

h∗,±u1,±

h∗,±u2,±

⎤
⎦

Γe

. (25)

• Define the notations:

δ∗
x1 =

⎡
⎢⎣

0

G11[ g
2 (h−)2 − g

2 (h∗,−)2]
G21[ g

2 (h−)2 − g
2 (h∗,−)2]

⎤
⎥⎦

Γe

, δ∗
x2 =

⎡
⎢⎣

0

G12[ g
2 (h−)2 − g

2 (h∗,−)2]
G22[ g

2 (h−)2 − g
2 (h∗,−)2]

⎤
⎥⎦

Γe

,

where δ∗
x1 and δ∗

x2 may be interpreted as the hydrostatic reconstruction under the curvilinear coordinate system.
Thus, we give the new well-balanced numerical flux:

F̃(Uh) = F̂
(
U∗

h

) + δ · n, (26)

where δ = (δ∗
x1 , δ

∗
x2 ). As shown in [24], (13) is (N + 1)-order convergence in space and converges to the weak solution.

In order to capture the non-smoothness of the bottom topography in the simulation, the initial solution is computed from
the modal expression of hs at the Nv × Nv Gauss–Legendre (GL) points, and then interpolating it on to the corresponding
GLL points. In the interpolation process, we only keep the 0-th order term, and the higher order terms are dropped in the
GL quadrature.

Note that, if the bottom topography is flat or smooth, the well-balanced numerical flux is equivalent to the original
numerical flux. In other words, for smooth bottom topography, the traditional DG scheme is already well-balanced. The
well-balanced correction in the flux term only takes effect when there is a non-smooth bottom topography [24].

3.5. Artificial diffusion effects

As discussed in Section 2, the conservative form of the momentum equation (2) tends to generate noise in the vorticity
field and thus destroy the conservation of potential vorticity and enstrophy as well. In order to suppress these spurious
accumulation, horizontal diffusion is usually preferred and added in the discrete model [23]. In [23], the LDG approach [34]
is implemented for the vector-invariant form of SWEs (7), where the LDG scheme used is based on a simple Bassi–Rebay
scheme [35]. In [23], a second-order explicit diffusion (∇2) is added to (7) and tested on a series of canonical numerical
test-cases for SWEs. An LDG scheme successfully removes small-scale noise and provides smooth simulated results compa-
rable to the reference solution [23]. Similar to the idea of [23], we introduce a uniform second-order diffusion to the flux
form of SWEs. The viscous SW model can be written in a compact form as follows:

∂

∂t
U + ∇ · F(U) = S(U) + D(U). (27)

The viscous flux D(U) is expressed as:



L. Bao et al. / Journal of Computational Physics 271 (2014) 224–243 231
D(U) =
⎡
⎣

0

ν
√

G∇s · (h∇su1)

ν
√

G∇s · (h∇su2)

⎤
⎦ ,

where ∇s = (a1∂/∂x1,a2∂/∂x2).

√
G∇s · (h∇sui) = ∂

∂x1

[
h
√

GG11 ∂ui

∂x1
+ h

√
GG12 ∂ui

∂x2

]
+ ∂

∂x2

[
h
√

GG21 ∂ui

∂x1
+ h

√
GG22 ∂ui

∂x2

]
,

where i ∈ {1,2}, and ν is the constant diffusion coefficient.
Note that, in the curvilinear coordinates, the vector Laplacian has a different formulation from the Laplacian of the

components. Curvilinear vector Laplacian has a complex form and is computationally expensive. However, for simplicity, the
Laplacian is treated component-wise for each momentum equation.

Consider the scalar component of (27),

∂

∂t
U + ∇ · F(U ) = S(U ) + D(U ). (28)

Introduce a new variable q = ∇U , and use the following matrix notations to represent the viscous term:

q =
[

∂U

∂x1
,

∂U

∂x2

]
, M =

[√
GG11

√
GG12

√
GG21

√
GG22

]
, and q̃ = hqMT .

(28) can then be recast in the form of a first-order system on D :

q − ∇U = 0, (29)

q̃ = hq MT , (30)
∂U

∂t
+ ∇ · F(U ) − ν∇ · q̃ = S(U ). (31)

On each element Ωe with the boundary Γe , multiplying (29) by a vector test function w, applying Green’s method twice,
and with the central flux for the evaluation of the flux associated with Uh along Γe (see (13)–(14) in [23] for details), the
weak formulation of (29) leads to:∫

Ωe

qh · w dΩ =
∫
Γe

1

2

(
U+

h − U−
h

)
w · n dΓ +

∫
Ωe

∇Uh · w dΩ, (32)

where 1
2 (U+

h − U−
h ) is called jump flux.

The semidiscretized weak formulation of (31), with q̃h = h qh MT , takes the form:

d

dt

∫
Ωe

Uhϕh dΩ −
∫
Ωe

F(Uh) · ∇ϕh dΩ +
∫
Γe

[
F(Uh)

] · nϕh dΓ + ν

(∫
Ωe

q̃h · ∇ϕh dΩ −
∫
Γe

[q̃h] · nϕh dΓ

)

=
∫
Ωe

S(Uh)ϕh dΩ, (33)

where [q̃h] is evaluated through the central flux (q̃+
h + q̃−

h )/2. [F(Uh)] is approximated by (26), which results in a well-
balanced LDG scheme.

Although various options for the numerical fluxes are available as listed in [36], for simplicity [23], we choose the
combination of jump flux and central flux here for the evaluation of (32) and (33).

The DG methods, like many other high-order methods, such as RBFs [37] and spectral element methods, often require
an artificial diffusion effect to stabilize the fields and obtain a high-quality solution. For an artificial diffusion term (or a
numerical diffusion), ν depends not only on the problem itself but also the grid resolution �h̄. ν is chosen in a way that the
diffusion effect can, to some extent, eliminate the noise in the numerical solution, but not too large to destroy the physical
features of the problem. Furthermore, it is required that as �h̄ → 0, ν → 0. This is different from a physical diffusion (as
in a viscous flow problem), where ν relies entirely on the viscosity of the flow and is irrelevant of �h̄. In terms of the
artificial diffusion, a rigorous selection of ν can be made by studying the kinetic spectra [38], which is beyond the scope
of the present study. Artificial diffusion is especially important when constructing dynamic core for atmosphere modeling
[39,40]. In the current paper, we consider the influence of an artificial diffusion effect on our DG flux-form model. For a
benchmark advection–diffusion problem, usually the analytic solution is available to test the convergence of the diffused
solution. Unfortunately, there is no benchmark test with known analytic solution for SWEs (27) for examining the diffusion
effect. Although the convergence study of DG with artificial diffusion effect can hardly be performed, a deviation of the
diffused solution from the non-diffused solution can be shown by fixing ν when varying �h̄. The indication of the influence
of the numerical diffusion can be immediately seen, details are given in Section 4.1.2.
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4. Numerical experiments and results

To test the accuracy and the performance of our flux-form DG SW models (13), (33), we consider three standard test-
cases here. They are the steady-state geostrophic flow, the zonal flow over an isolated mountain as suggested in Williamson
et al. [2], and the barotropic instability proposed by Galewsky et al. [27]. The first two test-cases are often referred as the
SW test-case 2 and 5, respectively [2]. Comparisons of two forms of inviscid DG SW models using these test-cases are
shown, and the conservation of global invariants are monitored as a function of time.

In order to compare the resolution of cubed-sphere grids associated with GLL points with that of the regular latitude–
longitude grid, we use an “average” resolution at the equator of the sphere [41]:

approximate resolution = �h̄ = 90◦

Ne(Nv − 1)
= 90◦

Ne N
.

For most of the test-cases considered, the analytic solution is unknown. When the analytic solution is not available, a
reference solution is chosen to be the numerical result produced by the inviscid vector-invariant SW model at the same
resolution. In terms of the convergence studies of inviscid flux-form of SWEs, we measure the L1, L2 and L∞ errors of the
approximate solution, as suggested in [2]. For the convergence behavior, when including the diffusion effect, we use only
the L1 error of the simulated solution, because the other two have similar convergence performances.

In order to monitor the numerical conservation of the global invariants, we define the normalized integral Ψ̄ (t) as:

Ψ̄ (t) = I g[Ψ (λ, θ, t)] − I g[Ψ (λ, θ,0)]
I g[Ψ (λ, θ,0)] , (34)

where I g is the global surface integral. I g is evaluated on the cubed-sphere by GLL quadrature rule as follows:

I g
(
Ψ (λ, θ, t)

) ≈
6∑

p=1

Ne∑
k=1

Ne∑
l=1

Nv∑
i=1

Nv∑
j=1

√
Gijkl Ψp

(
x1

i,k,l, x2
j,k,l, t

)
wi w j,

where p indicates the panel index.
For the conservation of mass, Ψ = h, and for the conservation of total energy, Ψ = {h(u2 + v2) + g[(h + hs)

2 − h2
s ]}/2.

For the conservation of potential enstrophy, Ψ = (ζ + f )2/(2h), where ζ is defined in (9). For the conservation of zonal
angular momentum, Ψ = (u + ωR cos θ)R cos θ (for thin atmosphere [42]), where ω is the angular velocity. Time traces of
these integral invariants are shown for the comparison of different numerical experiments.

Note that, the SSP-RK time integration schemes impose a stringent CFL stability restriction for the DG discretizations.
The presence of the diffusion terms further confine the explicit time-step size [23]. Besides, in order to carry out a fair
comparison of the two sets of SWEs, it would be beneficial to avoid possible temporal errors. Due to these facts, we choose
a moderate time stepping which is suboptimal. It is well-known that the communication expenses are the major limiting
factor for parallel efficiency [31]. The extra cost of the flux calculations in the LDG scheme (28) is time-consuming and
reduces the scalability [23]. We test two options: one is to update diffusion terms in every stage of SSP-RK3 (22), and the
other is to compute it at the beginning of (22) and use the same value of diffusion terms for every inner stage of (22).
For small �t , numerical results show that there is no significant difference in the quality of solutions between these two
choices, while the latter one is more efficient than the former one. We should emphasize that, the second treatment of
the diffusion terms may not apply to general cases with relatively large �t . The motivation for us to consider this setup is
simplicity and efficiency. Therefore, in the numerical experiments, we adopt the second option for the LDG diffusion process.

The physical parameters used in the numerical tests are: radius of Earth R = 6.37122 × 106 m, angular velocity of Earth
ω = 7.292 × 10−5 rad s−1, and gravitational acceleration g = 9.80616 m s−2.

4.1. Geostrophic flow

The first test is SW test-case 2, which describes a zonal geostrophic balanced flow [2]. It is a steady-state test for the
global SWEs with a uniform wind field. The initial (also analytic) geopotential and the velocity are given as,

gh = gh0 − u0

2
(2Rω + u0) × (sin θ cosα0 − cosλ cos θ sinα0)

2, (35)

u = u0(cosα0 cos θ + sinα0 cosλ sin θ), (36)

v = −u0 sinα0 sinλ, (37)

where u0 = 2π R/(12 days), gh0 = 2.94 × 104 m2 s−2 and α0 is the flow orientation angle
It is a challenging test for the cubed-sphere geometry when α0 is set to be π/4. Since the analytic solution is known, SW

test-case 2 is usually used for validating the accuracy and studying the convergence of the numerical models. Williamson et
al. [2] suggested at least 5 model days of time integration for this test. Therefore, SW models considered here are integrated
for 5 model days with time step size �t = 90 s, for all the experiments, regardless of the resolution. The resolution for the
calculation is chosen as Ne = 12, N = 3, which corresponds to approximately 2.5◦ at the equator.



L. Bao et al. / Journal of Computational Physics 271 (2014) 224–243 233
4.1.1. DG for flux-form inviscid SWEs
The initial condition is shown in Fig. 2(a). Relative errors of the height difference field for two forms of SWEs are

displayed in Fig. 2(b) and 2(c). The maximum relative errors are O (10−6) for both forms. As seen from Fig. 2(b) and 2(c),
the height field in the vector-invariant form is less noisy than that of the flux-form.

To get the notion of the numerical convergence of our flux-form SW model (4), we organize the experiments in two
ways. Firstly, we fix Ne = 3 and increase the order of polynomial N from 4 to 10. The results are shown in Fig. 3(a), which
shows an exponential convergence. Then, we perform an h-convergence study, by varying Ne from 5 to 15 with a fixed order
of polynomial N = 3, and it is displayed in Fig. 3(b). It is observed that the nodal DG scheme attains at least 4-th order
convergence. Both p-convergence and h-convergence performances are similar to those of the vector-invariant form [14].

Time traces of normalized errors of the global invariants are shown in Fig. 4. The results from the vector-invariant form
are also displayed for reference and comparison. We can see that both forms preserve mass to the machine precision. The
flux-form tends to have better conservation of total energy, while the vector-invariant form has a nicer control of potential
enstrophy. This is consistent with the potential weakness of the flux-form of SWEs discussed in Section 2. However, for both
sets of SWEs, the potential enstrophy is conserved up to a small constant at the same order.

4.1.2. LDG for viscous flux-form of SWEs
As discussed in Section 3.5, a convergence study of the flux-form SWEs with artificial diffusion, namely as �h̄ → 0,

ν → 0, is not feasible, given the fact that neither the analytic solution for viscous SWEs nor a rigorous choice of ν is
available. Therefore, we demonstrate the influence of the artificial diffusion by showing how the diffused solution deviates
from the non-diffused solution. This is achieved by keeping ν fixed and varying the resolution.

Fig. 5 shows the normalized L1 errors of the height field with various choices of the diffusion coefficients ν when
refining the grid resolution. Fig. 5(a) displays the L1 errors of the height field at day 5 when Ne = 3, and N varies from 4 to
10. As we increase the resolution, the non-diffused version exhibits an exponential convergence to the exact solution, while
the LDG solution evolves to a “diffused state”, which depends on the magnitude of the diffusion coefficient ν . Similar trends
can be found in Fig. 5(b), which shows the normalized L1 errors of the height field at day 5 when N = 3 and Ne varies
from 5 to 15. The results in Fig. 5 reveal that when a stronger numerical diffusion is added, the diffused solution reaches
a “diffused equilibrium” at a lower resolution. The “diffused equilibrium” corresponds to the flattened lines in Fig. 5(a).
This implies that the diffusion effect becomes dominant, and as a result, the fine physical features due to the high-order
nature of the solution are smeared or erased when a stronger numerical diffusion is used. Comparing Fig. 5(a) and 5(b), the
magnitude of the diffusion coefficient plays a predominant role on the evolution of the viscous solution over the resolution
or the polynomial degree.

To study the influence of the diffusion effect on the effectiveness of the scheme in conserving global invariants, time
traces of the normalized errors are exhibited in Fig. 6. For all the global invariants considered here, the normalized er-
rors grow at a higher rate when increasing the strength of the diffusion effect. The convergence behaviors of the viscous
flux-form SWEs are similar to those of viscous vector-invariant form [23].

4.2. Barotropic instability (Galewsky test)

The barotropic instability test of [27] simulates a mid-latitude jet generated by adding a small amount of perturbation to
the barotropic balanced flow. This test is particularly challenging on the cubed-sphere grid, because the barotropic instability
activities are presented at the discontinuous edges of the top panel of cubed-sphere grid, as observed by St-Cyr et al. [43].
A 6-day time integration is recommended for this test both for with and without diffusion. We are particularly interested
in the relative vorticity field for this test-case. As shown in [43], nice features of the vorticity fields can be captured at a
resolution higher than 1.25◦ .

For this experiment, we choose the grid resolution at Ne = 30, N = 7, which is approximately 0.43◦ at the equator. We
choose the time step size �t = 5 s for all the simulated runs, which is suboptimal, and integrate the model for 6 model
days.

The relative vorticity fields at day 6 are shown in Fig. 7 for the inviscid and viscid flux-form of the SWEs. Fig. 7(a) shows
the inviscid run and it can be seen that the non-diffused flux-form is able to well capture the dynamics and the solution is
smooth and comparable to that in [23,27]. Usually, high-order methods, such as RBF [37], require strong diffusion to stabilize
the result for this test-case. From various numerical experiments, we observe that the inviscid flux-form can produce a
smooth relative vorticity field as long as the grid resolution is greater than 0.5◦ . However, the vector-invariant form without
diffusion is very sensitive to the resolution parameters Ne, N .

In order to consider the diffusion effect, Fig. 7(b), 7(c) show the viscous tests with the diffusion coefficients ν (m2 s−1)

equals to 104 and 105 respectively. The viscid version successfully eliminates the small-scale noise appearing in Fig. 7(a)
with a proper choice of diffusion coefficient value ν (here, ν = 104 for instance). However, here the choice of the diffusion
coefficient is heuristic, and somewhat arbitrary.

Time traces of the normalized errors of conservative integrals are shown in Fig. 8 with the diffusive effect. Similar to SW
test-case 2, the error growth is at a noticeable faster rate and is strongly influenced by the magnitude of the value of ν .
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Fig. 2. The geostrophic flow (SW test-case 2) in the resolution ≈ 2.5◦ at the equator (Ne = 12, N = 3) and �t = 90 s. (a) is the reference solution. Relative
errors of height field at day 5 are shown in (b) for the flux-form of SWEs and (c) for the vector-invariant form. The contour varies from −3 × 10−5 to
4 × 10−5 with an increment of 5 × 10−6.
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Fig. 3. Normalized errors of the height field for the geostrophic flow (SW test-case 2) at day 5 for the inviscid flux-form SW model. (a) is computed with
Ne = 3 and varying N from 4 to 10. (b) is computed with N = 3 and varying Ne from 5 to 15.

Fig. 4. Time traces of normalized errors of mass (a), total energy (b), potential enstrophy (c) and zonal angular momentum (d) of the flux-form and the
vector-invariant form for the geostrophic flow (SW test-case 2) in the resolution ≈ 2.5◦ at the equator (Ne = 12, N = 3). Both tests are integrated for 5 days
with �t = 90 s.

4.3. Zonal flow over an isolated mountain

The last test-case we consider in this study is the SW test-case 5 in [2]. This test-case describes a zonal flow over an
isolated mountain. It is the only test considered here in which the bottom topography is non-flat. The bottom topography
is a conical mountain centered at (λc, θc) = (3π/2,π/6), which is also non-smooth. So, the well-balanced DG scheme takes
effect on this test-case. The initial wind field and height field are identical to the SW test-case 2, except that α0 = 0,h0 =
5960 m and u0 = 20 m/s. The underlying mountain is defined as:

hs = h0
s

(
1 − r

a

)
(38)

where h0
s = 2000 m,a = π/9, and r2 = min[a2, (λ − λc)

2 + (θ − θc)
2].
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Fig. 5. Normalized L1 errors in the height field for SW test-case 2 at day 5 for flux-form of SWEs with diffusion for ν = 0 m2 s−1, ν = 102 m2 s−1, ν =
103 m2 s−1, ν = 104 m2 s−1 respectively. (a) is computed with Ne = 3 and varying N from 4 to 10. (b) is computed with N = 3 and varying Ne from 5 to
15.

Fig. 6. Time traces of the normalized errors of mass (a), total energy (b), potential enstrophy (c) and zonal angular momentum (d) of viscous flux-form
SWEs for the geostrophic flow (SW test-case 2) in the resolution ≈ 2.5◦ at the equator (Ne = 12, N = 3). The diffusion coefficient varies from ν (m2 s−1) =
0,102,103,104. All tests are integrated for 5 days with �t = 90 s.

4.3.1. To test the maintenance of well-balanced property
In order to verify that the models indeed maintain well-balanced property, we use a steady atmosphere over a smooth

mountain (a Gaussian-hill), and a non-smooth mountain (a conical mountain, as (38)) respectively as a test case. To be
specific, the steady atmosphere is given as,

u = 0, v = 0, h = h0.

The Gaussian hill is chosen as [31],
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Fig. 7. Relative vorticity field of the barotropic instability test at day 6 in the resolution ≈ 0.43◦ at the equator (Ne = 30, N = 7). (a) is using the inviscid
flux-form. (b) is using the LDG flux-form with ν = 104 m2 s−1. (c) is using the LDG flux-form with ν = 105 m2 s−1. �t = 5 s for all runs. The contour varies
from −1.1 × 10−4 s−1 to 1.1 × 10−4 s−1 with an increment of 2 × 10−5 s−1.
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Fig. 8. Time traces of the normalized errors of mass (a), total energy (b), potential enstrophy (c) and zonal angular momentum (d) of LDG flux-form SW
model for the barotropic instability test-case in the resolution ≈ 1.5◦ at the equator (Ne = 30, N = 7). The diffusion coefficient ν (m2 s−1) varies from
0,104,5 × 104,105. The tests are integrated for 6 days with �t = 5 s.

Table 1
Well-balanced check for a steady flow field with a Gaussian smooth mountain.

SW DG model L1 error L∞ error

hu hv hu hv

V.I. form 1.61E−15 1.64E−15 1.74E−15 1.87E−15
flux-form 1.57E−13 1.58E−13 1.75E−12 1.74E−12

Table 2
Well-balanced check for a steady flow field with a conical non-smooth mountain.

SW DG model L1 error L∞ error

hu hv hu hv

V.I. form 1.36E−15 1.42E−15 1.61E−15 1.61E−15
flux-form 1.54E−10 1.06E−10 3.32E−09 3.03E−09
well-balanced flux-form 1.99E−14 2.27E−14 4.44E−14 4.68E−14

hs = h0
s × exp

{−5.0
[
(x − xc)

2 + (y − yc)
2 + (z − zc)

2]},
where (x, y, z) is the any point on the sphere and (xc, yc, zc) is the point at (λc, θc) = (3π/2,π/6).

Table 1 and 2 show L1 and L∞ error of the components of momentum of hu and hv under double precision for smooth
bottom and non-smooth bottom, respectively. All numerical runs are integrated for 1 model day with Ne = 20, N = 3,�t =
30 sec. We can see that for the smooth mountain, both vector-invariant form and flux-form reach the roundoff error, which
indicates the maintenance of the well-balanced property. However, for the non-smooth mountain, the vector-invariant form
still preserves well-balanced property while the flux-form DG loses this property. After making the well-balanced correction
to the flux-form, we can see that the flux-form DG keeps well-balanced property for the steady atmosphere.
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Fig. 9. Height field of the zonal flow over an isolated mountain wave (SW test-case 5) at day 15 in the resolution ≈ 1.5◦ at the equator (Ne = 20, N = 3).
(a) is using flux-form. (b) is using vector-invariant form. (c) is using LDG flux-form with ν = 2.5 × 105 m2 s−1. (d) is using LDG flux-form with ν =
2.5 × 106 m2 s−1. �t = 30 s for all tests.

4.3.2. Inviscid DG of flux-form SWEs to SW test-case 5
This test-case is mainly designed for conservation check for the global invariants. Spectral elements and spectral trans-

form suffer from the generation of spurious oscillations at all scales for this test problem, which leads to spectral ringings
[14]. A 15 model days’ time integration is performed for the zonal flow over an isolated mountain. The modal resolution
is chosen to be Ne = 20, N = 3, which is approximately 1.5◦ at the equator. The time step size is �t = 30 s for all the
numerical experiments. The height field at day 7 is shown in Fig. 9(a), and the result from vector-invariant form is plotted
in Fig. 9(b) for reference. The results are visually indistinguishable and similar to the results in [14].

Time traces of the normalized errors of the conservative quantities: mass, total energy, potential enstrophy and angular
momentum are shown in Fig. 10. In the non-diffusive case, both forms exhibit comparable performances on preserving the
global invariants. In particular, the flux-form has a slightly better conservation of total energy and vector-invariant form
shows a better conservation of potential enstrophy.

For the flux-form formulation, the influence of source term involving the non-smooth mountain can be readily seen in
the vorticity fields. Although there are several global flux-form SW models [7,15,17,18] use this test-case, unfortunately,
the vorticity fields are not available for a comparison. However, we examine the influence of diffusion mechanism in the
evolution of relative vorticity fields, by comparing the vorticity fields at day 7 shown in Fig. 11. For the well-balanced DG
without diffusion, as shown in Fig. 9(a), there exists some noise in the region where the mountain is located. Compared
to the inviscid flux-form, the vector-invariant form produces a smooth relative vorticity field because the source term in
(7) does not include the oscillatory gradient terms corresponding to the representation of the mountain hs . The bottom
mountain only exists in the flux term (6) and the discontinuity can be partially resolved by the numerical flux. However, it
can be observed in Fig. 11(c), that the appropriate amount of diffusion effect can, to a great extent, eliminate the noise and
the resulting vorticity field is very similar to the reference solution shown in Fig. 11(a). Fig. 11(d) shows an even smoother
vorticity field at the cost of a higher diffusion, however, the corresponding height field shown in Fig. 9(d) is over-diffused.

4.3.3. Well-balanced DG with numerical diffusion
To examine the influence of the diffusion effect on the maintenance of the conservative integrals, time traces of the

normalized errors of mass, total energy, potential enstrophy and zonal angular momentum are shown in Fig. 12. Unlike the
previous cases, the magnitude of normalized errors first decreases and then increases as the magnitude of the diffusion
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Fig. 10. Time traces of the normalized errors of (a) mass, (b) total energy, (c) potential enstrophy and (d) zonal angular momentum of two forms of SWEs
for the zonal flow over an isolated mountain wave (SW test-case 5) in the resolution ≈ 1.5◦ at the equator (Ne = 20, N = 3). Both tests are integrated for
15 days with �t = 30 s.

coefficient grows. This is mainly due to the fact that the inviscid flux-form generates some spurious vorticity near the
mountain region and proper diffusion effect (here choose ν = 2.5 × 105 m2 s−1) can suppress the noise in the relative
vorticity field, as shown in Fig. 11(c). Further increase in the diffusion effect leads to an over-diffused state, which is not
acceptable. So the conservative properties are further destroyed besides the effect from the numerical scheme itself. As
the diffusion coefficient increases to 2.5 × 106 m2 s−1, the magnitude of the normalized error grows. However, a high-order
diffusion (∇2n) can more efficiently remove the noise without adversely affecting the flow field [44], which is not considered
here.

5. Summary and conclusion

A full flux-form discontinuous Galerkin (DG) shallow-water (SW) model on the cubed-sphere has been developed. The
cubed-sphere is based on non-orthogonal curvilinear coordinates and uses equiangular central projection. To address the
explicit non-smooth source terms in the momentum equations, the well-balanced DG scheme proposed by Xing et al.
has been extended to the global SW model. The resulting DG discretization uses a high-order nodal basis set consisting
of Lagrange–Legendre polynomials and adopts the Lax–Friedrichs numerical flux combined with the well-balanced flux
modification. Time integration relies on a strong stability-preserving (SSP) explicit Runge–Kutta scheme. The viscous variant
of the SW model employs a second-order diffusion scheme, which is based on the local discontinuous Galerkin (LDG)
method. The diffusion terms (Laplacians) of the model involving curvilinear metric terms are solved via a first-order system.
In order to demonstrate accuracy and conservation properties, we have tested the proposed model with a suite of SW
test-cases, including two benchmark test-cases from Williamson et al. [2] and a barotropic instability test from Galewsky et
al. [27]. The inviscid vector-invariant form SW model is used here as a reference. Our goal is to make a rigorous comparison
of the two formulations of the SWEs, in terms of physical features such as conservation, for identifying a formulation that
would be suitable for a global 3D dynamical-core development.

The accuracy of the inviscid flux-form DG SW model can be demonstrated by the exponential convergence of the SW
steady state test-case (SW test-case 2, above). The numerical results are similar to the reference solution obtained via
the vector-invariant form DG SW model. For the flux-form SW model, in the presence of a non-flat bottom topography, a
special approach which preserves the “well-balanced property” is required. This essentially prevents the source terms in
the DG discretization of the flux-form SWEs from exciting spurious modes. The results with a benchmark test, flow over
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Fig. 11. Relative vorticity field of the zonal flow over an isolated mountain wave (SW test-case 5) at day 7 in the resolution ≈ 1.5◦ at the equator
(Ne = 20, N = 3). (a) is using inviscid flux-form and (b) is using vector-invariant form. (c) is using viscid flux-form with ν = 2.5 × 105 m2 s−1. (d) is
using viscid flux-form with ν = 2.5 × 106 m2 s−1. �t = 30 s for all tests. The contour varies from −3 × 10−5 s−1 to 3 × 10−5 s−1 with an increment of
5 × 10−6 s−1.

an isolated mountain (SW test-case 5), show that the vector-invariant formulation is well-balanced for both smooth and
non-smooth mountains. The flux-form DG SW model is well-balanced for the smooth mountain case. But in the presence of
non-smooth mountains, the well-balanced correction is necessary to admit the solution and prevent the spurious numerical
behaviors. While monitoring the vorticity field, it is observed that the flux-form SW model generates spurious noise in the
vicinity of the mountain, but this is not the case for the vector-invariant form. For the conservation of global invariants, the
inviscid flux-form SW model shows better conservation of total energy and angular momentum while the vector-invariant
form has a better control on the potential enstrophy.

The LDG scheme for the flux-form SWEs evolves to a diffused state for SW test-case 2, and this process is dependent on
the magnitude of the diffusion coefficient ν . For the barotropic instability test, the flux-form SW model combined with the
LDG diffusion process produces a result which agrees well with the reference solution shown in Galewsky et al. [27]. This
scheme successfully removes the spurious oscillations, and captures the dynamics of the mid-latitude stream. The resulting
numerical solutions are smooth and comparable to other published results. The quality of the diffused solution is also
influenced by the value of ν . When considering the effectiveness of the LDG schemes in preserving globally conservative
quantities, the normalized errors of the global invariants grow at a faster rate than the inviscid situation and the error
growth rates are dependent on the choice of the diffusion coefficient. However, the choice of the diffusion coefficient is
mesh-size and problem dependent, and our choice is arbitrary and heuristic.

The SW model has been implemented in the highly parallel efficient HOMME framework [41]. As far as the computa-
tional complexity is concerned, the vector-invariant form is simpler and more efficient. The explicit SSP-RK time integration
used for our DG SW models has a restrictive time-step size limit. An implicit or semi-implicit time integration would be an
effective candidate, and we are considering this option for future application. The flux-form SW model requires additional
efforts to discretize the source terms due to the non-smooth mountains, although it may not be an issue for a 3D atmo-
sphere model. This is because the mountains (topography) can be incorporated into the vertical coordinate system, such as
the terrain-following coordinate system. This set of equations will probably avoid the requirement of the well-balanced DG
discretization for the conservative form of the momentum equations, and that is an interesting topic for future study. In
addition, with an appropriate value for ν , high-order (or hyper-) diffusion might better preserve global invariants. A rigorous
selection for ν is possible by looking at the kinetic energy spectra, and this may be considered for future research.
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Fig. 12. Time traces of normalized errors of mass (a), total energy (b), potential enstrophy (c) and zonal angular momentum (d) of LDG flux-form SW
model for the flow over a mountain (SW test-case 5) in the resolution ≈ 1.5◦ at the equator (Ne = 20, N = 3). The diffusion coefficient varies from
ν (m2 s−1) = 0,2.5 × 104,2.5 × 105,2.5 × 106. All tests are integrated for 15 days with �t = 30 s.
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