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Abstract: Various new polynomial and non-polynomial approximatiemsubgrid distribution have been adapted for use in the
conservative cascade scheme (CCS) and applied to congergaid-to-grid interpolation on a latitude-longitudeidyr These
approximations include the following: Piecewise Parabilethod (PPM), Piecewise Hyperbolic Method (PHM), Piecaiouble
Hyperbolic Method (PDHM), Power-limited Piecewise Patdabblethod (P-PPM), Piecewise Rational Method (PRM), thorder
Weighted Essentially Non-Oscillatory (WENOZ23), fifth-erdWeighted Essentially Non-Oscillatory (WENO35), and adified
Piecewise Parabolic Method (M-PPM). A series of test caseperformed in which initial gridded data is interpolatedvibeen T42
and 2 grids and compared against analytical values. Four irdag profiles are used: smooth harmonic, high frequencydraon
quasi-polar vortex data, and slotted cylinder data. In ggnBDHM (WENO35) had the lowest error norms of the threeefjicell
stencil methods. Quite often, M-PPM gave accuracy compatab/VNENO35 at significantly lower cost. Monotonicity vititans
generally only occurred when interpolating to a finer grithve maximum violation of 1.8Copyrigl) 2008 Royal Meteorological
Society
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1 Introduction of Nairetal. (2002 and Norman and Nairf2009 as a
framework testbed for this intercomparison.
Nair et al. (2002 and Norman and Naif2009 ap-
ed the CCS to semi-Lagrangian (SL) transport on a
L grid. Cascade interpolation is more efficient than

Conservative remapping involves accurately transferriB
data from one grid to another while conserving the globa

and local integrals. Methods currently existing in thertite, giraightforward Cartesian splitting and involves fewer
ature for meteorological application includeneg1999,  ,nerations, especially for multiple species since the in-
Lauritzen and Nai(2008, and Ulrich et al. (2009. The termediate grid needs to be generated only once (see
basic conservative interpolation steps\afir et al. (2002  p\;rser and Leslie1991 and Nair et al, 1999. The CCS
andZerroukatet al. (2004 and can also be used for geogisg applies unchanged to the more general realm of
physical interpolation. The method dbnes(1999 is geophysical grid-to-grid interpolation which has diffete
very flexible and is applicable to many spherical griggsmputational challenges than SL transport. In the trans-
but is at most second-order accurattéair et al. (20029 port case, the scheme must be robust enough to handle
andZerroukatet al.(2004 employ a conservative cascadg wide range of target grids as the wind flow varies in
interpolation to calculate mass in departure cells for semime. This is a notable difference from conservative in-
Lagrangian advection on the spheteuritzen and Nair terpolation in which the source and target grids are typ-
(2008 apply the conservative cascade methodology feally static. Also, for SL transport there must exist an
interpolation between regular latitude-longitude (RLLgqual number of source and target grid cells. This means
grids and cubed-sphere gridslrich et al. (2009 devel- the size of source and target grid cells on average are
oped a novel fully two-dimensional approach to remapimilar. In conservative interpolation there is no such re-
ping between cubed-sphere and RLL grids which exactiiriction. There may be multiple target cells within every
integrates polynomial reconstructions via quadrature source cell and vice versa. In this study, the CCS is be-
cell boundaries. The primary focus of this study is dng applied to one step of conservative interpolation be-
the relative performance of various one-dimensional ndween two regular latitude-longitude grids. As in the trans
oscillatory reconstructions, many of which have had liport case, non-oscillatory reconstructions during eath 1-
tle exposure to meteorological application. To this endCS sweep ensure that the violation of monotonicity dur-

we choose the Conservative Cascade Scheme (C®8)the remapping is well controlled. Other techniques
of conservative cascade remapping do exist such as in

*Correspondence to: Box 8208 NCSU Campus, Raleigh, NC 276925e,rml'lkat(_:‘t aI.(20049. . . . L.

USA There are many applications of grid-to-grid interpo-
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2 M. R. NORMAN ET AL

the initial conditions and boundary conditions are always Acronym Functional Approximation | stencil |
interpolated from data sets onto the model grid. Also, ppm classical Piecewise Parabolic Method 5
most components of an Earth SyStem model are simyi- P-PPM Power-limited Piecewise Parabolic Method
lated on different grids, and when COUpIed interpolatiom WENO23 | 39-order Weighted Essentially Non-Oscillaton
between those grids is necessary. In adaptive mesh refifgyenoss | s-order Weighted Essentially Non-Oscillator
ment (AMR), the grids are locally refined and coarsened, pgy Piecewise Hyperbolic Method

requiring interpolation between grids. Nothing precludes 55m
application to the restriction and prolongation operation -
in multigrid either for that matter. Also, as mentioned ear

. . 3 R X M-PPM Modified Piecewise Parabolic Method
lier, SL transport utilises an interpolation step in '®Mapzple 1. Functional approximations of this study, theirpestive

ping mass from the static grid to the departure grid.  acronyms, and the stencil size required. Here, stencil iseté as
One general rule applies to all of these applicationge total number of cells of information required for reconstion

The properties of the interpolation will propagate through of one cell (including the cell being reconstructed).

the simulation. For example, a NWP forecast is forced

mostly by initial conditions. Thus, if the initial condi-

tipns are inaccura’_[ely interpolatgd o the _model grid, EVE&fncil methods. For this reason, we wish to restrict our at-
high-order dynamical solvers_wnl render_lnaccur_ate fOr‘leéntion to small-stencil methods, meaning the reconstruc-
casts. The same can be said about climate S'mUIat'ﬂ R of a cell requires a stencil of 5 cells or less (including
which are almost entirely boundary value problems dmae cell in question). Als@lossey and Durra(2008) in-

to _thelr very long S|mulat_|(_)n times. With such high S€toduced a PPM variant wherein the classical limiter is
sitivity to boundary specifications, a low-order accura

Piecewise Double Hyperbolic Method

Piecewise Rational Method

alaflwlw| o |w]|w

curate dynamics. If the interpolation used when couplirﬁ%ity_ In fact, the M-PPM method developed in section
two components isn't conservative, the overall simulatio, " ias a’similar approach: only limit the reconstruc-
will not be conservative. If the interpolation used in AM%:)n to the degree to which it has the potential to cause
grid refinement is oscillatory, the simulation will exhibibscillations.

oscillations. Therefore, if certain properties are dddea The paper is organised as follows. Sectiatescribes

n a dynam|ca_1l S|mulat|pn, those same properties mustt sub-grid reconstructions, secti8rdescribes the test
be true of the interpolations used to transfer data from 909es for the study, sectioh presents the numerical

to grid. , results, and conclusions are drawn in section
The purpose of the present study is to perform an in-

tercomparison of various functional approximations in the

CCS applied to conservative interpolation between t®0 Sub-grid Reconstructions
latitude-longitude grids. These approximations include . )
the Piecewise Parabolic Method and non-polynomial apl Non-Polynomial Reconstructions

proximations fromNorman and Nair(2008 as well as For sake of brevity, the details of the non-polynomial
four new polynomial functions. The new reconstructiongconstructions will not be reviewed in the present
are the Power-limited Piecewise Parabolic Method (Baper because they are implemented as described in
PPM), third-order Weighted Essentially Non-Oscillatoryjorman and Nai(200§ which describes them in detail.
(WENO3) method, fifth-order Weighted Essentially NonFhese reconstructions include the Piecewise Hyperbolic
Oscillatory (WENOS) method, and a modified PPM (MMethod (PHM) ofMarquina (19949 and Serna(zooa’
PPM). The M-PPM, developed in this study, uses a convgy Piecewise Double Hyperbolic Method (PDHM) of
combination of the original full-order reconstruction anglrtebrant and Schroll(2006, and the Piecewise Ra-
the classical limited reconstruction with the weighting dgonal Method (PRM) of Xiao et al. (2009. For the
fined by a mathematical indicator of jump discontinuityeader's convenience, all functional approximations and
severity in the stencil. their acronyms are defined in Tablealong with the
There exist other polynomial interpolants in literaturgtencil required for each method. PHM and PDHM
not included in this paper. For instancérroukatet al. are implemented exactly as given 8erna(2006 and
(2009 and Zerroukatet al. (2006 used piecewise cu-Artebrant and Schrol(2006), respectively. Additionally,
bic polynomials and quadratic splines, respectively, ap®M is implemented in this context with the same func-
both are limited by the filter provided iderroukatet al. tional form as given inXiao et al. (2002 with fourth-
(2009. These reconstructions are accurate, but cubiigler accurate interface values following the PPM of
along with their filter require a wide stencil, and th€olella and Woodwar1984).
splines require a global stencil. Small-stencil methods
give an advantage in regard to scalability in that COM-5  bower-limited Piecewise Parabolic Method P-
munication demand in parallel architectures is reduce'ct2 PPM)
compared to wide-stencil and global-stencil methods. Ad-
ditionally, smaller stencil methods can be used closerTbe idea behind P-PPM is given iimatet al. (2003,
a material boundary (e.g. the Earth’s surface) than widereafter ABC03. The classical Piecewise Parabolic
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CONSERV. INTERP.: RECONSTRUCTION INTERCOMPARISON 3

Method (PPM) ofColella and Woodward1984), which would be the simple arithmetic meatl; = (d_ +dr) /2,
serves as a basis of comparison for the other reconstiugt this does not bound the LTV. ABC03 used instead the
tions of this study, uses the cell mean and fourth-ordegirmonic mean oflarquina(1994:

approximation to the left and right cell boundary val- 0K

ues. The ABCO3 parabolic formulation uses the cell mean o L||OR

and second-order estimates of the left and ridétiva- dc = mins(d., dg) (d| + [dr]) ||+ |dr| + €

tivesin a manner very similar to the PHM dflarquina

(1994. Consider an arbitrary cell;, defined on the in- Wheree is a machine precision number used to avoid a
terval [X_1/2,%1/2] with geometric centre; and a grid floating point divide-by-zero and

spacing ofAx = X 1/2 — X1/ with a cell mean ofu;,

that is: mins(d.,dr) =sign(d.) if  |dy| < |dR]
_ Xi11/2 OR .
A :/X_ " u(x)dx mins(dy, dr) = sign(dg) otherwise
The following three relations constrain a unique parabofehis provided a satisfactorily limited parabola. More re-
ri (x), defined on cell;: cently, however, a generalised mean, Poweserisee
Serna and Marquin2004andSerna2006 has been de-
Xi+1/2 _ veloped defining the centred derivative as a power-limited
/ i (X) dX = UjAX; mean of the lateral derivatives given by:
Xi—1/2
- |du |+ |dR] < ‘ |di| — [dR| p)
/ dc = mins(d.,d 1- 1
ri (%) =dc c (d,dr) 2 |d| + |dr| + € @)
r (Xi—12) =du if  [du| <|dR] wherep is a parameter controlling the local variation of
OR the reconstruction. It was shown Berna and Marquina
r (Xit1/2) = dr otherwise (2009 that increasingp acts to increase the LTV of

hyperbolas asymptotically to that of using an arithmetic
The parametersl, dr, and dc represent second-orde ean asp — « , and the same is true for parabolas.

approximations to the left, right, and centred derivative?herefore, we adopt the power limiter instead of the

respectively. ABCO03 harmonic limiter in this study witp =
) / y with = 4 to allow
ABCO3 chose a p;"ynom'a' of the global fqrmmore local variation while still keeping the parabolas
ri (X) = ag,j +a1,iX+ azix, but here a local formulation

limited.
is used instead; (X) = agj +agi (X—X) +az; (X—X)*.
The coefficients are thus defined as: 2.3 Modified Piecewise Parabolic Method (M-PPM)
It is well known that the original PPM limiter of
Colella and Woodward1984) degrades the reconstruc-
tion to first-order accuracy at all extrema in order to pre-
serve monotonicity. Recently, a modified limiter for PPM
was developed ilColella and Sekor§2008 for uniform
grid spacing. This limiter gives improved accuracy at ex-
_ 2 trema via a non-oscillatory (not strictly monotonic) limit
i =Ui—Ri s ing based on second derivative information. However, the

Note that the lateral derivatives) and dg must be egﬁ:‘i\sl:gr of this limiter to a non-uniform grid spacing is

second-order to achieve third-order reconstruction for .
Therefore, here we present a new and different ap-

sufficiently smooth fields. For unequal grid spacing, the . '
; - roach to improved PPM accuracy at extrema wherein
most straightforward approach to second-order derivatle

. . . smooth extrema are reconstructed at full accuracy and
estimates is to reconstruct a third-order accurate pasabg - ) ) .
. non-smooth extrema are limited to avoid spurious oscilla-
P;(x) across the 3-cell stencil;_1 Ul Uli11, (whose

rimitive matches the cell means) and differentiate it ti?ns. To mathematically indicate the presence of a jump
P : . / 8|scontinuity at either the left or the right cell boundary,
the left and right cell boundary locatiord;: = P; (X_1/2)

) we define a “jump severity indicatorG, identical to ex-
anddgr =P, (xi+1/2). This polynomiaPs (x) is identical to ponentiated term ini{:
PexacT(X) in Appendix A. Additionally, for any method
which uses second-order lateral derivative approximation |dL| — |dr]
for reconstruction (e.g. PHM and PDHM), this is how - dL|+ |dr] + &
those derivatives are computed in the meridional direction

Now, the centred derivative estimat;, is all that Taking a geometric approach, if theagnitudeof the first
is left to calculate. This estimate is what acts to limit théerivative changes very abruptly across a cell, that is a
local total variation (LTV) of the parabola to achieve asolid indicator of a jump discontinuity at which recon-
essentially non-oscillatory reconstruction. A naive ceoi structions tend most to oscillate. This indicator in essenc

aiAx =dc—d. if  [d| < |dR]|
OR
agiAx = dr—dc otherwise

api=dc

@)
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4 M. R. NORMAN ET AL

gives an estimate of the second derivative magnitude csix-cell stencil for each interface. These schemes cakeula
fined to the normalised domaiSe [0, 1]. S= 1 indicates continuous interface values in one loop and then recon-
a strong jump discontinuity, an= 0 indicates a very struct the cells in another loop using those values. Our
smooth function. scheme, on the other hand, calculates both the interface
We want to reconstruct at full accuracy for smoothalues and the reconstruction in the same loop, rendering
extrema and at first-order accuracy for non-smooth ew/o discontinuous values for each interface even without
trema. Consider the classically limited left and right mtelimiting. A comparison in terms of CPU times will later
face valuesy;,, anduj, respectively. Also consider theshow that this is only a slight overhead in terms of com-
left and right original interpolated interface valueg,, pute time.
andug,;,, respectively. We thus, define the left and right ~We utilise the full five-cell stencil to reconstruct a
interface values used in the final interpolatiap,andu;, Polynomial and then sample it at the cell interfaces. We
respectively as follows: cannot always use a fifth-order accurate reconstruction,
however, because if there exists a discontinuity in the
(3) left-most or right-most cell, the polynomial will oscilkat
] ) i Given that the limiting based on (2) only takes into ac-
where Cs is any functional mapping o to the same o n; 5 three-cell stencil, this could lead to uncontrolled
domain:Cs € [0, 1) with Cs = 0 indicating a strong jump ggciliations. Therefore, we calculate jump severity indic
discontinuity andCs = 1 indicating smooth data (the,rs from (2) for the cells to the left and right of the centre
reverse ofS |ts’elf). The purpose oCs is to control the (o) (5 andsk, respectively). IfS. or Sk exceed a thresh-
reconstruction’s variation by specifying the sensitivityy s there may be a discontinuity outside the centred
of the limiting to the value of the severity indicatory, ae_cell stencil. Therefore, we adapt the stencil of the
S. For example, thesema (2009 hyperbolas use the v omial to remove any discontinuity which may lie in

mapping CS(.S) =1-S (e the_ Powerery)llmlte_r), the left-most or right-most cell. This is described in more
proving that it allows more variation than théarquina detail in Appendix B. A threshold value & — 0.8 was

(1999 hyperbolas which use the formal equivalent of thée;( ; : :

. - > . perimentally determined and used. The interface values
mappingCs(S) = 1- 5. We fqund that a m.UCh higher re not limited to be monotonic. Rather, they are subjected
values ofp can be used for this reconstruction for mog{ ., ..o constraint given iB)where, in this caseuoi,-g

' i

cases. However, in the most severe of jumBsy(1), L i
we found the need for a more conservative mappiﬁ‘dulim represent the the sampled polynomial values and

Therefore, we used the following mapping for our stud})® menotonically limited values respectively.

to get accuracy when possible and limit oscillations in the  The only modifications to the original PPM of
severe cases: Colella and Woodwar1984 are in the calculation and

limiting of interface values. The following steps sum-
marise the process which is performed for each cell to
complete the reconstruction.

u*i = Csuﬁ:m +(1-Cy) uoirig

1-$ if S<09

Cs(S)

1- if S>09

1. Calculate the severity indicator defined
There are two cases in which the parabolas of , 4 By (

. X . Construct a polynomial across a five-cell stencil
Colella and Woodwar@1984) are limited. The first case poly

. ’ . using the method described in Appendix B.
(which has already be+en dlscu_sseCJ above) is in the press Sample the polynomial at the left and right cell
ence of extrema (i.gUg;ig — U)(U— Uyyig) < 0). The sec-

) ori ! . . boundaries to obtain fifth-order accurate interface
ond case is when the data itself is monotonic but the re- values

constructed parabola is not monotonic within the cell do- 4. Calculate monotonically limited estimates of these

g}a;micﬂegl]aoflonncicseggﬁ (I)g?vr\:ict)rz?r:Z?gﬁecgﬁﬁsgrigiinitn interface values which are restricted to the range of
y P the neighbouring cell means.

Colella and Woodward1984) is sufficient but not nec-
essary in order to obtain a monotonic reconstruction. In
other words, the original limiting is more restrictive than
formally necessary for monotonicity. The convex combi-
nation in @) need not be restricted to extrema alone but 6.
can be used (and is used in this study) &bir cases in
which the original parabola is being limited to provide less
restrictive non-oscillatory parabolas.

The last modification of the classical PPM is
to change the original calculation of interface values. /-
Colella and Woodwar@1984) calculated fourth-order ac-
curate monotonic estimates of the interface values over the
grid first and then used those for cell reconstruction in a 8.
second loopColella and Sekor§2008) revised the inter-
face values to be sixth-order accurate, of course, using a

Copyright(© 2008 Royal Meteorological Society
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5. Calculate a convex combination of the interface

values from step mgrig, and the monotonic values

from step 445, using @).

Following Colella and Woodward(1984), deter-
mine if this cell contains a local extremum or if the
parabola constructed from the left and right inter-
face values and cell mean is non-monotonic. If so,
calculate the limited value.

Calculate a convex combination of the interface
values from step 5u§rig, and the monotonically

limited values from step ﬁﬁm, again usingg).

Using the interface values from step 7 and
the cell mean, construct a parabola following
Colella and Woodwar1.984).
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CONSERV. INTERP.: RECONSTRUCTION INTERCOMPARISON 5

this study is very similar to that ofurganov and Levy
Analytical (2000. The only difference is that here, the grid spacing
Wty et is not uniform in the meridional direction on th@, 11)-

1 grid (see Nair and Machenhauer 20D2Therefore, the
polynomials themselves and the smoothness indicators
must be rederived with this in mind, given in Appendix
A. The parameterp, in Kurganov and Levy(2000 on is
set top = 1/2 and is found to bound the total variation
satisfactorily. A lower value op essentially allows more
variation in the WENOZ23 reconstruction and converges
more quickly to the optimal accuracy as data smoothness
increases.

027 028 029 03 031 032 033 034 The WENO35 method which is third-order accurate

x axis in the worst case and fifth-order accurate in the best case is
derived using similar principles as the WENO23 method.
Four polynomials are defined: one fourth-order polyno-
mial defined across a five-cell stencil centred about the
target reconstruction cell, one second-order polynomial
This modification of PPM (which we will denote M-PPMXefined on the left-most three cells, and one second-order
is not strictly monotonic like PPM but is r'IOI"I-OSCi”atOI‘)polynomiaI defined on the centred three cells, and one
like the other methods in this paper. The M-PPM approagicond-order polynomial defined on the right-most three
here is similar to that oBlossey and Durrarf2008 in cells. Then, the smoothness of each polynomial is eval-
the sense that the original PPM limiter is only used fefated with a total variation estimate applied to all exist-
parabolas deemed oscillatory by a given formulaic indig derivatives in the approximations. Next, the weights
cator of non-smoothness. There is one main differengge formed based on the smoothness indicators with
however. The present work uses a functional mappingthé smoothest functions weighted the most. Finally, the
the severity indicator to give a convex combination of theeights yield a convex combination of the three polyno-
limited and unlimited solutions, anBlossey and Durran mials to yield a final reconstruction that is non-oscillgtor
(2009 used a thresholding technique to determine ritar shocks yet fifth-order accurate in the presence of
parabolas which should be limited. This difference is sirsmooth data. This implementation is fully described in
ilar in nature to the difference between ENO and WEN@Rtail in the reconstruction section 6apdeville(2009.
schemes (seldartenet al, 1987andLiu et al, 1994). The only way the present implementation differs is in the

To show a visual perspective of the effects afalculation of the weights. After calculating the smooth-
the M-PPM modifications in practise, Fig. shows a ness indicatordS;, Capdevillg2008 creates weights de-

zoomed plot of a 1-D irregular signal profile (same as fhed by:wj = (¢ + IS,-)’Z. We use a similar approach
Norman and Najr2008 along with the PPM reconstruc+g Kurganov and Levy(2000 and define them aw; =
tion, M-PPM reconstruction, and the analytical profile. I, 1S;) P usingp = 1/2.
f[he plqt, we have an unresolved gradient and a local max- |t is worth noting that the accuracy of WENO23 and
imum in the data to show the relative advantages. WENO35 is strongly dependent upon the valugefhich
controls how quickly the reconstruction converges to full-
2.4 Weighted Essentially Non-Oscillatory MethogQrder accuracy as the smoothnes_s indicators converge to
(WENO23 and WENO35) equal values. The value qf = 1/2 is used here instead
of the standard = 2 because it seems to render much
This form of non-oscillatory approximation originategetter accuracy while still controlling the violation of
from papers such asartenet al. (1987, Shu and Osher monotonicity to a sufficiently small magnitude (1-2% in
(1988, andLiu et al.(1994. The basic idea is as followsthe worst cases).
First, create multiple polynomial approximations within ~ We found through experimentation that if a particu-
different stencils, all of which must include the domain dérly strong jump discontinuity exists in the centre cell,
the target reconstruction cell. Next, estimate the smoo#- four polynomial interpolants will oscillate strongly.
ness of each of the polynomials with a formula similar this can cause relative overshoot magnitudes of 10-20%
total variation but for both first- and second-derivativeih the CCS context which is highly unacceptable in a
Finally, compute weights based on the smoothness ingbn-oscillatory scheme. This is much less severe in the
cators such that the smoother polynomials are weight®ENO23 scheme as the polynomial orders are lower.
more than the non-smooth polynomials. A detailed di$e mitigate this effect we experimentally determined the
cussion of the WENO reconstruction philosophy is givgamp severity indicators at which WENO35 oscillates un-
in Shu(1999. acceptably and use WENO23 instead in a hybrid fashion.
First, we will discuss WENO23 which is secondwe found that if we use WENO23 instead of WENO35 for
order accurate in the worst case and third-order accur8te 0.98, the oscillations are much better controlled with-
in the best case. The particular implementation usedaut greatly affecting the accuracy of the overall WENO35

Cell Means

Scalar Value

Figure 1. A prescribed irregular signal profile comparing BPM
and the M-PPM reconstructions.
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6 M. R. NORMAN ET AL

method. The calculation &is very cheap, so there is nadata. Most notably foln, a negative value indicates
measurable computational overhead associated with thaation of positivity. BothLmi, andLmnaxare normalised
modification. by the range of the exact dala,, closely related to root
mean squared error, is the 2-norm of the absolute error
normalised by the 2-norm of the exact data rendering a
larger weighting for larger errors.

Four types of global spherical data are used for test cases For all four data profiles and all eight approxima-
in this study, all of them adopted frohauritzen and Nair tions, two conservative interpolations will be performed
(2009. The first two test data are originally frodones for intercomparison. First, the data will be interpolated
(1999 giving one smooth and one spurious harmonitom a 2 grid to a T42 grid £ 2.8 grid spacing) to test
function. The smooth function denoté@ and the high the accuracy and oscillatory properties in a coarsening in-

3 Test Cases

frequency function denotétfgz6 are defined as: terpolation. Then, the reverse will be performed to test the
same properties in a sharpening interpolation. To avoid the
Y22 —2+coL0 cos(2/\') need to analytically integrate these complex functions in

even more complex rotated coordinates, a five-point Gaus-

16 16 , , sian quadrature is used to obtain cell mean estimates of
Y35 = 2+ sint (29 ) 003(16’\ ) order much higher than the order of interpolation, thus re-
. taining a meaningful error measure for intercomparison.
where ()\ ,6) are the coordinates on a sphere that is
rotated relative to the true sphere. This rotation is a featu
provided to avoid symmetry on the grid and place the d#ta Numerical Results
in locations (typically the poles) that reveal errors on the ) ) . ,
grid. Both theY22 data and thy?’lZG data have the rotateg”PM will serve as a basellng for comparlson'due to |'Fs
sphere’s pole located af ongitude and 45 latitude on general qcceptancg .and use in t.he a'tmosph.erlc 'modelllng
the true sphere. These are shown in Big.and Fig.2b. community. No positive d(_aflmte filter is used in t_hls study
Note that the 45latitude rotation places théL? spurious for the purpose of observing the natural potential of each
belt passing through the poles. The third test case ditaction toviolate positivity. For the reader’s convergen
produces a vortex at both poles of a rotated sphere. Igj§0mparative bar chart af erroris given in Fig3 to get
defined exactly as ihauritzen and Nai(2008 with the @ quick overall perspective of accuracy.

poles of the rotated sphere located atdhgitude and 81 Considering the very smooth harmonic da¥g,
latitude. The vortex data is shown in FRg. (Tablell) in a coarsening interpolation, the only methods
The fourth test case is implements a slotted cylindeerforming worse than PPM are PRM and WENOZ23 by a
on the sphere located at the equator. The slotted cylingggjht margin. It appears from thignin and Lmax Norms
originates fromZalesak(1979 and was implemented onat ppM s experiencing undershoots and overshoots.

the sphere inNair et al. (2003. It is intended to test a L - .
scheme’s behaviour in the presence of a multidimensiohtg"ever, this is not because PPM isn't monotonic but

data jump discontinuity. First, a radius is specified in mrrﬁheCf#J‘lSZe the°2exaﬁt cell meaéns haveha |ﬁf9ﬁf rangelth_an
. . 2 ~2 the exact cell means due to the higher resolution
of the rotated latitude and longitude = A"+ ()" of the analytical function. In particular, tHe, norm for
Then, the analytical profile is as follows: M-PPM shows that it is resolving the smooth extrema
much better than the other methods. In the sharpening
interpolation for this same data, as expected, the error
Yy={ 0 if R<ang ‘/\/‘ <10n g g’ > 108 norms are larger. The most notable result is that PDHM
easily stands out as the most accurate interpolant by an
order of magnitude. The advantages of M-PPM are much
less pronounced in the sharpening interpolation.
Quadrature is not used for this test case because we want the Moving on to the less smooth harmonic daYéZG,
profile to be as sharp as possible. Thus, cell centroid valtes (Taple|11) in the coarsening interpolation we see viola-

used to make sure there is a discontinuous jump from zero,; e 0 ;
unity. For this reason, the only error norms which are vatiel g“%)ns of positivity on the order of 0.1% much of which,

the Lmin and Lmax NOrMs (which manifest oscillations) becaus@dain, is due to t_he higher resolution of extrema in the
we know the data range is always between zero and unity. exact 2 data profile. Here, M-PPM and WENO35 sepa-

Each of the seven subgrid approximations are testate themselves as the most accurate reconstructions for a
for intercomparison with the following standard globalon-smooth function with a large number of spurious ex-
error normsiy, Lo, Le, Lmin, @andLmax The formulae are trema. Most notable is the improvement in the norm
given inLauritzen and Nai(2008. To briefly discuss the for M-PPM, evidencing better resolution of the sharp ex-
properties of the different error measurés, expresses trema. For the sharpening interpolation, we have viola-
the most straightforward error measure giving the metaans of positivity on the order of 1% (1.6% max), and
absolute error normalised by the average magnitude of tdmy PHM and P-PPM violated monotonicity in this case.
exact datal., expresses the largest magnitude of error @nce again, WENO35 and M-PPM separate themselves
the grid normalised by the largest magnitude of the exas the most accurate reconstructions.

- 10
0 if R> 37

1 if otherwise
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(c) Vortex (d) Slotted Cylinder

Figure 2. Analytical plots of the three data profiles usedis study.

2° interpolated to T42 T42 interpolated to 2
Ly Lo Lo Lmin I—max Ly Lo Lo Lmin I—max
PPM 2.46E-06 | 6.14E-06 | 6.25E-05 | -3.09E-05 | 4.69E-05 || 3.87E-05| 1.01E-04 | 4.75E-04 | 5.95E-04 | -2.98E-04
PHM 1.25E-06 | 2.14E-06 | 8.47E-06 | 9.61E-06 | -2.39E-07 || 3.35E-05 | 8.70E-05 | 3.97E-04 | 5.95E-04 | -2.98E-04

PDHM 3.08E-07 | 3.93E-07 | 7.55E-07 | 4.78E-07 | 0.00E+00 || 1.98E-06 | 1.25E-05| 3.92E-04 | 3.22E-06 | -2.75E-04

PRM 2.51E-06 | 5.97E-06 | 5.81E-05 | -2.96E-05 | 4.37E-05 || 3.89E-05| 9.99E-05 | 4.72E-04 | 5.95E-04 | -2.98E-04

P-PPM | 6.25E-07 | 9.73E-07 | 3.70E-06 | 5.55E-06 | 0.00E+00 || 3.29E-05 | 8.80E-05 | 3.97E-04 | 5.95E-04 | -2.98E-04

WENO23 | 2.60E-06 | 4.71E-06 | 2.08E-05 | 3.12E-05 | 0.00E+00 || 3.02E-05| 7.34E-05| 3.79E-04 | 5.43E-04 | -2.74E-04

WENO35 | 2.27E-07 | 3.54E-06 | 7.88E-05 | 0.00E+00 | 5.92E-05 || 2.86E-05| 8.27E-05| 3.79E-04 | 5.43E-04 | -2.74E-04

M-PPM | 4.75E-08 | 6.74E-08 | 1.19E-07 | 0.00E+00 | 0.00E+00 || 3.20E-05 | 8.96E-05 | 3.97E-04 | 5.95E-04 | 2.46E-06
Table II. Error norms fo¥Z test case.

The vortex data test case (Tat\é) for the coarsen- accurate overall.
ing interpolation shows little in the way of monotonicity As mentioned in section 3, the slotted cylinder test
violation. WENO35 and M-PPM have the lowest emqr,qe js intended to challenge the ability of a reconstractio
norms. As typically seems to be the case, PRM is similgy control oscillations with strong jump discontinuities.
to PPM but slightly less accurate. This is likely becausgye magnitudes of these oscillations are manifested in
they use the same interface values. In the sharpening cg&€( ., and Lmax Norms. For both the coarsening and
there are no violations of monotonicity manifested by thgarpening interpolations, the oscillation magnitudes fo
error norms. Like the coarsening interpolation, WENO38| of the methods were order 1% or less. The worst
and M-PPM perform the best with M-PPM slightly lessiolation occurred with M-PPM which had an undershoot
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2° interpolated to T42 T42 interpolated to 2
Ly Lo Lo Lmin Lmax Ly Lo Lo Lmin Lmax
PPM 7.80E-04 | 2.06E-03 | 1.27E-02 | 1.19E-02 | 1.56E-03 || 3.78E-03 | 9.37E-03 | 4.99E-02 | 2.59E-02 | -9.47E-03
PHM 1.39E-03 | 3.45E-03 | 1.50E-02 | 1.38E-02 | 1.89E-05 || 5.74E-03 | 1.37E-02 | 5.49E-02 | 6.39E-03 | 1.56E-02
PDHM 7.86E-04 | 2.02E-03 | 1.38E-02 | 1.37E-02 | 1.44E-05 || 3.28E-03 | 8.24E-03 | 5.42E-02 | 2.24E-02 | -9.42E-03
PRM 8.26E-04 | 2.15E-03 | 1.30E-02 | 1.08E-02 | 1.40E-03 || 4.03E-03 | 9.84E-03 | 5.04E-02 | 9.84E-03 | -6.37E-03
P-PPM 1.38E-03 | 3.45E-03 | 1.50E-02 | 1.33E-02 | 1.41E-05 || 5.69E-03 | 1.37E-02 | 5.50E-02 | 5.72E-03 | 1.64E-02
WENO23 | 9.15E-04 | 2.27E-03 | 1.28E-02 | 1.42E-02 | -1.09E-05 || 3.58E-03 | 8.73E-03 | 4.89E-02 | 2.78E-02 | -9.40E-03
WENO35 | 1.17E-04 | 4.84E-04 | 1.01E-02 | 7.00E-05| 1.99E-03 || 1.04E-03 | 3.92E-03 | 4.59E-02 | 1.55E-03 | -8.21E-03
M-PPM | 1.89E-04 | 6.65E-04 | 7.31E-03 | 1.74E-03 | 3.37E-06 || 1.37E-03 | 4.52E-03 | 4.56E-02 | 3.45E-03 | -9.45E-03
Table Ill. Error norms folvzs test case.

2° interpolated to T42 T42 interpolated to 2
Ly Lo Lo Lmin Lmax Ly Lo Lo Lmin Lmax
PPM 2.17E-04 | 9.48E-04 | 1.00E-02 | -3.28E-06 | 3.33E-06 || 9.73E-04 | 3.75E-03 | 3.24E-02 | 1.85E-04 | -1.85E-04
PHM 3.96E-04 | 1.58E-03 | 1.18E-02 | -1.92E-05| 1.92E-05 || 1.58E-03 | 5.69E-03 | 4.01E-02 | 2.59E-04 | -2.59E-04
PDHM 2.65E-04 | 1.01E-03 | 1.05E-02 | -2.78E-08 | 1.11E-07 || 9.43E-04 | 3.47E-03 | 3.40E-02 | 0.00E+00 | 0.00E+00
PRM 2.38E-04 | 1.02E-03 | 1.02E-02 | -9.36E-06 | 9.44E-06 || 1.08E-03 | 4.15E-03 | 3.16E-02 | 2.06E-04 | -1.68E-04
P-PPM | 3.95E-04 | 1.57E-03 | 1.17E-02 | -1.88E-05| 1.88E-05 || 1.57E-03 | 5.67E-03 | 4.00E-02 | 2.56E-04 | -2.56E-04
WENO23 | 2.96E-04 | 1.11E-03 | 1.02E-02 | 8.55E-06 | -8.55E-06 || 1.04E-03 | 3.86E-03 | 3.21E-02 | 1.01E-04 | -1.01E-04
WENO35 | 6.81E-05 | 3.08E-04 | 4.46E-03 | 0.00E+00 | 0.00E+00 || 4.17E-04 | 1.85E-03 | 2.93E-02 | 0.00E+00 | 0.00E+00
M-PPM | 9.12E-05| 4.17E-04 | 7.36E-03 | 0.00E+00 | 0.00E+00 || 5.25E-04 | 2.19E-03 | 2.70E-02 | 1.02E-04 | -1.02E-04
Table IV. Error norms for Vortex test case.

of 1.8% in the sharpening interpolation. To give a frante Conclusions
of reference for this test case, when using only the optimal

polynomial of WENO35, an overshoot of 32% occurredAn intercomparison of various sub-gridscale functional
proximations has been performed in the context of

. - a

Accu_racy alone do§§ not determine .eff|0|ency bHEnservative cascade interpolation on a latitude-loigitu
also runtime and scalability, the most straightforward gjq Eight sets of test cases have been performed inter-
which is runtime. To consider this, Tabl¢ lists the hoating four data profiles both from a T42 grid to @ 2
runtimes of each of the methods for the vortex tegtig and from a 2 grid to a T42 grid to measure the ac-
case interpolating from a /B grid (1080x540) to a cyracy and oscillation properties of the functions. For all
1/2.5° grid (900x450). The codes have been optimise@st cases, PDHM generally gives the best accuracy of the
avoiding exponentiation whenever possible and replacitgee-cell stencil methods. It seems unlikely that the econ
repeated operations with precomputed variables. Cleagsiy of P-PPM would outweigh its comparative lack of
PRM and P-PPM separate themselves as the cheapestiracy compared to PDHM. WENO35 gives the best
reconstructions in terms of speed. WENO35 is cleamdgcuracy of the five-cell stencil methods, but requires the
more expensive than any of the other methods, yetmbst computation. M-PPM seems to be a good alterna-
also tends to give the best accuracy. It is possible tiise to WNEO35 with a large decrease in computational
the runtime may be improved via vectorisation for botpurden and a small relative decrease in accuracy.
WENO35 and WENOZ23 as they make use of several Cautionshould be taken when using a non-oscillatory
matrix-vector products during the reconstruction. M-PPmethod that is not strictly monotonic to ensure that the
actually requires about 7% more computation than PRWPers of magnitude of monotonicity and positivity vio-

while typically giving much greater accuracy using thi@tion reported herein (order 1%) are within acceptable
same stencil. bounds. A post-processing positive definite filter may be

) . employed to ensure no negative values are produced in
Now, regarding scalability the three-cell methodge interpolation for positive species. Note also that tun-

have the potential to scale more efficiently to a larger nus|e parameters of the the non-oscillatory reconstrustion
ber of processors than do the five-cell methods due tgsappM, WENO23, WENO35, PDHM, PHM, and P-PPM
reduced communication burden per remapping. As showay be tweaked for a particularly sensitive application
in Tablel, PHM, PDHM, P-PPM, and WENO23 are thentil the oscillations are satisfactorily controlled feapr
three-cell stencil methods (requiring a 1-cell halo whegsentative data. All sub-grid reconstructions in thislgtu
parallelised), and PPM, M-PPM, PRM, and WENOS35 at®uld be implemented in any conservative remapping al-
the five-cell stencil methods (requiring a 2-cell halo whegorithm employing 1-D sweeps such as the conserva-
parallelised). tive cascading implemented in cubed sphere geometry
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Method PPM | PHM | PDHM | PRM | P-PPM| M-PPM | WENO23 | WENO35
Runtime (sec) 2.528| 2.446| 2.691 | 2.169 | 1.961 | 2.713 2.401 3.504
% deviation from PPM|| — | -3.2% | +6.4% | -14.2% | -22.4% | +7.3% -5.0% +38.6%
Table V. Runtimes in seconds and percent deviation from Ririime for the vortex test case interpolating from/8°1grid to a 1/2.5°
grid.
100 Yzz: CL;arser I:I Appendlx A
.80 Y3, Coarser B
e Vortex: Coarser
w 60 - L
% 40 - Here, the WENO23 method will be updated from the one
£ 20 defined inKurganov and Levy(2000 for a non-uniform
£ . grid spacing. We define cel| to have grid spacing\x
2 defined within [X_1/5,X11/2] With geometric centrex,
g8 cell meanu;. Following the notation oKurganov and Levy
§ 401 (2000, we here define the three polynomiafs_ (x),
g 60 R.r(X), and R gxact(x) for an arbitrary cell of index.
el Recall thatR, ¢ (x) is defined purely as a function &,
100 R.r, andR exacT. In a point-wise framework, polynomial
PHM  PDHM  PRM  P-PPM WENO23 WENO35 M-PPM reconstruction must match point values, but in the finite vol
(a) Coarsening Interpolations ume framework_, cell means must be_rep_licated requiring use
of the polynomial’s primitive. The primitive reconstruati
100 ‘ ‘ principle ofHartenet al.(1987 which is consistent with the
% YYng l— finite volume formulation gives the following three relat®
7 . Finer . .
5 o | Voroy. Finer to constrain the coefficients of ,
g RExacT(X) =S0+81(X=X)+52(x=X)"
= 40
% 20 - Xi—0X; /2
5 o RexacT(X) dX=U-1A% 1
§ -20 A X — X /2—DX_1
S 40
£ X +A% /2
g -60 A _
¢ e R ExacT (X) dX= UiAX
-100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ X—hxi/2
PHM PDHM PRM P-PPM  WENO23 WENO35 M-PPM X5+AX'/2+AX|' .
i +
(b) Sharpening Interpolations _
R exacT (X) dX= Ui 110X 1
Figure 3. Percentage Deviation bf error from PPM for thé(zz, X+Ax; /2

Y32, and vortex test cases. “Coarser” denotes an interpol&ton

a 2 grid to a T42 grid, and “Finer” denotes the reverse. Integration yields a system of equations of the forns:zAu

wheres = [s,0,5.1,52] andu = [G;_1,0;,0i14] . There-
fore, the coefficient vectox, is given bys = A~'u. The

(Lauritzen and Najr2008. matrix A is given by:

2 DX —DX_1 3O+ OO+ 302
Acknowledgements ALl 5 0 1A
The first author wishes to acknowledge funding support 2 DX+D1 O DX+ 5O

from the Department of Energy (DOE) Computational . . . . .
Science Graduate Fellowship (CSGF) program and fr pnpracnse,_tms matrix inverse |s_p_recompu_ted and_a matrix
the Institute for Mathematics Applied to the Geoscienc}é@cmr multiply _renders the coefficients during runtimeeTh
(IMAGe) at the National Centre for Atmospheric Re:"¢&f polynomial® | (x) =lio +li1 (x—x) andR r(x) =
search (NCAR). The first author also acknowledges tHé’Hi!l(X_X‘) are defined similarly but are simple enough
Graduate Student Visitor Program of NCAR’s Advancad, SCIVé without a linear system. The coefficients are as
Study Program (ASP) for providing the setting for thi |E)WS-Ji§ ir"o — Igl_: i@i —Ui-1)/ (A% + %),
research to occur. NCAR is supported by the National S@9":1 = (U1 — i) / (A% + i)

ence Foundation. The authors are grateful for the thorough The smoothness indicators also must be rederived to
comments given by reviewers and believe the manuscaptount for non-uniform grid spacing though the functional
is much improved as a result. form is quite similar to that given ifrKurganov and Levy

Copyright(© 2008 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-11 (2008)
Prepared usingyjrms3.cls DOI: 10.1002/qj



10 M. R. NORMAN ET AL

(2000. They are as follows (using the same notation): Xi+0% /2
R ra (X) dx = U;AX;
1S = 1208 ; 1S g =200 Re(X) =
' ’ ' X —Ax /2
2 2 13 2
IS c = 1A% + §C3i,2A><i4 Xi+0%; /2405 1
wherec; o, ¢i 1, andc; » are coefficients ob ¢ (x). PLre () OX= Ui 18% 11
Xi+A% /2
Appendix B Xi+AX; /240X 1 +DX; 4 o
Here, we describe the process of creating the polynomial R ra (X) dX= Ui 28%+2
used to obtain interface values for M-PPM in step 2 of the Xi-+OX [ 24+-D% 41

summary. We have a five-cell stendil, », ..., 112, cen- ) ) ) )

tred on celli. First, we calculate jump severity indicators, ~ These constraints form a linear system just as in Ap-
S and Sk, centred on celldj_; andli,; (respectively) Pendix A. However, the matrix is too large to explicitly
using equation?). These will detect discontinuities on eigive here. In practise, this matrix is inverted analytigall
ther cell boundary of cell§_; andli,s. If S > S, this for accuracy purposes using a program capable of sym-
indicates that there is a sufficiently severe discontinniity Polic algebraic manipulation, and it is precomputed so
either the left boundary (arising from célL,) or the right that a matrix-vector multiply renders the polynomial. As
boundary (arising from celb). If the discontinuity is on ¢an be seen, the polynomial which renders the interface
the left boundary, equatio@Xdoes not take cell_ into values for M-PPM will be from third-order to fifth-order

account, and thus the oscillation is not controlled. Sardgcurate. Because classical PPM is formally fourth-order
arguments apply fos. accurate when integrated and applied to smooth data and
If both §. < S andSk < S, then we compute a cen-2 uniform mesh, it makes sense to try to keep the interface
tred, fifth-order accurate, five-cell stencil polynomial o¥@lues to fourth-order accuracy or more. We note that the
cellsli_>...li;2 whichis identical taigpt (x) of Capdeville Case where the interface values are limited to third-order
(2008. If §. > S, then we neglect cell_» to get rid of the accuracy which is necessary to ensure bounded oscilla-
potential discontinuity, computing a right-biased, fourt tions does not occur often in any of our test cases.
order accurate, four-cell stencil polynomiBlrs (x), from
cellsli_1...li12. Likewise, ifSg > S*, we neglect cell;, »,
computing a left-biased, fourth-order accurate, fout-c

stencil polynomialR .4 (x), from ?e"SIi—Z"'I”l' Ifboth  Amat S, Busquier S, Candela V. 2003. A polynomial ap-
S > S'andS > ', acentred, third-order accurate, three- proach to the piecewise hyperbolic metholigerna-

cell s.tencillpolynomial (idgntical t8 exact(x) from Ap- tional Journal of Computational Fluid Dynamidg/(3):
pendix A) is computed using cdll 1...lj;1. We use the 205-217.

primitive reconstruction principle dflartenet al. (1987

to constrain the polynomial coefficients on the fourthxrtebrant R, Schroll JH. 2006. Limiter-free third order
order accurate polynomials as follows. logarithmic reconstructiorSIAM Journal on Scientific
Computing28(1): 359-381.
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