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a b s t r a c t

A conservative multi-tracer transport algorithm on the cubed-sphere based on the semi-
Lagrangian approach (CSLAM) has been developed. The scheme relies on backward trajec-
tories and the resulting upstream cells (polygons) are approximated with great-circle arcs.
Biquadratic polynomial functions are used for approximating the density distribution in
the cubed-sphere grid cells. The upstream surface integrals associated with the conserva-
tive semi-Lagrangian scheme are computed as line-integrals by employing the Gauss–
Green theorem. The line-integrals are evaluated using a combination of exact integrals
and high-order Gaussian quadrature. The upstream cell (trajectories) information and
computation of weights of integrals can be reused for each additional tracer.

The CSLAM scheme is extensively tested with various standard benchmark test cases of
solid-body rotation and deformational flow in both Cartesian and spherical geometry, and
the results are compared with those of other published schemes. The CSLAM scheme is
accurate, robust, and moreover, the edges and vertices of the cubed-sphere (discontinu-
ities) do not affect the overall accuracy of the scheme. The CSLAM scheme exhibits excel-
lent convergence properties and has an option for enforcing monotonicity. The advantages
of introducing cross-terms in the fully two-dimensional biquadratic density distribution
functions are also examined in the context of Cartesian as well as the cubed-sphere grid
which has six local sub-domains with discontinuous edges and corners.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The transport problem in computational fluid dynamics can either be cast in Lagrangian, Eulerian or in Arbitrary Lagrang-
ian–Eulerian (ALE) form [1]. Lagrangian methods let the mesh travel and evolve with the fluid throughout the integration
whereas Eulerian methods use a fixed mesh. Both methods have their strengths and weaknesses. The ALE method was devel-
oped in an attempt to combine the advantages of the Eulerian and the Lagrangian approaches by letting the mesh move in
any prescribed manner as an extra independent degree of freedom. A popular choice of prescribed mesh movement is to run
in Lagrangian mode for one time-step and then regrid (interpolate) back to the static and regular (Eulerian) mesh. In mete-
orological literature this approach is known as the semi-Lagrangian method [2]. A comprehensive review of conservative
semi-Lagrangian methods are given in [3,4], and a stability analysis of these schemes is presented in [5].
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At every time-step, the semi-Lagrangian approach involves regridding (interpolating) quantities from a distorted
Lagrangian mesh to a regular Eulerian mesh or vice versa, depending on the trajectories. Hence the transport problem is re-
duced to a regridding problem if the Lagrangian mesh movement is prescribed. For a variety of reasons it is desirable that the
regridding procedure is conservative and monotonic. Conservative regridding is often referred to as remapping or rezoning.
The problem of remapping quantities between arbitrary grids, which involves integration over overlapping areas between
the grids, has received considerable attention in the literature due to its many applications. In general direct integration over
arbitrary overlap areas is not practical. Through the pioneering work of Dukowicz [6,7] and Ramshaw [8] the remapping
problem has been made practical by the application of Gauss–Green’s theorem which converts area-integrals into line-inte-
grals. This approach has been applied for up to second-order static grid-to-grid remapping in [9] and later the method was
extended to third-order and optimized for the regular latitude–longitude and cubed-sphere grids [10].

In most atmosphere and ocean modeling applications the continuity equation must be solved multiple times for fluid
density as well as dozens of tracers (chemical species). For example, the chemistry version of NCAR’s Community Atmo-
spheric Model (CAM) model [11] uses on the order of 100 prognostic tracers [12]. Therefore it is highly desirable that the
numerical algorithm used for tracer transport is efficient and adaptable for a large number of tracers. In [13] an incremental
remapping algorithm based on the semi-Lagrangian technique has been introduced for multi-tracer transport. Although
incremental remapping has a high startup cost associated with geometry calculations, each additional tracer adds only a rel-
atively small cost. The CSLAM algorithm considered herein follows this strategy.

Traditionally the regular latitude–longitude grid has been the preferred choice for global atmospheric models. However,
models based on such grid system may have scalability issues. The scalability problems are either rooted from the non-scal-
able global numerical methods or the application of non-local polar filters. To address these problems, the atmospheric mod-
eling community is developing numerical models based on more isotropic spherical grid systems that are free from
singularities or contain weaker singularities. Also these grid geometries are amenable to local numerical methods such as
the finite-volume method or element-based high-order Galerkin methods. The cubed-sphere geometry introduced by Sado-
urny [14] offers many computationally attractive features. Recently the cubed-sphere (spherical cube or expanded cube)
geometry has been reintroduced in [15,16] with additional desirable features such as the equi-angular grid-spacing or
orthogonality. Here we consider cubed-sphere grids based on the central (gnomonic) projection.

In this paper we optimize the more general method of Dukowicz [6,7] for transport on the cubed-sphere grid in two ways.
Firstly, instead of using constant cell densities as in [6,8] or linear reconstructions of cell densities as in [7,9,17–19], we use
the fully two-dimensional biquadratic reconstruction functions with a monotone option. Secondly, we exploit that for the
gnomonic cubed-sphere grid it is possible to evaluate line-integrals along coordinate lines exactly [10]. Contrary to the incre-
mental remapping algorithm, CSLAM is designed to allow for long time-steps with Courant numbers exceeding unity.

This paper is organized as follows. In Section 2 we introduce the CSLAM algorithm in Cartesian geometry. This involves
defining the transport problem and introduce the notation required to mathematically describe the Lagrangian grid, in par-
ticular, the overlap regions between the static mesh and the Lagrangian grid. The conversion of area-integrals into line-inte-
grals using Gauss–Green’s theorem is described with details including the analytic integration of two-dimensional
polynomial reconstruction functions. In Section 3, CSLAM is extended to the cubed-sphere geometry. Section 4 show results
for standard test cases in Cartesian and spherical geometry. We will summarize the findings in Section 5.

2. Cartesian geometry

The two-dimensional transport equation for a tracer, in the absence of sources or sinks, can be written as

d
dt

Z
AðtÞ

wdA ¼ 0; ð1Þ

(e.g., [13]) where w is the density (typically the product of the air density and the tracer concentration per unit mass), and the
integration is over an arbitrary Lagrangian area AðtÞ at time t, that is, an area that moves with the flow with no flux through
its boundaries. A temporal discretization of (1) along the characteristics isZ

AðtþDtÞ
wdA ¼

Z
AðtÞ

wdA; ð2Þ

where Dt is the time-step size.
In a semi-Lagrangian method either Aðt þ DtÞ or AðtÞ is a static grid cell, or equivalently, either upstream (backward tra-

jectories) or downstream (forward trajectories) cell tracking is used. Here we use the upstream approach so that Aðt þ DtÞ is
a regular grid cell. Using the two-time level semi-Lagrangian terminology, Aðt þ DtÞ is referred to as the arrival (or Eulerian)
cell and AðtÞ the departure (or Lagrangian) cell.

In a two-dimensional Cartesian orthogonal grid system, let Ak be the kth (Eulerian) grid cell, where k ¼ 1; . . . ;N, such that
N is the total number of cells in the domain X. The departure cell corresponding to the arrival cell Ak is denoted by ak (see
Fig. 1). Note that there exists a one-to-one correspondence between departure and arrival cells such that the departure cells
span X without gaps or overlaps between them,
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[N
k¼1

ak ¼ X; and ak \ a‘ ¼ ;; 8k – ‘;

where ak is assumed to be a simply connected region on X. For a cell-integrated semi-Lagrangian method, as the one con-
sidered here, it is required that the trajectories should not cross during the time-step Dt [20].

For the discretization of (2) we need to define the overlap regions between the departure cell ak and the Eulerian grid cells
A‘; ‘ ¼ 1; . . . ;N. Let ak‘ be the non-empty overlap region between departure cell ak and grid cell A‘ such that

ak‘ ¼ ak \ A‘; ak‘ – ;; ‘ ¼ 1; . . . ; Lk; and 1 6 Lk 6 N;

where Lk is the number of non-empty overlap regions between departure cell ak and the Eulerian grid cells. Lk depends on the
characteristics of the flow and time-step size.

The semi-Lagrangian finite-volume version of the discretized transport Eq. (1) for w can be written as follows:

�wnþ1
k DAk ¼ w�k

n dak ð3Þ

(e.g., [21]) where wnþ1
k is the average tracer density in cell k at time-level nþ 1 (i.e., t ¼ ðnþ 1ÞDt); DAk and dak is the area of

the arrival and departure cell Ak and ak, respectively, and w�k
n is the average density in the departure cell.

To compute the mass in the departure cell from known cell average values �wn
‘ ; ‘ ¼ 1; . . . ;N, in a higher-order and conser-

vative manner, one needs to construct a continuous sub-grid-scale representation of w within each Eulerian cell with mass-
conservation as a constraint. The sub-grid-scale reconstruction in a cell ‘ is denoted f‘ðx; yÞ. The integral over the departure
cell can be broken up into the sum of integrals of f‘ðx; yÞ over non-empty overlap regions ak‘ as follows:

w�k
n ¼ 1

dak

XLk

‘¼1

Z Z
ak‘

f‘ðx; yÞdA: ð4Þ

Note that no approximations have been made at this point.
Since the departure cells ak span the integration domain X without gaps or overlaps global mass is conserved as long as

the reconstructions f‘ðx; yÞ satisfy

Z Z
A‘

f‘ðx; yÞdA ¼ �w‘DA‘ for ‘ ¼ 1; . . . ;N:

For general (smooth) flows the boundary of the departure cells are smooth curves rather than straight line segments, as is the
case for the arrival cell walls. Only in simple cases such as for pure translational (non-divergent) wind fields the analytic
departure cell boundaries consist of straight line segments but in general the departure cell sides must be approximated.
To address this problem several approaches have been taken in the literature (see Fig. 2.10 in [3] and Fig. 2 in [22] for illus-
trations). Most methods track cell vertices moving with the flow and approximate the departure cell sides from the location
of these vertices. Probably the most straight forward cell approximation results from connecting the cell vertices with
straight lines (Fig. 2(a)).

To improve the representation of any particular Lagrangian cell edge one may approximate it with piecewise straight
lines, that is, introduce more Lagrangian parcels along the cell sides and connect them with straight lines. By increasing
the number of points tracked along each cell side one would converge towards the analytic departure cell (see Fig. 2). It
is beyond the scope of this paper to investigate such an approach, that is, we simply approximate the cell sides with straight
lines connecting the vertices of the departure cell. Hence the region ak is a quadrilateral.

(b)(a)

Fig. 1. A schematic illustration of concepts used in the semi-Lagrangian finite-volume scheme. (a) The deformed departure cell ak (dark shaded area) ends
up, after being transported by the flow for one time-step, at the regular arrival cell Ak (light shaded area). The trajectories for the cell vertices are shown
with arrows, and the departure and arrival cell vertices are marked with filled and open circles, respectively. (b) Illustrates the overlap region between the
grid cell A‘ and the departure cell ak referred to as ak‘ used for the upstream integral computation given in Eq. (4).

P.H. Lauritzen et al. / Journal of Computational Physics 229 (2010) 1401–1424 1403



Author's personal copy

2.1. Upstream integrals

The sub-domains ak‘ over which must be integrated can have many possible shapes (Fig. 3). The practical difficulty in
developing analytical integrals that cover all possible cases is, in general, somewhat complicated but not impossible [23].
Instead the problem can be greatly simplified by converting the area-integrals into line-integrals by appropriate use of
the Gauss–Green theorem [6].

2.1.1. Lagrangian cell boundary computation (search algorithm)
Suppose the trajectories for the vertices of ak are given. Finding the location of the vertices of ak‘ basically reduces to the

computation of intersections between coordinate lines (sides of A‘) and lines of arbitrary orientation (sides of ak‘). Only three
intersection scenarios are possible when marching counter-clockwise along a side of ak‘: Intersection with a horizontal coor-
dinate line (Fig. 4(a)), intersection with a vertical coordinate line (Fig. 4(b)) or intersection with a vertex of A‘ (Fig. 4(c)). The
coordinates of the crossing are simply the location of the intersection between straight lines. Let Nh be the number of vertices
of ak‘. The coordinates of the vertices of the polygon ak‘ are denoted ðxk‘;h; yk‘;hÞ; h ¼ 1; . . . ;Nh, and are numbered counter-
clockwise (Fig. 5). The first subscript k refers to the kth departure cell to which ak‘ belongs, ‘ refers to the fact that
ðxk‘;h; yk‘;hÞ is a vertex in the grid cell A‘ and h is the local index for the numbered vertices of ak‘.

(b)(a) (c) (d)

Fig. 2. Schematic illustrations of possible approximations to the analytical departure cell boundary (solid curved line) using different levels of refinement
with piecewise straight lines. (a) The approach used in this paper connects the four vertices of the departure cell (filled circles) with straight lines. To
improve the approximation to the departure cell one may introduce (b) one, (c) two or (d) three Lagrangian points along the cell sides (unfilled circles) and
connect these by straight line segments to converge towards the exact departure cell boundary.

(a) (b)

(c) (d)

Fig. 3. A schematic illustration of some of the possible shapes the polygons ak‘ (shaded areas) may take depending on the location of the departure points
(filled circles). The number of vertices can be (a) 3, (b) 4, (c) 5, (d) 6 and even more depending on the flow and time-step.
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The algorithm works as follows:

1. Compute all intersections between grid lines and the four sides of the departure cell ak by marching counter-clockwise
along the sides of the departure cell (Fig. 6(a)).

2. All segment coordinates along the sides of the departure cell ak are temporarily stored as well as the index of the Eulerian
cell A‘ in which the line-segment is located. We refer to these segments as outer line-segments (Fig. 6(b)). Note that the
computation of the index of the Eulerian cell A‘ in which the segment is located does not need an extensive search algo-
rithm since when marching along the sides of the departure cell we move between adjacent cells (Fig. 6(b)).

(a) (b) (c)

Fig. 4. A schematic illustration of the three possible intersections between a departure cell side and the coordinate lines. In (a) and (b) a horizontal and
vertical grid line is intersected, respectively, and in (c) a vertex of an Eulerian cell is intersected. The resulting line segment is one of the sides of the polygon
ak‘ that defines the overlap area between Eulerian cell Ak and departure cell ak .

Fig. 5. A schematical illustration of the coordinates and numbering of the boundary of ak‘ with four vertices (Nh ¼ 4).

(c)(a) (b)

Fig. 6. A schematic illustration of the search algorithm used to define the overlap regions ak‘ between the departure cell (vertices marked with filled circles)
and the Eulerian cells A‘ . (a) First the intersections between Eulerian grid lines and the sides of the departure cell ak are computed (crossings marked with
stars). (b) The line segments along the sides of the departure cell ak , referred to at outer line segments (indicated with arrows), are stored. (c) Thereafter the
inner line segments along the coordinate lines and enclosed in ak are stored (indicated with arrows).

P.H. Lauritzen et al. / Journal of Computational Physics 229 (2010) 1401–1424 1405
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3. The coordinate line crossings can also be used to define the line-segments along coordinate lines enclosed by ak (Fig. 6(c))
by marching along the coordinate line on which a crossing occurs until the next crossing is encountered. We refer to these
lines as inner line segments. Note that ak is a quadrilateral so the departure cell sides can only cross a particular coordi-
nate line once. Marching along all coordinate lines that are intersected by a side of ak defines all the inner line segments.
The line-segment coordinates are registered counter-clockwise so if a line-segment is oriented from left to right in a par-
ticular cell the line-segment is registered from right to left in the cell above. As for the outer segments the index of the
Eulerian cell in which the segment belongs is temporarily stored.

4. The outer and inner line-segments complete the definition of ak‘. Special attention must be given to situations in
which the inner and outer line segments coincide. In such a situation the segment must, of course, only be registered
once.

This defines the boundary of all the overlap polygons ak‘ which will be used for computing the line-integrals.

2.1.2. Converting area-integrals into line-integrals (weights)
In order to evaluate the upstream integrals over the Lagrangian cells efficiently we employ Gauss–Green’s theorem: for

the simply connected regions ak‘ the following integral equation holds:Z Z
ak‘

f‘ðx; yÞdxdy ¼
I
@ak‘

½P dxþ Q dy�; ð5Þ

where @ak‘ is the boundary of ak‘. The functions P ¼ Pðx; yÞ and Q ¼ Qðx; yÞ are chosen such that they satisfy:

� @P
@y
þ @Q
@x
¼ f‘ðx; yÞ:

In general, a third-order polynomial reconstruction function in Eulerian cell A‘ can be written as

f‘ðx; yÞ ¼
X

iþj62

Cði;jÞ‘ ðx� X‘Þiðy� Y ‘Þj; ð6Þ

where Cði;jÞ are coefficients of the biquadratic polynomial (6) ensuring conservation (e.g., [23,24]), and ðX‘; Y‘Þ is the centroid
of cell ‘. Henceforth i; j 2 f0;1;2g. Collecting terms of the same order xiyj in (6) yields

f‘ðx; yÞ ¼
X

iþj62

cði;jÞ‘ xiyj; ð7Þ

where cði;jÞ are derived coefficients. Then the integral of the polynomial reconstruction function f‘ðx; yÞ in (7) can be writ-
ten asZ Z

ak‘

f‘ðx; yÞdxdy ¼
X

iþj62

cði;jÞ‘ wði;jÞk‘ ; ð8Þ

where wði;jÞk‘ is given by

wð0;0Þk‘ ¼ 1
2

XNh

h¼1

ðxk‘;h þ xk‘;h�1Þðyk‘;h � yk‘;h�1Þ ð9Þ

wð1;0Þk‘ ¼ 1
6

XNh

h¼1

x2
k‘;h þ xk‘;hxk‘;h�1 þ x2

k‘;h�1

� �
ðyk‘;h � yk‘;h�1Þ ð10Þ

wð0;1Þk‘ ¼ �1
6

XNh

h¼1

y2
k‘;h þ yk‘;hyk‘;h�1 þ y2

k‘;h�1

� �
ðxk‘;h � xk‘;h�1Þ ð11Þ

wð2;0Þk‘ ¼ 1
12

XNh

h¼1

ðxk‘;h þ xk‘;h�1Þ x2
k‘;h þ x2

k‘;h�1

� �
ðyk‘;h � yk‘;h�1Þ ð12Þ

wð0;2Þk‘ ¼ � 1
12

XNh

h¼1

ðyk‘;h þ yk‘;h�1Þ y2
k‘;h þ y2

k‘;h�1

� �
ðxk‘;h � xk‘;h�1Þ ð13Þ

wð1;1Þk‘ ¼ 1
24

XNh

h¼1

yk‘;h 3x2
k‘;h þ 2xk‘;hxk‘;h�1 þ x2

k‘;h�1

� �
þ yk‘;h�1 x2

k‘;h þ 2xk‘;hxk‘;h�1 þ 3x2
k‘;h�1

� �h i
� yk‘;h � yk‘;h�1

� �n o
; ð14Þ

where ðxk‘;h�1; yk‘;h�1Þ and ðxk‘;h; yk‘;hÞ are contiguous points (defining a line segment) and the index h is cyclic so that h ¼ 0
equals h ¼ Nh. Note that after having computed the weights the detailed line-segments information ðxk‘;h; yk‘;hÞ is no longer
needed.
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The weights wði;jÞk‘ given in Eqs. (9)–(14) have been derived by using (5) with the following pairs ðPði;jÞ; Q ði;jÞÞ:

Pð0;0Þ ¼ 0;Q ð0;0Þ ¼ x
� �

;

Pð1;0Þ ¼ 0;Q ð1;0Þ ¼ x2

2

� �
;

Pð0;1Þ ¼ � y2

2
;Q ð0;1Þ ¼ 0

� �
;

Pð2;0Þ ¼ 0;Q ð2;0Þ ¼ x3

3

� �
;

Pð0;2Þ ¼ � y3

3
;Q ð0;2Þ ¼ 0

� �
;

Pð1;1Þ ¼ 0;Q ð1;1Þ ¼ x2y
2

� �
:

Note that the choice of P and Q is not unique – here we haven chosen P and Q as in [25]. Clearly the method easily generalizes
to high-order given the reconstruction coefficients cði;jÞ‘ .

2.2. Final discretized transport equation

Using (3) and (4) the discretization scheme corresponding to conservative semi-Lagrangian transport can now be written
as

�wnþ1
k DAk ¼

XLk

‘¼1

Z Z
ak‘

f‘ðx; yÞdxdy ¼
XLk

‘¼1

X
iþj62

cði;jÞ‘ wði;jÞk‘

" #
: ð15Þ

The reconstruction coefficients cði;jÞ‘ are derived from known cell average values �wn
‘ . Here we use the piecewise-parabolic

reconstruction method in each coordinate direction as in [21] to obtain cð0;0Þ‘ ; cð1;0Þ‘ ; cð0;1Þ‘ ; cð2;0Þ‘ , and cð0;2Þ‘ and the cross term
cð1;1Þ‘ is computed as in [26].

It is worth noting the separation of the weights wði;jÞk‘ from the reconstruction coefficients cði;jÞ‘ in (15). In practice this sep-
aration implies that once the weights have been computed they can be reused for the integral of each additional tracer dis-
tribution at a given time-step. Hence the transport of additional tracers reduces to the multiplication of precomputed
weights and reconstruction coefficients similarly to the incremental remapping algorithm and traditional non-conservative
semi-Lagrangian schemes.

3. Extension to the sphere

3.1. Gnomonic cubed-sphere grid

For the present study we consider cubed-sphere grids resulting from equi-angular gnomonic (central) projection

x ¼ r tan a and y ¼ r tan b; a;b 2 �p
4
;
p
4

h i
; ð16Þ

where a and b are central angles in each coordinate direction, r ¼ R=
ffiffiffi
3
p

and R is the radius of the Earth [15]. Without loss of
generality we assume r ¼ 1. For a schematic illustration of the gnomonic projection/coordinates see Fig. 7. A point on the
sphere is identified with the three-element vector ðx; y; mÞ where m is the panel index (Fig. 8). Hence the physical domain
S (sphere) is represented by the gnomonic (central) projection of the cubed-sphere faces, XðmÞ ¼ ½�1;1�2; m ¼ 1;2; . . . ;6, and

S ¼
[6
m¼1

XðmÞ;

where the panel domains XðmÞ are non-overlapping and the cube edges are discontinuous. Note that any straight line on the
gnomonic projection ðx; y; mÞ corresponds to a great-circle arc on the sphere. In the discretized scheme we let the number of
cells along a coordinate axis be Nc so that the total number of cells in the global domain is 6� N2

c . Note that the equi-angular
cubed-sphere grid is orthogonal only at the center of each panel (6 points) elsewhere it is a non-orthogonal curvilinear
coordinate.

3.2. Patch boundaries

One advantage of the cubed-sphere geometry is that the interior of panels can be treated as in Cartesian geometry. How-
ever, it is required to consistently couple the panel discretizations for the global domain.

P.H. Lauritzen et al. / Journal of Computational Physics 229 (2010) 1401–1424 1407
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In this Section we first discuss how the panel boundaries are treated in CSLAM. The mechanism for mass flux exchange
between panels is then presented and finally we derive the spherical line integral formulae.

3.2.1. Departure cells
All computations are performed on the gnomonic projection in ðx; y; mÞ-coordinates so that the algorithm for Cartesian

geometry described earlier can be employed. As in the Cartesian case we connect the departure points with straight line seg-
ments. As mentioned previously, by doing so in the gnomonic projection the sides of the departure cells are great-circle arcs
on the sphere. For cells that stay completely on a panel when being transported by the flow (for one time-step) the overlap
areas ak‘ are defined exactly as in the Cartesian case. The question then becomes how to deal with the cells that traverse the
edges of the cube. Since the CSLAM scheme is fully two-dimensional it is possible to treat cells that cross panel edges in a
rigorous two-dimensional manner that adds a minor complexity to the algorithm as compared to the Cartesian case.

For a particular panel m we introduce a halo zone around the panel and treat the halo cells on the same projection as panel
m (Fig. 9). An algorithm for identifying indices of neighboring cells across panel sides is, for example, given in [27]. As an illus-
trative example consider a 1-cell halo zone and a resolution of Nc ¼ 9. Fig. 9(a) shows the Eulerian cells on the gnomonic
projection for panel m (solid lines) as well as the halo cells (dashed lines). Since the sides of any grid cell on the cubed-sphere
are great-circle arcs also the halo cell sides are straight lines on panel m’s gnomonic projection. The halo cell sides are, how-
ever, not necessarily aligned with panel m grid lines.

We compute the departure points for the grid cell vertices on panel m as well as for the grid cell vertices of the halo zone
cells. The departure points connected by straight lines are shown on Fig. 9(b).

Next we restrict the overlap areas ak‘ to panel m:

aðmÞk‘ ¼ ak‘ \XðmÞ; ð17Þ

so that the panel m restricted departure area is given by

(b)(a)

R (λ,θ)

(λ,θ=0)y = 0

y = 1

y = −1

β = 0

β = −π/4

β = π/4

Fig. 7. (a) A schematic illustration of the gnomonic coordinate. For simplicity only the y ¼ r tan b and b-coordinates of the gnomonic projection are shown
for one of the equatorial panels of the cubed-sphere ðm ¼ 1;2;3;4Þ. A point on the sphere ðk; hÞ has the gnomonic y coordinate given by the intersection
(filled circle) between face m of the inscribed cube (thick lines) and the straight line (dashed line) connecting the point on the sphere and the center of the
sphere (unfilled circles). The central angle b for ðk; hÞ is given by the angle between the normal vector for the face and the dashed line. Solid straight lines
show coordinates for the center ðb ¼ y ¼ 0Þ and edges of the panel ðy ¼ �1;b ¼ �p=4Þ. (b) shows the control-volumes on the surface of the sphere for the
equi-angular cubed-sphere grid with Nc ¼ 5. Equi-angular refers to the fact that the increment in a (and b) for adjacent coordinate lines is constant
ðDa ¼ DbÞ.

(a)

1 2 34

6

5

(c)(b)

Fig. 8. (a) The edges of the cubed-sphere grid plotted on the sphere (solid lines). Dashed lines show latitudes and longitudes. (b) The inscribed cube and (c)
the numbering convention for the panels of the cube used in this paper. The Greenwich meridian line ðk ¼ 0Þ divides panel m ¼ 1 in two.
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aðmÞk ¼
[Lk

‘¼1

ak‘

 !
\XðmÞ: ð18Þ

The superscript ðmÞ on the left-hand side of (17) and (18) refers to the fact that ak‘ and ak have been restricted to panel m. The
‘clipping’ procedure is graphically shown on Fig. 9(c). Note that by ‘clipping’ the parts of departure areas that are not located
on panel m the departure cell is no longer guaranteed to be a quadrilateral but can be a simply connected polygon. This does,
however, not add any particular complexity to the algorithm as compared to the Cartesian case. It is noted that aðmÞk with an
appropriate width of the halo zone spans panel m without overlaps.

3.2.2. Panel mass-exchanges
The procedure of mass-exchanges between panels is described by example. Consider the situation when a departure cell

is located over the edge of the cube, for example, as shown in Fig. 10, where the departure cell corresponding to the arrival
cell in the upper-right corner of panel 1 span panels 1, 2 and 6 marked with patterns ‘hatched’, ‘hexagon’ and ‘zig-zagged’,
respectively, on Fig. 10(a). The mass in að1Þk ¼ ak \Xð1Þ is computed by integration on panel 1 (‘hatched pattern’ on Fig. 10(a)).
The masses in the parts of the departure area that overlap panels 2 and 6 will correspond to masses over areas that ‘entered’
from halo cells of these panels (Fig. 10(b) and (d)) and are computed on those panels. When updating the amount of mass
ending up in the arrival cell in question the masses computed on neighboring panels 2 and 6 must be added to the mass over
the ‘hatched pattern’ cell on panel 1. This is done similarly to the index association used to identify neighbors to Eulerian
cells on the panel sides. Note this procedure for handling the sides of the panels allows for large CFL numbers as long as
the halo zone is chosen wide enough.

3.3. Line-integrals on the cubed-sphere

Let W be a vector field with contravariant components Wx and Wy in the direction of the unit basis vectors ðex; eyÞ, i.e.,
W ¼ Wxex þWyey. Following [10] Gauss–Green’s theorem for the vector field W in gnomonic coordinates can be written asZ

ak‘

r �WdV ¼ �
I
@ak‘

½ eWx dyþ eWy dx�; ð19Þ

where

eWx ¼
Wx

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p and eWy ¼
Wy

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p ;

with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 þ y2

p
. Here, the divergence operator is given by

r �W ¼ q3 @ eWx

@x
þ @

eWy

@y

" #
: ð20Þ

As usual, the contour integral is taken in the counter-clockwise direction around the boundary of a given overlap area ak‘.
Again we consider sub-grid-cell reconstructions of up to third-order of the form (6) but now X‘ and Y‘ refer to the x and y

components of the Eulerian cell centroids defined by

X‘ ¼
1
A‘

Z
A‘

xdA; Y ‘ ¼
1
A‘

Z
A‘

y dA:

In practice, these quantities are computed by transforming the area integrals to line-integrals via Gauss–Green’s theorem.

r

-r

r-r

r

-r

r-r

r

-r

r-r

(c)(a) (b)

Fig. 9. (a) The grid lines for a panel m as projected onto a plane (solid black lines) and the halo zone grid lines from adjacent faces plotted on panel m’s
projection (dashed lines). The boundary of panel m is marked with the thick solid (red) line. (b) The departure grid corresponding to the arrival grid shown
on (a) for the moving vortices test case using a time-step of 5 h. (c) The departure grid ‘clipped’ so it is limited to panel m. (For interpretation of the
references in colour in this figure legend, the reader is referred to the web version of this article.)
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In order to apply the Gauss–Green theorem to compute the integral of f‘ðx; yÞ over ak‘ we need to determine a Wði;jÞ so that

r �Wði;jÞ ¼ xiyj: ð21Þ

By choosing eWði;jÞ
x ¼ 0 this reduces to solving the equation

@

@y
eWði;jÞ

y

� �
¼ xiyj

q3 ; ð22Þ

Note that even with the aforementioned simplification eWy is still not unique as there is a family of potentials W that satisfy
(22), that is, we may freely choose an additive constant that will play no role in the final calculation. Also, one may solve (22)
in terms of either central angle or gnomonic coordinates, which are connected via the relation (16). In either case one will
obtain identical expressions for the potentials:

eWð0;0Þ
y ðx; yÞ ¼ 1

1þ x2

y
q
; ð23Þ

eWð1;0Þ
y ðx; yÞ ¼ 1

1þ x2

xy
q
; ð24Þ

eWð0;1Þ
y ðx; yÞ ¼ � 1

q
; ð25Þ

eWð2;0Þ
y ðx; yÞ ¼ 1

1þ x2

x2y
q
; ð26Þ

logical space

p=1

logical space logical space(d)(c)

(b)(a)

p=6

p=2

p=1

p=2

p=6

Fig. 10. A schematical illustration of how mass is exchanged between panels. (a) shows the gnomonic projection on the inscribed cube of the Eulerian cells
(dashed lines) and a departure cell on the edge of the inscribed cube (deformed cell with vertices marked with filled circles) corresponding to an arrival cell
located in the upper-right corner of panel 1 (unfilled circles connected with thick lines). (b–d) Illustrate how the mass-exchange between the panels is
handled in logical space for panels 6, 1 and 2, respectively. See text for more details.
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eWð0;2Þ
y ðx; yÞ ¼ � y

q
þ arcsinh

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p
� �

; ð27Þ

eWð1;1Þ
y ðx; yÞ ¼ � x

q
; ð28Þ

(see [10], for the corresponding formulas given in terms of central angle coordinates). Substituting the expressions (23)–(28)
into (19) and taking the line-integrals yields the area-integrals of the terms xiyj. For lines that are parallel to the coordinate
axis the line-integrals can be computed exactly (see [10]), that is, for lines of constant y:

Ið0;0Þðx; yÞ ¼ � arctan
xy
q

� �
; ð29Þ

Ið1;0Þðx; yÞ ¼ arcsinh
yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p
� �

; ð30Þ

Ið0;1Þðx; yÞ ¼ arcsinh
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p !

; ð31Þ

Ið2;0Þðx; yÞ ¼ �yarcsinh
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p !

� arccos
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p !

; ð32Þ

Ið0;2Þðx; yÞ ¼ �xarcsinh
yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p
� �

� arccos
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p !

; ð33Þ

Ið1;1Þðx; yÞ ¼ q; ð34Þ

where

Iði;jÞðx; yÞ ¼ �
Z eWy dx:

Since we have chosen Wx ¼ 0 lines of constant x give zero contribution which, in general, results in having to compute half
the number of inner line-integrals compared to a non-zero choice of Wx.

For arbitrarily oriented lines closed form line-integration is not straight forward and it is most likely computationally
cheaper to evaluate the line-integrals with Gaussian quadrature. Herein we compute lines parallel to the coordinate lines
using exact integration (as with all inner integrals) and all other line-integrals are approximated using Gaussian quadrature.
As (23)–(28) are rather smooth and slowly varying functions over a cell side, relatively low order quadrature is sufficient (see
results in Section 4).

Note that summing all outer line-integrals (except when departure cell sides coincide with grid lines) yields zero since a
line-integral along a particular side of a cell is exactly equal to the line integral along the same side shared with the adjacent
cell but with opposite sign. All inner line-integrals do, however, not cancel since the sub-grid-cell distribution is discontin-
uous across grid cell sides. The inner line-integrals collectively yield the total mass in all grid cells (to machine precision).

3.4. Sub-grid-cell reconstructions on the sphere

The coefficients for the mass-conservative reconstruction polynomial cði;jÞ‘ are described in detail in [10] so only a brief
overview will be given here. Basically the coefficients are defined in terms of a Taylor expansion

cði;jÞ‘ ¼ @ iþjf
@xi@yj

 !
‘

; ði; jÞ– ð0; 0Þ; ð35Þ

and by choosing the constant term so that mass is conserved

cð0;0Þ ¼ �w‘ þ
1
2

@2f
@x2

 !
‘

X2
‘ �mð2;0Þ‘

� �
þ 1

2
@2f
@y2

 !
‘

Y2
‘ �mð0;2Þ‘

� �
þ @2f

@x@y

 !
‘

X‘Y ‘ �mð1;1Þ‘

� �
; ð36Þ

where mði;jÞ‘ are the area-averaged moments defined by

mði;jÞ‘ ¼ 1
DA‘

Z
A‘

xiyj dA: ð37Þ

Obviously the derivatives in (35) must be estimated and several options were explored in [10]. We use a non-equidistant
parabolic interpolation procedure in gnomonic (x,y)-coordinates to estimate the gradients (see [10] for details).

In order to compute coefficients near the panel boundaries information from neighboring panels is needed, however, the
average values on neighboring panels are not aligned with the cells on the panel in question (see Fig. 9). To apply the dis-
cretization formulas the values in the halo cells that would be obtained by extending the panel in question outwards are
needed. Here we use a one-dimensional non-conservative fourth-order non-conservative interpolation to obtain halo cell
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values from the neighboring cell average values [10]. Note that this interpolation procedure does not need to be conservative
since any choice of coefficients cði;jÞ‘ will yield mass-conservation through (36).

3.5. Discretized transport equation on the cubed-sphere

The CSLAM transport scheme on the cubed-sphere in analogous to the Cartesian version (15):

�wnþ1
k DAk ¼

XLk

‘¼1

X
iþj62

cði;jÞ‘ wði;jÞk‘

" #
; ð38Þ

where the area of the regular (Eulerian) grid cells DAk can be computed using the formulas in Appendix C of [28] (note that
inverse cosine is missing on the right-hand side of equation C3 in [28]). The sum enclosed in the square brackets on the right-
hand side of (38) is the integral over the overlap area ak‘. The coordinates ðxk‘;h; yk‘;hÞ; h ¼ 1; . . . ;Nh, for the sides of the over-
lap area ak‘ are determined using the procedure outlined in Section 2.1.1. The reconstruction coefficients cði;jÞ‘ are given in the
previous Section 3.4 and the weights are given by

wði;jÞk‘ ¼
XNh

h¼1

0; if xk‘;hþ1 ¼ xk‘;h;

�
PNg

g¼1
xg
eWði;jÞ

y ðxg; ygÞ
h i

; if yk‘;hþ1 – yk‘;h;

Iði;jÞðxk‘;hþ1; yk‘;hþ1Þ � Iði;jÞðxk‘;h; yk‘;hÞ; if yk‘;hþ1 ¼ yk‘;h;

8>>>><>>>>: ð39Þ

where Ng is the number of Gaussian quadrature points, ðxg; ygÞ are the quadrature points and xg are the Gaussian weights.
The line-integrals along constant x lines give no contribution [first line in Eq. (39)], the outer segments are computed inte-
grating (23)–(28) with Gaussian quadrature [second line in Eq. (39)] and the remaining inner segments are computed exactly
[third line of Eq. (39)] using (29)–(34). Note that all segments for the overlap area ak‘ sum up to one number per reconstruc-
tion coefficient cði;jÞ‘ .

4. Results

In order to validate new advection schemes it is customary to use two types of tests which consist of solid-body rotation
and deformational flow. For both the Cartesian and spherical geometry cases of CSLAM, two standard test cases with known
analytic solution are considered. To compare the performance of CSLAM with other published results the following standard
error measures are used:

RMS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

k¼1

�wk � �we
k

� �2

vuut ð40Þ

l1 �
Iðj�w� �wejÞ

Ið�weÞ
ð41Þ

l2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I½ð�w� �weÞ2�

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I½ðj�wejÞ2�

q ð42Þ

l1 �
maxðj�w� �wejÞ

maxðj�wejÞ
ð43Þ

where Ið�Þ is the global integral

Ið�wÞ ¼
XN

‘¼1

�w‘DA‘

and �w‘ is the average density over the grid cell with area DA‘. Common practice in the literature is to use the point value at
the cell center to represent the cell average although it might be argued that for finite-volume methods it would be more
consistent to integrate the ‘exact’ solution over each cell. [29] found (for their scheme) that the conclusions drawn from
the results are independent of the choice of �we as long as the schemes are compared with the same choice for �we in a con-
sistent manner. As will be shown in the Cartesian test cases this is also the case for CSLAM so error measures based on both
representations of �we are used in the Cartesian test cases. For comparison with published schemes the error measures for the
test cases in spherical geometry use the point value in the center of the cell for �we. We follow the convention that unless
explicitly stated otherwise �we is the point value at the cell center.
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4.1. Experiments in Cartesian geometry

Here we consider two standard advection tests which are solid-body rotation and deformational flow. The results for
the experiments in Cartesian geometry are compared to published conservative semi-Lagrangian schemes: SLICE [29],
CCS [30] and CISL [21]. The SLICE and CCS schemes are cascade schemes in which the two-dimensional transport prob-
lem is cast into two one-dimensional sweeps; one in a coordinate direction and the other along the deformed Lagrangian
coordinate that is initially orthogonal with the first sweep. The CISL scheme uses a fully two-dimensional cell approx-
imation but does not connect the departure vertex points with straight lines but the cell is approximated with line-seg-
ments that are parallel to the coordinate axis (see Fig. 2 in [22]). For this flow the CSLAM scheme uses an exact
approximation to the departure cells. For each sweep in the cascade schemes and in each coordinate direction of the
CISL and CSLAM schemes, the piecewise parabolic method is used [24]. There are different versions of the SLICE scheme
depending on which sub-grid-scale reconstruction method is used for the cascade sweeps: The piecewise cubic method,
SLICE(PCM), using cubic polynomials, and SLICE(PPM) and SLICE(PSM) using the piecewise parabolic method and piece-
wise spline method [31], respectively. Contrary to CISL the CSLAM scheme also includes a cross term which is approx-
imated as in [26].

4.1.1. Solid-body advection of a slotted cylinder and cosine hill
For the solid-body rotation tests the Zelasak’s slotted cylinder [32] and cosine hill (see, e.g., [29]) are used. The flow

rotates about the center of the domain with an angular velocity so that one revolution is completed in 96 and 71
time-steps for the slotted cylinder and cosine hill test cases, respectively. A domain of 100� 100 grid cells is used with
grid-spacing Dx ¼ Dy ¼ 1 ðDAk ¼ 1Þ for the slotted cylinder test case. For the cosine hill a much coarser resolution of
32� 32 grid cells is used. The specific parameters for the analytic solution (including the initial distribution) are given
in [29].

Fig. 11 shows surface plots of the CSLAM solution after one revolution for the slotted cylinder and cosine hill test cases,
respectively. Standard error measures are given in Tables 1 and 2 as well as the performance measures for other published
mass-conservative semi-Lagrangian schemes. All schemes use analytical trajectories.

First of all it is noted that the relative performance of the schemes is similar when comparing error measures based on
the same �we (either point values or cell-averages) and that the error measures decrease when using the cell average for �we

compared to using the point value. So the conclusions are independent of the choice of �we in the error norms as long as the
error norms are computed consistently. CSLAM performs better than CISL in all test cases and error measures. Compared
to the cascade schemes CSLAM performs better or worse depending on the test case and type of reconstruction function
used. Note that the cascade schemes may in certain cases have a more accurate representation of the diagonal variation
since the second remapping is along the Lagrangian coordinate lines and not along coordinate lines [22]. This might give a
better representation of diagonal variation than the cross-term in the fully two-dimensional reconstruction used in
CSLAM.

To assess the importance of the cross-term in CSLAM the test case was also run without it ðCSLAMHÞ. As a results the error
measures worsen by a few percent for the slotted cylinder test case and by approximately 15–19% depending on the error
measure for the cosine hill test case.

4.1.2. Idealized cyclogenesis
The idealized cyclogenesis problem introduced by [34] is used as a standard scalar advection test [23]. The flow is highly

deformational challenging other aspects of the scheme than the ability to transport distributions as solid bodies. The test
case consists of a circular vortex that forces the initial condition to curl up into thin filaments with steep gradients
(Fig. 12). A complete test case description is, for example, given in [29]. Standard settings are used: domain size is
128� 128 cells, Dt ¼ 0:3125; Dx ¼ Dy ¼ 0:078125 and the test is run for 16 time-steps (corresponding to 5 time units).

Standard error norms are given in Table 3. The fully two-dimensional CSLAM scheme is slightly superior followed by CISL
and SLICE in terms of standard error measures. Excluding the cross term in CSLAM only has a minor effect on the accuracy.

(b)(a)

Fig. 11. Surface plots of the CSLAM solution to the solid-body advection of (a) a slotted cylinder and (b) a cosine hill, respectively, after one revolution.
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4.2. Test cases on the sphere

We show results from three test cases in spherical geometry commonly used in the meteorological literature. Unfortu-
nately, various authors choose different parameters for the same test cases. Therefore we run each case with different
parameters to facilitate the comparison with published schemes. The test cases are defined below.

(b)(a)

Fig. 12. (a) and (b) show the exact solution and the CSLAM solution, respectively, after 16 time-steps for the idealized cyclogenesis problem.

Table 1
Error norms for CSLAM and other published mass-conservative semi-Lagrangian schemes for the solid-body rotation of a slotted cylinder. In columns 2–5 the
error norms are based on �we being the point value at the cell center whereas columns 6–9 use four-point Gaussian quadrature for approximating the cell
average value of the exact solution. The error l1 ; l2 and l1 error norms for the SLICE and CCS schemes are from [31,33], respectively, and the error norms for the
CISL scheme have been computed by the authors. The acronyms PPM, PCM and PSM for SLICE refer to the sub-grid-reconstruction method (piecewise parabolic
method, piecewise cubic method and piecewise spline method, respectively).

�we = point value at center �we = approximate cell average

Scheme RMS l1 l2 l1 RMS l1 l2 l1

Solid-body rotation of slotted cylinder in Cartesian geometry
One revolution
CSLAM 0.0537 0.1955 0.2257 0.6612 0.0426 0.1605 0.1828 0.5492

CSLAMH 0.0555 0.2070 0.2334 0.6657 0.0468 0.1724 0.1916 0.5566

SLICE(PSM) – 0.1917 0.2142 0.6342 – – – –
SLICE(PPM) – 0.2230 0.2363 0.6547 – – – –
SLICE(PCM) – 0.2223 0.2391 0.5843 – – – –
CCS – 0.1869 0.2311 0.6194 – – – –
CISL 0.0559 0.2088 0.2350 0.6669 0.0451 0.1744 0.1936 0.5592

Six revolutions
CSLAM 0.0650 0.2723 0.2734 0.7070 0.0552 0.2385 0.2366 0.6656

CSLAMH 0.0681 0.2943 0.2863 0.7171 0.0586 0.2610 0.2512 0.6790

SLICE(PPM) 0.0701 – – – 0.0472 – – –
SLICE(PCM) 0.0673 – – – 0.0440 – – –
CISL 0.0692 0.2988 0.2908 0.7200 0.0598 0.2655 0.2564 0.6800

Table 2
Same as Table 1 but for the solid-body rotation of a cosine hill.

�we = point value at center �we = approximate cell average

Scheme RMS l1 l2 l1 RMS l1 l2 l1

Solid-body rotation of cosine hill in Cartesian geometry
One revolution
CSLAM 1.2422 0.1950 0.1350 0.1598 1.1722 0.1798 0.1298 0.1582

CSLAMH 1.4680 0.2307 0.1596 0.1856 1.3840 0.2147 0.1533 0.1832

SLICE(PSM) – 0.1510 0.0854 0.0613 – – – –
SLICE(PPM) – 0.2444 0.1345 0.1165 – – – –
SLICE(PCM) – 0.2252 0.1217 0.1034 – – – –
CCS – 0.2160 0.2107 0.3283 – – – –
CISL 1.5416 0.2386 0.1676 0.1960 1.4543 0.2224 0.1610 0.2224

Two revolutions
CSLAM 1.9639 0.3193 0.2135 0.2404 1.8530 0.2993 0.2052 0.2363

CSLAMH 2.2782 0.3697 0.2477 0.2763 2.1529 0.3489 0.2384 0.2714

SLICE(PPM) 1.9475 – – – 1.7456 – – –
SLICE(PCM) 1.5977 – – – 1.4057 – – –
CISL 2.3911 0.3816 0.2599 0.2915 2.2622 0.3602 0.2505 0.2826
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4.2.1. Solid-body advection of a cosine hill
The wind field that will transport a distribution along a great-circle without distorting it is given by [35]

u ¼ u0ðcos u cos hþ sinu cos k sin hÞ; ð44Þ
v ¼ �u0 sin u sin k; ð45Þ

where u and v are the velocity components in the longitudinal ðkÞ and latitudinal ðhÞ directions, respectively,
u0 ¼ 2pR=ð12 daysÞ and u is the rotation angle (flow orientation parameter), and R is the radius of the sphere. When
u ¼ 0 the flow is oriented along the equator, and when u ¼ p=2 the flow is along the pole-to-pole direction resulting in
cross-polar advection. The flow field is non-divergent and translates the solid-body along a great-circle without incurring
any deformation so that the final solution after 12 model days should exactly match the initial condition. The initial condi-
tion for the solid-body (or scalar field w) is a ‘cosine hill’ defined as follows [35]:

wðk; hÞ ¼
w0
2 1þ cos pRg

Rc

� �h i
; if Rg 6 Rc

0; if Rg > Rc

(

where Rc is the radius of the hill and Rg is the great-circle distance between ðk; hÞ and the center of the distribution ðkc; hcÞ,

Rg ¼ arccos½sin hc sin hþ cos hc cos h cosðk� kcÞ�;

and ðkc; hcÞ ¼ ð3p=2;0Þ so that initially the cosine hill is located at the center of an equatorial panel ðm ¼ 4Þ. When trans-
ported with u ¼ p=4, the cosine hill passes through the discontinuous regions containing two edges and four vertices of
the cubed-sphere, and this is a more challenging parameter setting for advection on the cubed-sphere than, for example,
u ¼ 0 [36]. Note that the cosine hill is only C0 at the base of the hill.

Note that for the spherical semi-Lagrangian solid-body advection, the analytic trajectory origins (or departure point posi-
tions) ðkd; hdÞ can be determined without the knowledge of wind fields ðu; vÞ if the angular velocity xs of solid-body rotation
is known. In order to compute exact trajectory origins, however, a flow dependent rotated spherical coordinate system ðk0; h0Þ
with respect to the regular ðk; hÞ-sphere is required. The exact trajectory origins are then given by ðk0 �xsDt; h0Þ on the ro-
tated sphere which corresponds to the exact upstream position ðkd; hdÞ on the regular sphere (see [37] for details).

Several different parameters for this test case are used in the literature. We will use the following:

1. The cosine hill with dimensions Rc ¼ R=3 and w0 ¼ 1000. The time-step is Dt ¼ 1800 s so that one full revolution is com-
pleted in 576 time-steps (12 days). This setting is, for example, used by [38]. The initial condition is shown on Fig. 15(d).

2. In the literature pertaining to semi-Lagrangian schemes (e.g., [21,39]) the cosine hill dimensions are typically
Rc ¼ R7p=64, and w0 ¼ 1 and the time-step is either Dt ¼ 4050 s or Dt ¼ 14;400 s so that in 12 days one full revolution
is completed in 256 or 72 time-steps.

4.2.2. Deformational flow tests on the sphere
Recently Nair and Jablonowski [37] introduced a new deformational benchmark test for advection schemes on the sphere.

The test consists of two deforming and moving vortices located at diametrically opposite sides of the sphere such that the
flow is time dependent, non-divergent, and the analytic solution is known at any time. This test combines the solid-body
rotation test [35] and the static deformational test [21]. It is referred to as the moving vortices test case and it is gaining
popularity in the literature [38].

The exact solution at any t is given by [37]

wðk0; h0; tÞ ¼ 1� tanh
d
c

sinðk0 �xrðh0ÞtÞ
	 


; ð46Þ

where ðk0; h0Þ is the rotated coordinate system with respect to the regular ðk; hÞ coordinates, d ¼ d0 cos h0 is the radial distance
from the vortex center and xr is the angular velocity of the vortices. For a smooth deformational flow, the parameters c ¼ 5,
d0 ¼ 3 are used [37]. The scaled tangential velocity Vt of the rotational motion is defined to be

Table 3
Same as Table 1 but for the cyclogenesis test case.

�we = point value at center �we = approximate cell average

Scheme RMS l1 l2 l1 RMS l1 l2 l1

Idealized cyclogenesis in Cartesian geometry
CSLAM 0.0642 0.0113 0.0646 0.8802 0.0272 0.0059 0.0275 0.3262

CSLAMH 0.0653 0.0116 0.0656 0.8777 0.0285 0.0062 0.0287 0.3363

SLICE(PPM) 0.0701 – – – 0.0317 – – –
SLICE(PCM) 0.0693 – – – 0.0311 – – –
CISL 0.0666 0.0119 0.0670 0.8737 0.0304 0.0065 0.0307 0.3598
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Vt ¼ u0
3
ffiffiffi
3
p

2
sech2ðdÞ tanhðdÞ; ð47Þ

where the scale factor u0 ¼ 2pR=ð12 daysÞ, which indicates 12 model days are required for the full evolution of the vortices –
the same time taken for a complete revolution around the sphere. The angular velocity xrðh0Þ varies with the vortex radial
distance Rd, and is defined by

xrðh0Þ ¼
Vt=ðRdÞ if d – 0
0 if d ¼ 0:

�
ð48Þ

which has the physical unit radians/seconds. The time dependent wind vector ðu; vÞ for the moving vortex is given by

uðtÞ ¼ u0ðcos h cos uþ sin h cos k sin uÞ þ Rxr ½sin hcðtÞ cos h� cos hcðtÞ cosðk� kcðtÞÞ sin h� ð49Þ
vðtÞ ¼ �u0 sin k sin uþ Rxr½cos hcðtÞ sinðk� kcðtÞÞ�; ð50Þ

where u is the flow orientation parameter as in the case of solid-body rotation test and ðkcðtÞ; hcðtÞÞ is the center of a moving
vortex. The initial vortex center is located at ðkcðt ¼ 0Þ; hcðt ¼ 0ÞÞ ¼ ðk0; h0Þ and the initial conditions for the vortex field is
wðk0; h0; t ¼ 0Þ. Note that the static vortices [21] are a special case of the moving vortices and can be obtained by ignoring
the solid-body rotation part (Eq. (49) and (50) with u0 ¼ 0). The detailed procedure for finding the exact departure point
positions k0d; h

0
d

� �
for the moving vortices is described in [37], and will not be discussed herein. We consider both static

and dynamic vortices for evaluating the CSLAM algorithm.

4.3. Results

4.3.1. Solid-body advection of a cosine hill
First we investigate the impact on accuracy, in terms of the standard error norms defined in (41)–(43), using different

orders of Gaussian quadrature for the outer integrals as well as varying the order of the reconstruction functions. For that
we use the solid-body advection of a cosine hill test case at resolution Nc ¼ 32 and u ¼ p=4;Dt ¼ 4050 s and a total of
256 time-steps (one revolution). If Ng is the number of Gaussian quadrature points the integration is exact for polynomials

Table 4
Standard error measures for the solid-body advection of a cosine hill for different orders of Gaussian quadrature (Ng is the number of Gaussian quadrature
points) for the outer line-integrals as well as a version of CSLAM not including the cross term in the reconstruction polynomial ðCSLAMHÞ. The trailing N refers
to the non-monotone (unlimited) version of CSLAM. The dimensions and parameters used here are: Nc ¼ 32 (2.8125� resolution at equator),
u ¼ p=4;Dt ¼ 4050 s, 256 time-steps are used (one revolution), w0 ¼ 1; Rc ¼ R 7p=64.

Scheme Ng l1 l2 l1

Solid-body rotation of cosine hill on the sphere

CSLAMH-N 2 0.0949 0.0536 0.0332

CSLAM-N 2 0.0764 0.0414 0.0254
CSLAM-N 3 0.0765 0.0414 0.0255
CSLAM-N 4 0.0765 0.0414 0.0255
CSLAM-N 5 0.0765 0.0414 0.0255

 0.01

 0.1

 1

 10

321

e
r
r
o
r
 
n
o
r
m

order of reconstruction function

l1
l2
l∞

Fig. 13. Standard error norms for the solid-body advection of a cosine hill for different orders of reconstruction function. Settings are as in Table 4.
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of order 2Ng þ 1. Table 4 shows the error norms using 2–5 point Gaussian quadrature and clearly shows that two-point
Gaussian quadrature is sufficient in terms of accuracy (similar results were obtained for the other test cases). Hence we will

(b)(a)

Fig. 14. Numerical solution at 1.875� resolution at the equator ðNc ¼ 48Þ for the solid-body advection of a cosine hill with radius Rc ¼ R=3 and amplitude
w0 ¼ 1000 after one full revolution completed in 576 time-steps of 1800 s each. (a) and (b) show the solution without and with the application of a
monotone limiter, respectively. The flow is oriented with u ¼ p=4 so that the cosine hill passes over the edges of the cubed-sphere. These settings are
identical to those used in [38].
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Fig. 15. (a–c) Normalized error norms l1; l2 and l1 , respectively, as a function of resolution for the solid body advection of a cosine hill
ðRc ¼ R=3;w0 ¼ 1000;u ¼ p=4Þ after one full revolution completed using the non-monotone scheme with at time-step of 1800 s (triangles) and 4050 s
(unfilled squares) as well as the monotone scheme with Dt ¼ 1800 s. The solid line below the other error norm curves is a reference line with slope
corresponding to the average convergence rate. (d) shows the initial condition (cosine hill in center of panel) and the exact solution after 44 h (cosine hile
over inscribed cube edge).
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use two-point Gaussian quadrature as default. Convergence with increasing order of sub-grid-scale reconstruction function
is shown in Fig. 13. In the remainder of this paper we will use third-order reconstruction functions.

Table 5
Comparison of error measure norms from published conservative semi-Lagrangian schemes (CISL of [21], CCS of [30] and [41], and SLICE of [39,44,31]) for the
solid-body rotation of a cosine hill with maximum amplitude w0 ¼ 1 for different values of rotation angle u after one complete rotation (Dt ¼ 4050 s, 256 time-
steps). The unlimited schemes use appended acronym ‘N’ and monotone schemes use ‘M’ . All other than the CSLAM scheme use a regular latitude-longitude
grid with a 2.8125� resolution. CSLAM uses Nc ¼ 32 corresponding to a 2.8125� resolution at the equator for the cubed-sphere. Obviously the number of degrees
of freedom is not identical for the latitude–longitude schemes compared to the cubed-sphere CSLAM scheme (the ratio between the two is 4/3).

Scheme u ¼ 0 u ¼ p=4

l1 l2 l1 l1 l2 l1

Solid-body rotation of cosine hill on the sphere
SLICE(PSM)-N 0.050 0.034 0.027 0.059 0.033 0.022
SLICE(PSM)-M 0.027 0.019 0.018 0.029 0.020 0.025
SLICE(PPM)-N 0.070 0.045 0.035 0.083 0.046 0.031
SLICE(PPM)-M 0.101 0.095 0.115 0.078 0.086 0.159
SLICE(PCM)-N 0.046 0.029 0.022 0.067 0.035 0.024
SLICE(PCM)-M 0.038 0.024 0.017 – – –
CISL-N 0.051 0.035 0.032 – – –
CISL-M 0.094 0.091 0.108 – – –
CSLAM-N 0.079 0.046 0.034 0.076 0.041 0.025
CSLAM-M 0.075 0.075 0.141 0.048 0.060 0.130

Scheme u ¼ p=2 u ¼ p=2� 0:05

l1 l2 l1 l1 l2 l1

SLICE(PSM)-N 0.079 0.054 0.049 0.077 0.052 0.043
SLICE(PSM)-M 0.057 0.046 0.043 0.056 0.045 0.044
SLICE(PPM)-N 0.103 0.065 0.055 0.111 0.067 0.050
SLICE(PPM)-M 0.109 0.102 0.118 0.109 0.102 0.124
SLICE(PCM)-N 0.079 0.049 0.042 0.079 0.048 0.039
SLICE(PCM)-M 0.058 0.040 0.037 0.056 0.039 0.041
CISL-N 0.063 0.046 0.048 – – –
CISL-M 0.084 0.084 0.109 – – –
CCS-N 0.054 0.042 0.065 – – –
CCS-M 0.076 0.082 0.129 – – –
CSLAM-N 0.079 0.046 0.034 0.079 0.046 0.034
CSLAM-M 0.075 0.075 0.141 0.070 0.069 0.133

Scheme u ¼ p=4� 0:05 u ¼ p=4þ 0:05

l1 l2 l1 l1 l2 l1

CSLAM-N 0.077 0.041 0.026 0.077 0.041 0.026
CSLAM-M 0.048 0.060 0.131 0.048 0.060 0.131

Parameters: w0 ¼ 1; Nc ¼ 32 (2.8125� at equator), Rc ¼ R7p=64;Dt ¼ 4050 s.
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Fig. 16. Time evolution of the normalized error norms (l1; l2; l1 are solid, dashed and dotted lines, respectively) for solid-body advection of a cosine hill at
1� ðNc ¼ 90Þ resolution at the equator for the (a) unlimited scheme (N) and (b) scheme with a monotone limiter (M). All settings are as in [38] (see their
Fig. 3), that is, the hills radius is Rc ¼ R=3, its amplitude is w0 ¼ 1000, the time-step is Dt ¼ 1800 s and the rotation angle is u ¼ p=4 so that the hill passes
over four corners of the cubed-sphere. One full revolution is completed in 576 time-steps.
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Also illustrated in Table 4 is the importance of the cross-term in the sub-grid-scale reconstruction. In Cartesian geometry
the cross-term only had a minor impact on the accuracy of the CSLAM scheme for the slotted cylinder (Table 1) and defor-
mational flow test case (Table 3). For the cosine hill test case the impact was larger (approximately 15–19%). Not including
the cross term (for this particular test setting) in the reconstruction function ðCSLAMHÞ in the cubed-sphere version of
CSLAM increases error measures l1; l2 and l1 by approximately 20%, 23% and 30%, respectively. This result is due to the fact
that even for solid-body rotation the cells entering from neighboring panels are naturally skewed (Fig. 9) even though the
Lagrangian cells on the sphere are simply translated (and not deformed or rotated).

For the solid-body rotation of a cosine hill negative undershoots appear without the application of monotone or positive
definite filters as shown in Fig. 14(a). Following [10] we ensure monotonicity in the reconstruction function by employing
the simple monotone filter of [40] that scales the sub-grid-scale reconstruction function so that its minimum and maximum
values do not exceed the cell-averages of the neighboring cells. The unlimited versions for the CSLAM scheme use appended
acronym ‘N’ and monotone versions use ‘M’. When applying the monotone filter the negative undershoots disappear com-
pletely (Fig. 14b(b)) demonstrating that the monotone limiter is ’clipping’ the spurious oscillations. The accuracy is, in gen-
eral, slightly decreased in terms of standard error measures (Fig. 15(a)–(c)) with l1 being degraded the most.

A concern of every scheme implemented on a spherical grid is if the grids strong or weak singularities influence the solu-
tion adversely. For schemes defined on a regular latitude–longitude grid it is standard practice to let a distribution be ad-
vected across the strong singularities (poles) and look for possible spurious effects introduced by the converging
meridians. For the cubed-sphere there are 8 weak singularities at the vertices of the inscribed cube. Therefore solid-body
advection is performed with u ¼ p=4 and u ¼ p=4� 0:05 so that a distribution initially located in the center of a panel
passes over the vertices of the inscribed cube. The latter rotation angles are to avoid symmetry (Table 5). The time evolution
of the standard error norms as the cosine hill passes over the vertices of the inscribed cube ðu ¼ p=4Þ are shown on Fig. 16
for the unlimited and monotone scheme. No obvious noise is generated by the weak singularities of the cubed-sphere grid.

Since the scheme being described herein is in the category of finite-volume semi-Lagrangian algorithms its performance
compared to published schemes in this category is discussed. Here we compare with CISL of [21], CCS of [30] and [41], and
SLICE of [39] which are all implemented on a regular latitude–longitude grid. Table 5 shows that the schemes implemented
on a regular latitude–longitude grid are almost twice as accurate in terms of l1; l2 and l1 when performing solid-body advec-
tion along the equator compared to advection across the poles. In other words, there is a large dependence on the rotation
angle u. For the cubed-sphere scheme there is little dependence on u and the accuracy when using the same resolution at
the equator is comparable to the CISL, SLICE and CCS schemes. It should be noted, however, that for a pure zonal flow the
CISL, CCS and SLICE schemes defined on a regular latitude–longitude grid reduce to one dimension and there will be no
mass-transport in the h-direction. For a scheme defined on the cubed-sphere grid, however, the coordinate lines are not
aligned with small circles and consequently this grid (as well as other non-traditional grids such as icosahedral grids) will
not preserve a zonal flow exactly since there is a spurious transport in the h-direction (see, e.g., [42]).

Also note that the number of degrees of freedom is less for the cubed-sphere scheme compared to the schemes defined on
a regular latitude–longitude grid when both grids have the same resolution at the equator. More precisely, the ratio between
the number of grid points on the regular latitude–longitude grid and the cubed-sphere grid both having the same resolution
at the equator is 4/3.

The standard error measures as a function of resolution are shown on Fig. 15 for the solid-body rotation using the same
settings as [38] ðDt ¼ 1800 sÞ and [43] ðDt ¼ 4050 sÞ, respectively. The average convergence rates (e.g., [30]) for the unlim-

Table 6
Same as Table 5 but with a larger time-step Dt ¼ 14;400 s (one revolution in 72 time-steps).

u ¼ p=2

Scheme l1 l2 l1

CISL-N 0.037 0.031 0.033
CISL-M 0.040 0.042 0.068
CSLAM-N 0.031 0.018 0.012
CSLAM-M 0.029 0.033 0.070

Table 7
Error measures for the smooth deformational flow test case with the center of the vortex near the pole for CISL, CCS and CSLAM. Parameters used are: t ¼ 3, 32
time-steps ðDt ¼ 4:5 hÞ; ðk0 ¼ pþ 0:025; h0 ¼ p=2:2Þ; Nc ¼ 32.

Scheme l1 l2 l1

CISL-N 0.0011 0.0025 0.0144
CISL-M 0.0013 0.0031 0.0211
CCS-M 0.0013 0.0033 0.0220
CSLAM-N 0.0013 0.0026 0.0137
CSLAM-M 0.0013 0.0027 0.0141
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ited scheme are better than second-order (2.85, 2.48 and 2.25 for l1; l2 and l1 with Dt ¼ 1800 s, respectively), but with the
application of the monotone filter the l1 convergence rate drops slightly below second-order (1.87) while l1 and l2 are not
affected and improved slightly (2.85, 2.55), respectively. Obviously the accuracy is better when using a longer time-step
since less remappings are needed to complete one revolution.

To demonstrate the schemes ability to transport with large Courant numbers, the solid-body rotation test case is run with
a much larger time-step than used above. Following [21] a time-step of 14,400 s is used so that one revolution is completed
in 72 time-steps. To compare with literature a rotation angle of u ¼ p=2 is used. The error measures for CISL and CSLAM are
comparable (Table 6).

(b)(a)

(d)(c)

(f)(e)

Fig. 17. Results for static vortices test case. (a) shows the initial condition and (b) the analytic solution at day 6. (c) and (e) are the numerical solutions at
resolutions 1.125� ðNc ¼ 80Þ and 2.8125� ðNc ¼ 32Þ at the equator, respectively. (d) and (f) are the corresponding plots with differences between the exact
and numerical solutions.
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4.3.2. Deformation flow test cases
The solid-body rotation test case only addresses the ability of a scheme to translate a distribution along a great-circle. The

vortices test cases are formulated to address the schemes performance under strong deformational flow conditions. First the
static vortices test case results are discussed. To compare with CISL and CCS the vortex is centered near the pole
ðk0 ¼ pþ 0:025; h0 ¼ p=2:2Þ and a long time-step of 4.5 h is used at a 2.8125� resolution at the equator ðNc ¼ 32Þ. Again
the error measures for all schemes are comparable although the cubed-sphere scheme uses fewer cells in the polar areas
(Table 7).

To challenge the cubed-sphere scheme the center of the vortex is placed near the corner of the inscribed cube
ðk0; h0Þ ¼ ðp� 0:8; p=4:8Þ (Fig. 17). The closest corner of the inscribed cube is located at k ¼ 3p=4 and
h ¼ atanð

ffiffiffi
2
p

=2Þ 	 0:615 so the center of the vortex is offset by approximately 0.8� in longitude and 2.2� in latitude. Again,
we look for any noise introduced by the weaker singularities of the cubed-sphere grid. To compare with literature, the solu-
tion and differences between the analytic and numeric solution at day 6 are shown on Fig. 17(c)–(f) at resolutions Nc ¼ 80 (as
used in [38]) and Nc ¼ 32 (as used in [43]). No visible noise is generated by the scheme as the error is clearly related to gra-
dient errors in the sub-grid-scale reconstruction function rather than the patch boundaries. The convergence rates as com-
puted in [38] are shown on Fig. 18. The CSLAM scheme achieved better than second-order convergence with respect to all
error measures.

Combining solid-body advection and the deformational flow field defines the moving vortex test case considered
last. With a rotation angle of u ¼ p=4 the vortex passes over the corners of the cubed-sphere. Again we show conver-
gence plots (Fig. 19), difference plots (Fig. 20) and the time evolution of the error measures (Fig. 21). We find better than
second-order convergence for CSLAM-N (2.51, 2.59 and 2.53, respectively) and a degradation in accuracy when applying
the monotone filter (Fig. 19). To compare with [38] and investigate the impact of the monotone filter on accuracy we
show difference plots (Fig. 20) and time evolution of error measures (Fig. 19) at resolution Nc ¼ 80. Errors are
mainly associated with the sub-grid-cell reconstructions and the edges/corners of the cubed-sphere are not visible in
the plots.
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Fig. 18. Normalized error norms (a) l1, (b) l2 and (c) l1 as a function of resolution for the static vortices test case at day 6 (completed in 144 time-steps of
3600 s each) and (d) the exact solution at day 6. The vortices are situated near two edges of the cubed-sphere (offset by approximately 2
), that is, the origin
of the rotated coordinate is located at ðk0; h0Þ ¼ ðp� 0:8;p=4:8Þ. These settings are identical to those used in [38]. The solid line with filled circles along it on
plot (a–c) is the error norm for the unlimited scheme whereas the dashed line with unfilled triangles is for the monotone version of the scheme. The solid
line below the other curves is a reference line with slope corresponding to the average convergence rate of the unlimited scheme which is (a) 2.04, (b) 2.07
and (c) 2.08, respectively.
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5. Summary and conclusions

In this paper we have developed a conservative semi-Lagrangian finite-volume multi-tracer transport scheme on the
cubed-sphere grid. It is based on semi-Lagrangian upstream tracking of grid cells; more precisely, we compute upstream tra-
jectories for cell vertices and the upstream Lagrangian cells are defined by connecting the vertex points with great-circle
arcs. Having defined the upstream Lagrangian cells the transport problem is effectively reduced to a remapping problem,
that is, to compute the mass enclosed in the deformed Lagrangian cells given the cell average values in the regular Eulerian
cells. The remapping problem is solved by converting the area-integrals into line-integrals through the application of Gauss–
Green’s theorem. Line-integrals along grid lines are computed exactly while integrals along arbitrary lines are computed
using Gaussian quadrature. Two quadrature points were found to be sufficient when using biquadratic polynomial recon-
struction functions.

The fully two-dimensional nature of this scheme permits a rigorous treatment of the cubed-sphere edges and corners. An
upstream cell located over an edge of the cubed-sphere is partitioned into parts overlapping just one face of the cube and
mass enclosed in these sub-cells are computed separately on each panel.

The new scheme has been extensively tested in both Cartesian and spherical geometry using standard test cases. It has
been demonstrated that the scheme allows for long time-steps and is competitive with other published schemes in terms of
standard error norms. For example, CSLAM was found to be competitive with the recently developed cubed-sphere transport
scheme presented in [38]. The importance of the cross term in the third-order reconstruction polynomials was also inves-
tigated. Even for solid-body advection on the sphere, where the Lagrangian cells are simply translated (and not deformed
or rotated), the CSLAM scheme error measures could be improved by up to approximately 30% when including the cross term
in the reconstruction function. The convergence rates for the scheme was shown to be better than second order with respect
to all error norms and test cases. A monotone option is also available for the CSLAM scheme, and a flux-form version of
CSLAM and improved limiters will be presented in a forthcoming paper.

For one tracer, the computational cost per degree of freedom is higher for CSLAM than for the schemes based on a regular
latitude–longitude grid discussed herein due to the geometric complexity of CSLAM (computation of weights). However, the
weights can be reused for each additional tracer and hence it is expected that for a certain number of tracers CSLAM will
become computationally competitive. The virtue of CSLAM is its flexibility and generality at affordable cost (given the num-
ber of prognostic variables to be transported is large enough) rather than efficiency per degree of freedom.
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Fig. 19. Same as Fig. 18 but for the moving vortices test case. Settings are as in [38] and the traditional semi-Lagrangian tests in [37], that is, Dt ¼ 1800 s and
Dt ¼ 3600 s (one revolution completed in 576 and 288 time-steps), respectively, and u ¼ p=4. (d) shows the analytical solution after a quarter revolution.
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(d)

(b)(a)

(c)

Fig. 20. (a) and (b) show the CSLAM-N and CSLAM-M solutions for the moving vortices test case after one revolution, respectively, with settings as in [38]
(u ¼ p=4, equatorial resolution 1.125� ðNc ¼ 80Þ, Dt ¼ 1800 s and 576 time-steps for one revolution). (c) and (d) are as (a) and (b) but for the difference
between the numerical and exact solutions.
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Fig. 21. Time evolution of the normalized error norms (l1; l2, l1 are solid, dashed and dotted lines, respectively) for the moving vortices test case with
Nc ¼ 80 (a) unlimited scheme (CSLAM-N) and (b) scheme with a monotone limiter (CSLAM-M). All settings are as in Fig. 20 and [38] (see their Fig. 12).
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