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Abstract

Advective processes are of central importance in many applications and their treatment is crucial in the numerical modelling of
the transport of trace constituents in atmospheric models. High-order numerical methods offer the promise of accurately capturing
these advective processes in atmospheric flows and have been shown to efficiently scale to large numbers of processors. In this pa-
per, a conservative transport scheme based on the nodal high-order spectral finite volume method is developed for the cubed-sphere.
A third-order explicit strong stability preserving scheme is employed for the time integration. The reconstruction procedure which
we developed avoids the (expensive) calculation of the inverse of the reconstruction matrix. Flux-corrected transport algorithm is
implemented to enforce monotonicity in the two-dimensional transport scheme. Two standard advection tests, a solid-body rotation
and a deformational flow, were performed to evaluate the spectral finite volume method optionally combined with a flux-corrected
transport scheme. Spectral accuracy in space is demonstrated with a linear wave equation.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Advection plays a fundamental role in atmospheric dynamics. In many atmospheric transport problems, a crucial
step is the accurate calculation of the advective transport of atmospheric constituents over the globe. To address this
goal, computational and atmospheric scientists have been attracted to devising numerical schemes which possess
the following properties: (i) monotonicity, that is, the scheme should neither produce new maxima nor new minima,
(ii) small numerical diffusion, (iii) mass conservation, (iv) high accuracy and (v) reasonable computational cost.

Global spectral transform methods have dominated for the past two decades in weather and climate simulation [8].
In addition to high accuracy, spherical harmonics spectral methods can provide a completely isotropic representation
of a scalar function on the sphere. However, global methods based upon spherical harmonic basis functions require
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expensive non-local communication operations and thus have difficulty in exploiting the full potential of current high-
performance parallel computers.

In recent years, research has focused on local methods that are more suitable for distributed memory parallel com-
puters [4,3]. The need for a scheme, satisfying the above properties, led to an increase in the popularity of high-order
methods, especially the spectral element (SE) method [17]. Spectral elements combine the accuracy of conventional
spectral methods and the geometric flexibility of finite element methods. The SE method is not in general based on
conservation laws [4] and therefore, it is not exactly conservative (exact in the sense of machine precision). Also, it is
not trivial to incorporate monotonic limiters in SE method. For climate and atmospheric chemistry applications, the
exact conservation of integral invariants such as mass and energy is crucial. The atmospheric models which are built
on non-conservative forms, shown to have loss of mass over a period of time [11]. It is desirable to have a climate
model based on inherently conservative numerical methods.

Cockburn et al. developed a high-order conservation algorithm, called the discontinuous Galerkin (DG) method for
the nonlinear systems of conservation law (see [2] and the references therein). Recently, Nair et al. [13] proposed a
conservative transport scheme on a cubed-sphere using the DG method and extended for the shallow water model [14].
The DG method requires a slope limiter if the solution has strong discontinuities. Unfortunately, there are no known
efficient limiters for multidimensional DG methods of polynomial order greater than 4. As the order of the polynomial
increases (i.e., as the number of nodal points increases), the ability of the conventional slope limiter to control spurious
oscillation diminishes (see [7]). The lack of an efficient limiter restricts the application of high-order DG method to
atmospheric flow.

Recently, Wang [19], and Wang and Liu [20,21] developed a conservative high-order spectral finite volume (SFV)
method for the solution of two-dimensional systems of conservation laws. SFV method is based on classical finite vol-
ume scheme and applied to each cell (control volume) appearing in a spectral element. However, the reconstruction
process is based on a high-order method. The main attraction of a finite volume approach is its ease to incorporate tra-
ditional multidimensional limiters, with which to impose monotonicity. They considered triangles for two-dimensional
elements and further subdivided them into polygonal control volume cells to support high-order data reconstructions.
Several types of limiters were adapted for the non-oscillatory capturing of discontinuities.

Recently, Choi et al. [1] proposed a SFV method for the numerical solution of the shallow water equations. They
considered quadrilateral elements and further subdivided them into quadrilateral cells. A flux-corrected transport
(FCT) scheme is incorporated to enforce monotonicity near strong discontinuities or under-resolved gradients. The
reconstruction procedure in Choi et al. [1] is based on a matrix inversion. This matrix is generated from the local
spectral element and may be ill-conditioned. In general application, inversion of such a matrix is not efficient.

In this paper, we developed a SFV scheme for transport equation. Our SFV scheme employs rectangular elements
with high-order nodal discretization based on Gauss–Lobatto–Legendre points [9]. We used a third-order explicit
strong stability preserving time integration scheme. The reconstruction procedure which we developed avoids the
(expensive) calculation of the inverse of a matrix used by Choi et al. [1].

This paper is organized as follows. In Section 2, we briefly describe the transport equation in 2D and present the
formulation and spatial discretization of the SFV method for rectangular elements. The FCT algorithm is reviewed
in SFV context for a two-dimensional case-study. In Section 2, we also discuss our reconstruction algorithm. In
Section 3, we assess the accuracy of the SFV method for a simple problem where an analytic solution is available.
In this section, we show the results for the numerical implementations of the SFV method with and without an FCT
limiter for two-dimensional conservation laws. In Section 4, we used this method to solve the transport equation on a
cubed-sphere geometry. Finally conclusions and further investigations are summarized in Section 5.

2. The SFV method in two dimensions

Consider the two-dimensional scalar conservation law

∂U

∂t
+ ∇ · F(U) = 0, in D × (0, T ), ∀(x, y) ∈D, (1)

where U = U(x,y, t), ∇ ≡ (∂/∂x, ∂/∂y) is the two-dimensional gradient operator, and F = (F,G) is the flux func-
tion. The initial condition for the problem is U0(x, y) = U(x,y, t = 0) and the rectangular domain D is assumed to
be periodic in both x and y directions.
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2.1. SFV formulation

The SFV formulation is based on the classical finite volume method. The domain D is partitioned into non-
overlapping spectral volumes (SVs). Let Ω be any SV in D which is further partitioned into non-overlapping control
volumes (CVs) such that Ω = ⋃

ΩCV. Without loss of generality, we consider a spectral volume Ω for further dis-
cussion.

We spatially integrate equation (1) over the given control volume ΩCV and apply Gauss’ theorem to give the
integral form of the equations∫

ΩCV

∂U

∂t
dA +

∫
ΓCV

(F · n)dΓ = 0, (2)

where n is the outward unit normal to the boundary ΓCV of ΩCV and A is the area of the control volume bounded by
ΓCV. The surface integral represents the rate of change of the amount of U in ΩCV, while the line integral is the total
flux of U through ΓCV.

Let ŪCV be the CV-averaged solution which is defined to be

ŪCV = 1

ACV

∫
ΩCV

U dΩ, (3)

where ACV is the area of ΩCV. The finite volume form of the transport equation (1) for ΩCV can now be written as:

dŪCV

dt
= − 1

ACV

Nf∑
r=1

∫
Γr

(F · n)dΓ, (4)

where Nf represents the number of faces in ΩCV and Γr represents the r th face.
The preceding formulation is exact. Numerical approximation arises from evaluating the boundary integral and in

time-stepping the cell averages in each CV that encompasses the domain D.
Wang [19] discussed the stability conditions for the SFV method and compared them with that of the DG method.

He showed that the CFL restriction of a second order SFV method (CFL � 1/2) is superior to the CFL restriction of
a second order DG method (CFL � 1/3). His numerical results suggest that the third order SFV method is stable for
CFL � 1/3 versus the condition of CFL � 1/5 in the third order DG scheme. Zhang and Shu [24] compared SFV
and DG methods by first writing them in the same finite difference format over a globally uniform mesh, and then
performing a Fourier type analysis for their stability, accuracy and convergence. Their conclusion is that both methods
are same order accurate and stable.

2.2. Spatial discretization for rectangular elements

Let the given domain D be partitioned into Nx × Ny non-overlapping rectangular elements,

Dpq = {
(x, y) | x ∈ [xp−1/2, xp+1/2], y ∈ [yq−1/2, yq+1/2]

}
,

for p = 1,2, . . . ,Nx , q = 1,2, . . . ,Ny such that D = ⋃
Dpq . Each element Dpq is a SV. The extent of each SV is

determined by �xp = (xp+1/2 − xp−1/2) and �yq = (yq+1/2 − yq−1/2) in the x and y directions, respectively. To
describe the discretization, we consider a spectral volume Ω in D. In order to take advantage of the properties of
spectral methods, we have chosen our interpolation points to be Gauss–Lobatto–Legendre (GLL) points. A SV is
further subdivided into k × k non-overlapping CVs by using a set of (k + 1) × (k + 1) GLL points. This local grid
system permits the use of high-order polynomials to interpolate and reconstruct the solution in Ω . Fig. 1(a) shows a
SV that is partitioned into 4 × 4 CVs using 5 × 5 GLL nodes.

An approximate solution UΩ in any spectral volume Ω is represented as

UΩ(ξ, η) ≈
k∑ k∑

Ulmhl(ξ)hm(η) for − 1 � ξ, η � 1, (5)

l=0 m=0
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Fig. 1. Schematic of a SV with 4 × 4 CVs. (a) A SV with 5 GLL nodes (filled squares) in each direction (b) a CV with 3 Gauss points (crosses)
which are used for flux evaluations.

where Ulm are the function values at the GLL points on Ω . The nodal basis set is constructed using a tensor-product of
Lagrange–Legendre polynomials with roots at Gauss–Lobatto quadrature points [9]. The Gauss–Lobatto Lagrangian
interpolation polynomial is given by

h�(ξ) = (ξ2 − 1)L′
k(ξ)

k(k + 1)Lk(ξ�)(ξ − ξ�)
(6)

where Lk(ξ) denotes the Legendre polynomial of degree k, L′
k is its derivative and ξ� refer to the (k + 1) Gauss–

Lobatto roots which are the solution of(
1 − ξ2

�

)
L′

k(ξ�) = 0; � = 0, . . . , k. (7)

Let Ωlm denote the (l,m)th CV in Ω , defined by the interval [ξl−1, ξl] × [ηm−1, ηm]. In order to evaluate the flux
integrals along the CV boundaries in Eq. (4), we employ a Gauss quadrature rule. The quadrature points are interpo-
lated from the GLL grid line using the interpolant (6). Fig. 1(b) shows a CV with cell edges being GLL nodes and
3 Gauss–Legendre nodes are used for the evaluation of the boundary integral on each side of a CV. The solid circles
shown at the center of each cell in Fig. 1(a) and 1(b) indicate the cell average.

2.3. High-order reconstruction for SFV

Reconstruction is the process of finding the cell-edge values from the given cell-centered averages. This is usually
performed by an interpolation operation with conservation constraints. For the SFV method, the reconstruction process
should ideally be high-order and computationally efficient. In Choi [1], the reconstruction process involves matrix
inversion, however such matrices need to be non-singular. Also if the matrix is not diagonally dominant then the
matrix inversion may be computationally inefficient.

We introduce a reconstruction process which avoids such matrix inversion. Here we describe the reconstruction
for the SFV method based on an accumulated mass approach and designed for a GLL grid system. Consider a one-
dimensional grid with GLL points ξ� ∈ [−1,1], � = 0,1, . . . , k. The accumulated mass on this grid is defined by

M(ξ) =
ξ∫

−1

ρ(ξ)dξ, (8)

where ρ(ξ) is the density distribution function with average density for each GLL grid cell �ξ� = ξ� − ξ�−1,

ρ̄� = 1

�ξ�

ξ�∫
ρ(ξ)dξ, � = 1,2, . . . , k. (9)
ξ�−1
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Then the accumulated mass (8) at each GLL grid point is given by

M� = M(ξ�) =
ξ�∫

−1

ρ(ξ)dξ =
�∑

ν=1

ξν∫
ξν−1

ρ(ξ)dξ =
�∑

ν=1

ρν�ξν, � = 1,2, . . . , k. (10)

From (8) it is clear that M(ξ = −1) = M0 ≡ 0. Now the values M�, � = 0,1, . . . , k, uniquely define the accumulated
mass at the GLL points. However, M(ξ) can be defined in terms of the basis functions h�(ξ) as follows,

M(ξ) =
k∑

�=0

M�h�(ξ). (11)

Eq. (8) implies that the density ρ(ξ) at the cell edge is the derivative of the mass function M(ξ). Thus,

ρ(ξ) = M ′(ξ) =
k∑

�=0

M�h
′
�(ξ) (12)

provides the edge values ρ� = ρ(ξ�) by collocation differentiation, where the derivative h′
� can be pre-computed [9].

The above reconstruction procedure can be extended to the 2D GLL grid (Fig. 1(a)) by a tensor-product of 1D
operations. There are two stages. In the first stage, the accumulated masses Ml,m are estimated along the ξ -direction
using (10) at the CV boundaries. Then a differentiation operation (12) is applied to determine the intermediate edge
values ρ∗

l,m. In the second stage, the intermediate values ρ∗
l,m are used as known cell-averages and the accumulated

mass M∗
l,m in the η-direction are computed. Finally, the edge values at the GLL grid points ρl,m are determined by

employing (12) with M∗
l,m as the accumulated masses. Thus, 2(k − 1) one-dimensional operations are required for the

2D reconstruction.

2.4. Flux evaluation

Following Wang’s formulation for flux evaluation [19], we need to evaluate the fluxes at each of the CV boundaries.
For a given SV Ω , since the solution is continuous across the interior CV boundaries, analytic fluxes are used for the
flux integral in Eq. (4). However, along the CV boundaries coinciding with the SV edges, the flux values are not
uniquely defined. To address this, the analytic flux is replaced by a numerical flux by solving a Riemann problem.
The numerical flux resolves the discontinuity at the SV boundaries and this is the only way by which adjacent spectral
volumes communicate. A variety of flux formulae are available [18]; we employ a local Lax–Friedrichs flux formula

F̂
(
UL,UR

) = 1

2

[
F

(
UL

) + F
(
UR

) − ᾱ
(
UR − UL

)]
(13)

where UL, UR are the left and right states of solution at the interface and ᾱ is the local upper bound on |F ′(U)|. The
choice of Lax–Friedrichs flux is made because of its simplicity and computational efficiency. However, this particular
choice is not critical [19].

2.5. Time integration

There are a number of time integrators available to solve the ordinary differential equation in Eq. (4). We use a
strong stability preserving (SSP) third-order Runge–Kutta time discretization [6]. SSP time integration schemes do
not generate new local maxima or minima due to time discretization. Due to this property, these schemes are popularly
used in DG literature [2]. This motivated us to consider SSP third-order Runge–Kutta time integration scheme for SFV
method. For a given ordinary differential equation,

d

dt
U = L(U) in (0, T ),

the third-order SSP scheme is given by
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Ū (1) = [
Ūn + �tL

(
Ūn

)]
,

Ū (2) = 3

4
Ūn + 1

4

[
Ū (1) + �tL

(
Ū (1)

)]
,

Ūn+1 = 1

3
Ūn + 2

3

[
Ū (2) + �tL

(
Ū (2)

)]
, (14)

where the superscripts n and n + 1 denote time levels t and t + �t , respectively.

2.6. Flux-corrected transport algorithm

High-order schemes generally produce Gibbs oscillations in regions of unresolved gradients or strong discontinu-
ities in the solution. A FCT algorithm is incorporated to enforce monotonicity near strong discontinuities.

Zalesak [23] generalized the concept and implementation of Boris and Book’s FCT algorithm to multi-dimensions.
FCT was proposed as a way of approximating a conservation law with a high-order scheme in regions where the
solution is smooth while using a low-order monotone scheme where the solution is poorly resolved or discontinuous.
We have adopted and suitably modified this scheme to accommodate the SFV scheme for transport model. We now
give the details of the SFV-FCT algorithm and present two numerical experiments involving a discontinuity.

The FCT algorithm requires the calculation of two sets of fluxes, namely low-order fluxes that yield a monotonic
but diffused solution, and high-order fluxes for correcting the low-order truncation errors only where the solution is
smooth. We have used the Godunov scheme [18] to calculate the low-order solution and the SFV method to calculate
the high-order fluxes. The main steps in the SFV-FCT algorithm for the transport model are:

(1) Compute the cell averages (Ū)n for the initial condition.
(2) Compute the monotonic upwind fluxes corresponding to the Godunov scheme which are denoted by F l

i+1/2,j and

Gl
i,j+1/2 in the x and y directions respectively.

(3) Advance the cell averages in time using the low-order fluxes to obtain the diffusive solution

Ūd = Ūn − �t
(
F l

i+1/2,j − F l
i−1/2,j + Gl

i,j+1/2 − Gl
i,j−1/2

)
.

(4) Compute the high-order fluxes corresponding to the SFV scheme which are denoted by Fh
i+1/2,j and Gh

i,j+1/2
in the x and y directions respectively. These high-order fluxes are computed using a quadrature rule as given in
Section 2.2.

(5) Compute the anti-diffusive fluxes (i.e., Ai+1/2,j = Fh
i+1/2,j − F l

i+1/2,j and Ai,j+1/2 = Gh
i,j+1/2 − Gl

i,j+1/2) and
limit them so that the final “anti-diffusion” step does not generate new maxima or minima. Hence,

Ac
i+1/2,j = Ci+1/2,jAi+1/2,j , 0 � Ci+1/2,j � 1,

Ac
i,j+1/2 = Ci,j+1/2Ai,j+1/2, 0 � Ci,j+1/2 � 1.

The determination of the limiting factors Ci+1/2,j and Ci,j+1/2 is described in detail by Zalesak [23].
(6) Perform the anti-diffusion step i.e., advance the cell averages based on the limited anti-diffusive fluxes

Ūn+1 = Ū d − �t
(
Ac

i+1/2,j − Ac
i−1/2,j + Ac

i,j+1/2 − Ac
i,j−1/2

)
.

The time-integrator scheme in steps (3) and (6) is the Euler forward scheme. We can see that the SSP-RK3 scheme
(Eq. (14)) is a combination of three Euler forward schemes with positive weighting factors. The FCT scheme is applied
in (14) in a sequential manner. Hence, the above algorithm can be extended to the SSP-RK3 scheme in Eq. (14) by
repeating steps (2) to (6) for all three Euler schemes. Note that limiting in (14) is only applied to L(Ūk), k = n,1,2.
This avoids the redundant limiting of the already limited solution.

3. Numerical experiments

We first illustrate, by a numerical example, the spectral accuracy of the proposed SFV scheme for a smooth problem
to verify correctness of the SFV scheme. We consider a test problem that is amenable to analytic solution, and the
errors depend on the number of elements and on the order of interpolation.
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Fig. 2. Demonstration of spectral accuracy with linear wave equation (a) fixed element partition: N number of elements with varying order of
accuracy (b) fixed order of accuracy: k number of cells with varying number of elements.

3.1. Accuracy study

We consider the one-dimensional linear wave equation with constant velocity 1,

∂φ

∂t
+ ∂φ

∂x
= 0, −1 � x � 1 (15)

with initial condition φ(x,0) = sin(πx), for testing the spectral convergence. Third-order SSP time-integration
scheme was used for all the computations presented here and we made �t = 0.0001 small enough so that the errors
plotted in Fig. 2 are time-step independent. To demonstrate the spectral accuracy of the SFV scheme, we considered
both p-refinement (see Fig. 2(a)) and h-refinement (see Fig. 2(b)). In both Fig. 2(a) and Fig. 2(b), we compared the
numerical solution with the exact solution at t = 1. In Fig. 2(a), we fixed the number of SVs N , while the order of
accuracy is increased in the SVs from 2, . . . ,9 (p-refinement). This figure shows the L∞ errors versus the order of
accuracy for a fixed number of elements N . In Fig. 2(b) we fixed the order of accuracy k (number of control volumes
in each SV), while we increased the number of spectral volumes (h-refinement). In this figure, for a fixed order of
accuracy, we considered elements of various sizes and plotted them against the L1 errors. In both Figs. 2(a) and 2(b),
it is clear that the SFV scheme attains spectral accuracy.

3.2. Numerical tests

We consider two standard advection tests, namely rotational and deformational flow problems in two-dimensions,

∂φ

∂t
+ ∂(φu)

∂x
+ ∂(φv)

∂y
= 0, in [−π,π]2, (16)

where φ is the advecting field in the given periodic domain with the velocity (u, v) and ω is the angular velocity.

3.2.1. Rotational flow
We consider solid-body rotation of Gaussian hill and a non-smooth function with the velocity (u, v) = (−ωy,ωx).

(a) Solid-body rotation of Gaussian hill.

We first consider the solid-body rotation of Gaussian hill (smooth function) to test the SFV scheme. The Gaussian-
hill function at time t = 0, positioned at [−π/2,0], is defined as

φ(x, y,0) = a0 exp
(−r2), r2 = (x + π/2)2 + y2, a0 ∈ R. (17)
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Fig. 3. Contour lines of the Gaussian Hill at the end of a single rotation using the SFV method. The simulation show the results for a 15 × 15
elemental partition of the domain and 5 GLL points (4 × 4 cells in each element).

Fig. 4. Contour lines of the solid-body rotation of the function given in Eq. (18) after 1/4th of the rotation. Left panel shows the solution using the
SFV scheme and the right panel shows the solution using the SFV-FCT scheme.

Fig. 3 shows the result of solid-body rotation of the Gaussian hill defined in Eq. (17) with �t = 0.0025. Here, the
solution is shown as a contour plot after one rotation with the SFV method. As observed by Iskandarani et al. [7], we
found that the SFV solution is more noisy than that of the DG solution.

(b) Solid-body rotation of a non-smooth function.

We use the solid-body rotation test given in Leveque [10], to test the high-order SFV scheme. This test consists of
a quasi-continuous data and provides an excellent test for the monotonicity of the advecting field. The initial data is
defined as φ = 0 except in a square region where φ = 1 and a circular region where φ is cone-shaped, growing to a
value 1 at the center:

φ(x, y,0) =
⎧⎨
⎩

1 if 0.1 < x < 0.6 and −0.25 < y < 0.25,

1 − r
0.35 if r ≡ √

(x + 0.4)2 + y2 < 0.35,

0 otherwise.

(18)

Fig. 4 shows the result of quarter of the solid-body rotation of the function defined in Eq. (18). Here, the solution is
shown as a contour plot after one quarter of the rotation for both the SFV and the SFV-FCT schemes. Without the
FCT scheme, spurious oscillations generate and the solution blows up before making a complete revolution.
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Fig. 5. The solution at time t = 3. Left panel shows the exact solution and the right panel shows the computed solution.

3.2.2. Deformational flow
We consider a well-known test in meteorology, where an idealized cyclogenesis [5] is used as a deforming field.

Here, the flow field is highly deformational and more challenging than solid-body rotation. The initial discontinuous
distribution is given by tanh(

y
δ
), where δ expresses the characteristic width of the front zone. For this initial distri-

bution, the exact solution represents the rotation of a discontinuous rolling surface. The analytic solution at time t

is

φ(x, y, t) = − tanh

{
y − yc

δ
cos(ωt) − x − xc

δ
sin(ωt)

}
, (19)

where the angular velocity is ω = vT /r and the tangential velocity is vT (r) = v0 sech2(r) tanh(r), with r being the
radial length of the vortex and (xc, yc) being the center of the vortex (see [12] for detailed definition of the parameters).
The value of the parameter δ is set to 0.05, which corresponds to ‘non-smooth cyclogenesis’. We employed the SSP
high-order accurate SFV-RK3 method with the FCT limiter to control spurious oscillations. The left panel in Fig. 5
shows the exact solution at time t = 3 and the right panel shows the numerical solution obtained using the Runge–
Kutta SFV method with the FCT limiter at time t = 3.

4. Application of the SFV scheme on the cubed-sphere

4.1. Cubed-sphere geometry

Conventional latitude-longitude grid systems introduce singularities at the poles of the sphere. To avoid this “pole
problem”, atmospheric modelers are adopting new grid system such as cubed-sphere geometry [15]. Here a sphere
is decomposed into six identical regions, obtained by a central projection of the faces of the inscribed cube onto the
spherical surface. Each of the six local coordinate systems is free of singularities and employs the identical metric
terms, thus creating a non-orthogonal curvilinear coordinate system on the sphere. Here we consider the equi-angular
central projection with central angles x1 = x1(λ, θ), x2 = x2(λ, θ) such that x1, x2 ∈ [−π/4,π/4] for each of the six
faces, where λ and θ are the longitude and latitude coordinates, respectively.

Fig. 6 illustrates schematically the orientation of the different cube faces and their local connectivity. Lateral faces
are identified by Fn, n = 1, . . . ,4, whereas the top and bottom faces are F5 and F6 respectively. The transformation
laws on the six faces of the cubed-sphere are given in [13].

Let a1 and a2 be the covariant base vectors of the transformation and v(λ, θ) = (u, v) be the spherical velocity
vector. Then the components of the covariant vectors are given by, u1 = v · a1, u2 = v · a2, and the corresponding
contravariant vectors are related through v = u1a1 + u2a2. To transform the spherical velocity (u, v) to the cubed-
sphere velocity vectors, we use the following relation

A

[
u1

u2

]
=

[
u

v

]
, A−1

[
u

v

]
=

[
u1

u2

]
(20)
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Fig. 6. Schematic illustration of the relative positions of six cube faces and their local connectivity.

where A and A−1 are interpreted as the “cube-to-sphere” and the “sphere-to-cube” transformation matrices. The
metric tensor of the transformation is defined by

gij = ATA; A =
[

R cos θ∂λ/∂x1 R cos θ∂λ/∂x2

R∂θ/∂x1 R∂θ/∂x2

]
(21)

and g = det(gij ), R is the radius of the sphere.
For the SFV formulation, each face of the cubed-sphere is partitioned into Ne × Ne rectangular non-overlapping

spectral volumes. Each spectral volume is mapped onto the reference element [−1,1] × [−1,1], which is further
divided into k × k control volumes. Hence, the total number of SVs on the cubed-sphere is 6 × N2

e and the number of
CVs is 6 × N2

e × k2.

4.2. Conservative transport on cubed-sphere

The continuity equation in flux form, on the sphere, is given by

∂φ

∂t
+ div(φv) = 0 (22)

where φ is the advecting field and v = v(λ, θ) is the horizontal wind vector. Here, Eq. (22) is a particular case of the
general form (1). In curvilinear coordinates, Eq. (22) can be written as [16]

∂

∂t
(
√

gφ) + ∂

∂x1

(√
gu1φ

) + ∂

∂x2

(√
gu2φ

) = 0 (23)

where (x1, x2) are considered to be contravariant independent variables. Although the velocity field v = (u, v) is given
on the surface of the sphere, the contravariant components of the velocity field are needed in (23).

4.3. Numerical experiments

We now perform one of the standard advection tests, known as solid-body rotation, to evaluate the SFV scheme on
the cubed-sphere.

(a) Solid-body rotation of a cosine bell.

Williamson et al. [22] proposed standard test cases to evaluate and compare numerical schemes intended for global
atmospheric models. They proposed the “cosine bell” problem to test the global advection schemes in spherical geom-
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Fig. 7. Results on an orthographic projection for solid-body rotation of a cosine bell given in Eq. (24) along the northeast direction. Left panel
shows the cosine bell at the initial position. Right panel shows the cosine bell when it reaches a corner point of the cubed-sphere after 1/8th of the
rotation.

etry. We have used the same test for the cubed-sphere geometry where the domain has eight weak singularities (vertices
of the cube) and six sub-domains. The initial scalar field is defined as follows:

φ(λ, θ) =
{

h0
2 [1 + cos(πrd

r0
)] if rd < r0,

0 if rd � r0
(24)

where rd is the great-circle distance between (λ, θ) and the bell center. The bell of radius r0 = R/3 is initially centered
at (3π/2,0), corresponding to the central point of F4 on the cube. The maximum height of the cosine bell is h0 =
1000 m and the radius of the earth is R = 6.37122 × 106 m. The velocity components of the advecting wind field are

u = u0(cosα0 cos θ + sinα0 cosλ sin θ),

v = −u0 sinα0 sinλ

where u0 = 2πR/(12 days) and α0 is the angle between the axis of solid-body rotation and the polar axis of the
spherical coordinate system (Williamson et al. [22]). When the value of α0 is equal to zero (π/2), the flow direction is
along the equator (the north-south direction). For the cubed-sphere, the flow along the northeast direction (α0 = π/4)
is more challenging, because the cosine-bell pattern passes over four vertices and two edges of the cube to complete
a revolution. The left panel in Fig. 7 shows the cosine bell at the initial position. The right panel in Fig. 7 displays
the numerical solution centered at the first vertex away from the initial position. The cosine bell smoothly crosses
over the corner point and does not exhibit any shocks or discontinuities while passing over cube-face edges. In this
experiment, the number of spectral volumes Ne = 8, the number of control volumes k = 4 and two Gauss quadrature
points are used for the evaluation of the flux integral.

5. Summary and conclusions

Advective processes are of central importance in a wide variety of applications and their treatment is crucial in
the numerical modelling of the transport of trace constituents in atmospheric models. In spite of the simplicity of the
equations expressing the transport, solving the equations poses a formidable task, because we insist that the numerical
solutions are high-order accurate and also satisfy a number of constraints. For instance, conservation of mass and
energy is crucial for climate and atmospheric chemistry applications. Further, these applications require solutions
preserving positivity and monotonicity.

In this paper, we have developed a nodal high-order spectral finite volume advective transport model on the cubed-
sphere. A third-order explicit SSP scheme was employed for the time integration. We have proposed a reconstruction
procedure which avoids the (expensive) calculation of the inverse of the reconstruction matrix. We have also im-
plemented Zalesak’s flux-corrected transport algorithm, to enforce monotonicity, in two-dimensional framework. Two
standard advection tests, solid-body rotation and deformational flow, were performed to evaluate the SFV-FCT scheme
in two dimensions. Spectral accuracy is demonstrated with a linear wave equation.

A flux form shallow water model on the cubed sphere based on the SFV method is under development. We plan to
report these results in the near future.
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