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ABSTRACT

A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water

model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements

relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion

terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized dis-

cretization without considering the interelement contributions and 2) the discretization based on the local

discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved

as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated

into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-

water test cases. The approach of element-wise localized discretization of the diffusion term is easy to im-

plement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the

solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of

convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-

scale noise, and the simulated results are smooth and comparable to the reference solution.

1. Introduction

Diffusion and dissipation mechanisms play an im-

portant role in atmospheric modeling. In a discrete cli-

mate model, momentum diffusion transfers energy from

the resolved scales into the unresolved scales. Hori-

zontal diffusion parameterizes the energy transfer from

wave disturbances into the unresolved scales, preventing

spurious accumulation of energy and enstrophy at the

model grid scale. The importance of diffusivity in at-

mospheric modeling was recognized in the early model

development, which paved the way for pioneering re-

search in this field (e.g., Smagorinsky 1963; Leith 1971).

A theoretical account of the diffusion mechanisms in

geophysical fluid dynamics is provided in textbooks by

Pedlosky (1987) and Durran (1999).

The design of the diffusion scheme is primarily based

on the model’s spatial discretization. There are various

approaches to invoke diffusivity in atmospheric models,

out of which the second-order explicit diffusion (=2)

seems to be the most common. High-order hyperdiffusion

or hyperviscosity (=2n, n 5 2, 3, . . .) is employed in

spectral transform–based models. For example, the cli-

mate model developed (Collins et al. 2004) at the Na-

tional Center for Atmospheric Research (NCAR) relies

on hyperdiffusion. Burkhardt and Becker (2006) discuss

the lack of angular momentum conservation with hy-

perdiffusion and the development of consistent =2 dif-

fusion, which addresses conservation issues. Gelb and

Gleeson (2001) developed a spectral viscosity method

as an alternative for the horizontal diffusion in a global

shallow-water model. Recently, Taylor et al. (2007)

successfully implemented hyperdiffusion (=4) in a spec-

tral element–based dynamical core [this is an integral

part of the High-Order Method Modeling Framework

(HOMME) developed at the NCAR].

In this paper we focus on the implementation of

second-order diffusion in the discontinuous Galerkin

(DG) shallow-water model developed by Nair et al.

(2005a, hereinafter NTL05a) on the cubed sphere. The

DG method is gaining prominence in both hydrostatic
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(HOMME-DG dynamical core; Nair and Tufo 2007; Nair

et al. 2009) and nonhydrostatic (Giraldo and Restelli

2008) atmospheric modeling, primarily due to the in-

herent conservation properties and parallel scalability

(efficiency) of DG algorithms (Cockburn and Shu 2001).

In a seminal work Bassi and Rebay (1997, hereinafter

BR97) introduced explicit diffusion (viscous flux) in the

DG discretization for solving compressible Navier–

Stokes equations. Cockburn and Shu (1998) laid a rig-

orous mathematical background to this approach and

generalized it to the so-called local DG (LDG) method.

The LDG method is not limited to the advection–diffusion

problem (Dawson and Aizinger 2002); rather it is appli-

cable to a class of elliptic problems (Arnold et al. 2002).

Here we only focus on the diffusion problem closely fol-

lowing BR97 and treating it as a special case of LDG. The

nonorthogonal curvilinear coordinates associated with the

cubed-sphere geometry make the LDG implementation

for the shallow-water model more challenging as we will

discuss in this paper.

In section 2, we briefly review the shallow-water model

and introduce basic notations. The DG discretization of

the viscous shallow-water model based on LDG approach

and its implementation on the cubed sphere are discussed in

section 3, followed by numerical experiments in section 4.

Section 5 provides the summary and conclusions.

2. The shallow-water model on the cubed sphere

The physical domain is a sphere S, representing the

planet Earth, based on the cubed-sphere topology origi-

nally introduced by Sadourny (1972). Here we consider

the cubed-sphere geometry employing the equiangular

central projection as described in Nair et al. (2005b).

The cubed-sphere geometry consists of partitioning S
into six identical regions that are obtained by the central

projection of the faces of the inscribed cube onto the

surface of S. Each of the local coordinate systems is free

of singularities, employs identical metric terms, and

creates a nonorthogonal curvilinear coordinate system

on S. However, the edges of the faces are discontinuous.

The local coordinates (or central angles of the projec-

tion) for each face are x1 5 x1(l, u), x2 5 x2(l, u) such

that x1, x2 2 [2p/4, p/4], where l and u are the longitude

and latitude, respectively, of a sphere with radius R. The

metric tensor Gij associated with the transformation is

G
ij

5
R2

r4 cos2x1 cos2x2

1 1 tan2x1 �tanx1 tanx2

�tanx1 tanx2 1 1 tan2x2

� �
,

where i, j 2 {1, 2} and r2 5 1 1 tan2x1 1 tan2x2. The

Jacobian of the transformation (the metric term) isffiffiffiffiffi
G
p

5 [det(Gij)]1/2.

The flux form shallow-water (SW) model developed

on the cubed sphere by NTL05a relies on nonorthogonal

curvilinear coordinates. In the present work we extend

this model to a viscous SW model. The SW equations are

treated in tensorial form with covariant (ui) and con-

travariant (ui) wind vectors, which are related through

ui 5 Giju
j, ui 5 Gijuj, and Gij 5 Gij

21. The orthogonal

components of the spherical wind vector v(l, u) 5 (u, y)

can be expressed in terms of contravariant vectors (u1, u2)

as follows:

u

y

" #
5 A

u1

u2

" #
,

A 5
R cosu›l/›x1 R cosu›l/›x2

R›u/›x1 R›u/›x2

" #
; ATA 5 G

ij
.

The details of the local transformation laws and A for

each face of the cubed sphere can be found in Nair et al.

(2005b).

a. The viscous SW equations

The governing equations for viscous flow of a thin

layer of fluid in 2D are the horizontal momentum and

continuity equations for the height h. Here, h is the

depth of the fluid and it is related to the free surface

geopotential height (above sea level) F 5 g(hs 1 h),

where hs denotes the height of the underlying mountains

and g is the gravitational acceleration. The momentum

equations are cast in covariant (u1, u2) form, which are

analogous to the vector-invariant formulation as given

in Williamson et al. (1992, hereinafter W92). Thus, the

prognostic variables are u1, u2, and h, and the shallow-

water equations on S can be written in a compact form

following the inviscid formulation in NTL05a:

›

›t
U 1

›

›x1
F

1
(U) 1

›

›x2
F

2
(U) 5 S(U) 1 D(U), (1)

where the state vector U and the flux vectors F1 and F2

are defined by

U 5 [u
1
, u

2
,
ffiffiffiffiffi
G
p

h]T, F
1

5 [E, 0,
ffiffiffiffiffi
G
p

hu1]T, and

F
2

5 [0, E,
ffiffiffiffiffi
G
p

hu2]T,

where E 5 F 1 ½(u1u1 1 u2u2) is the energy term. The

divergence d and relative vorticity z on S are defined as

d 5
1ffiffiffiffi
G
p ›

ffiffiffiffi
G
p

u1

›x1
1

›
ffiffiffiffi
G
p

u2

›x2

" #
and z 5

1ffiffiffiffi
G
p ›u

2

›x1
�

›u
1

›x2

� �
.

(2)
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The source term S is a function of relative vorticity z,

Coriolis term f, and contravariant wind vector (u1, u2),

and is defined as

S(U) 5 [
ffiffiffiffiffi
G
p

u2( f 1 z),�
ffiffiffiffiffi
G
p

u1( f 1 z), 0]T.

In (1), D(U) represents the viscous flux that is formally

defined to be

D(U) 5 D
n

ffiffiffiffiffi
G
p

=2
s (U), D

n
5

n 0 0

0 n 0

0 0 0

2
4

3
5,

where Dn is the diffusive flux matrix with the coefficient

of diffusion n and $s
2 is the Laplacian operator defined

on S. Since we consider the application of uniform dif-

fusion to the momentum equations in (1), D(U) can be

written in the following simple form:

D(U) 5 [n
ffiffiffiffiffi
G
p

=2
s u

1
, n

ffiffiffiffiffi
G
p

=2
s u

2
, 0]T.

For an arbitrary variable U, the Laplacian terms in the

above equation can be written in the following explicit

form:

ffiffiffiffiffi
G
p

=2
s U [

ffiffiffiffiffi
G
p

div[grad(U)]

5
›

›x1

ffiffiffiffiffi
G
p

G11 ›U

›x1
1

ffiffiffiffiffi
G
p

G12 ›U

›x2

� �

1
›

›x2

ffiffiffiffiffi
G
p

G21 ›U

›x1
1

ffiffiffiffiffi
G
p

G22 ›U

›x2

� �
.

(3)

Note that here the Laplacian is applied component wise

for each momentum equation, and for simplicity the

general vector Laplacian is not considered. In curvilin-

ear coordinates the vector Laplacian is different from

the Laplacian of the components.

b. The computational domain

The spherical SW equations can be discretized either

in the physical space or in the computational (trans-

formed) space. By the virtue of central projections the

SW equations in (1) are already in the computational

(x1, x2) space. Therefore, it is convenient discretize the

system in (1) in the same space. The computational

domain may be considered as a logical cube C � R
2 such

that each face of C is defined in terms of local orthogonal

Cartesian coordinates (x1, x2), where x1, x2 2 [2p/4, p/4].

Thus, C is essentially a union of six nonoverlapping

subdomains (faces) and any point on C can be uniquely

represented by the ordered triple (x1, x2, p), where

p 5 1, . . . , 6, is the cube face (panel) index as shown in

Fig. 2 of Nair et al. (2005b). The equiangular central

projection results in a uniform element width (Dx1 5

Dx2) on C, which is an advantage for practical im-

plementation. Figure 1 illustrates a schematic diagram

of the mapping between the physical domain S (cubed

sphere) and the computational domain C (cube).

A salient feature of the cubed-sphere geometry is that

S is naturally decomposed into nonoverlapping quadri-

lateral elements (tiles) Ve
S. This topology is well suited to

high-order element-based methods such as DG. Each

face of the cubed sphere has Ne 3 Ne elements, thus

6Ne
2 5 Nelem elements span the entire spherical domain

FIG. 1. A schematic diagram showing the facewise mapping between the cubed sphere S
(physical domain) and the cube C (computational domain) such that there exists a one-to-one

correspondence between the spherical element Ve
S on S and the planar element Ve on C. Each

face of the cube has Ne 3 Ne elements (Ne 5 4) defined by local computational coordinates

(x1, x2) with x1, x2 2 [2p/4, p/4].
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such that S 5 [Nelem

e51 VS
e , and in Fig. 1 Ne is set to 4. Note

that, there exists a one-to-one correspondence between

spherical element Ve
S on S and planar element Ve on C.

The integral and the differential operators required in

the DG discretization of SW system can be approxi-

mated on each Ve with boundary Ge.

For simplicity, we consider a generic component of

the system (1) as follows:

›

›t
U 1 $

c
� F(U) 5 n

ffiffiffiffiffi
G
p

=2
s U 1 S(U), in C 3 (0, T],

(4)

where F 5 (F1, F2) is the flux function, T is the prescribed

time, and $c [ (›/›x1, ›/›x2) is the gradient operator in

(x1, x2) space such that $c � F 5 ›F1/›x1 1 ›F2/›x2. The

DG discretization of (1) will be described in terms of (4)

in the following section.

3. DG discretization

a. Weak formulation

We first introduce some basic notations required for

the discretization. Let Vh be a finite-dimensional space

of polynomials of degree up to N such that

V
h

5 u 2 L2(C) : uj
Ve
2 P

N
(V

e
), 8 V

e
2 C

� �
, (5)

where

P
N

5 span (x1)m(x2)n : 0 # m, n # N
� �

.

The weak formulation of the problem can be obtained

by multiplying (4) by a test function and integrating by

parts over C (Cockburn and Shu 2001). To find the ap-

proximate solution Uh 2 Vh we consider the following

semidiscretized weak formulation on each element Ve

such that

d

dt

ð
V

e

U
h
u

h
dV�

ð
V

e

F(U
h
) � $

c
u

h
dV 1

ð
G

e

F̂ � nu
h

dG

5 n

ð
V

e

ffiffiffiffiffi
G
p

=2
s U

h
u

h
dV 1

ð
V

e

S(U
h
)u

h
dV, (6)

where uh is a test function in Vh, F̂ is the numerical flux,

n is the outward-facing unit normal vector on the ele-

ment boundary Ge, and the element of integration is

dV 5 dx1dx2. There are several choices for numerical

flux schemes. However, for the present study we employ

the local Lax–Friedrichs numerical flux as follows:

F̂(U
h
) 5

1

2
f[F(U�h ) 1 F(U1

h )]� a(U1
h �U�h )g, (7)

where a is the maximum of the eigenvalues of the flux

Jacobian (NTL05a); Uh
2 and Uh

1, respectively, are the

left and right limits of Uh along the boundary Ge such

that Uh
2 is interior to the element Ve and Uh

1 is in the

adjacent neighboring element.

Except for the viscous flux term, the evaluations of the

integrals in (6) can be performed as in the case of in-

viscid SW model, but the discretization of the viscous

flux term requires special attention. An obvious option

is the direct discretization of the diffusion operator lo-

cally over each Ve such that

(=2
s U

h
)
��
V

e

5 =2
s (U

h

��
Ve

), (8)

where the interelemental contributions of Uh (e.g.,

gradient information) across the boundary Ge are ig-

nored. Such localized computations are desirable for

parallel implementation because no additional com-

munication between the elements is required for the SW

code and the computational overheads are local to the

element. Note that for modern high-performance com-

puters, the parallel communication between the pro-

cessors is often an order more expensive than localized

computation.

Despite the computational advantages, the element-

wise localized diffusion operation based on (8) has some

serious limitations. Diffusivity is a physical entity and

its artificial localized blocking via (8) in the integration

of (6) may have adverse effects on the diffusion mech-

anism in the viscous SW model. In some literature

such element-wise localized diffusion, which does not

take interelement contributions into account, is referred

to as the inconsistent DG formulation for diffusion

(Karniadakis and Sherwin 2005). In Persson and Peraire

(2006) it is mentioned that such approaches tend to flat-

ten the solution within each element and increases the

interelement jumps. However, we consider the ‘‘element-

wise localized diffusion without interelement contri-

butions’’ (or ELD) for a standard SW test case and

demonstrate the results in section 4. This is just to see how

effective the ELD approach is as a diffusion operation.

b. The LDG formulation

Implementation of the LDG scheme for the SW sys-

tem in (1) follows the same principle laid by BR97.

Nevertheless, the curvilinear gradients and Laplacians

need special treatment. The key idea of the LDG ap-

proach is to introduce a local auxiliary variable for the

gradient and rewrite the (4) as a first-order system. This

is required because the high-order derivatives involved
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in diffusive fluxes in SW system are not amenable to the

regular DG discretization.

For the generic component (4) of the SW system,

consider the auxiliary variable q 5 $cU, and recast the

spherical Laplacian =s
2 in terms of gradient operator $c

defined on C. The following matrix notations are used

for representing =s
2U in the LDG formulation:

q 5
›U

›x1
,

›U

›x2

� �
, M 5

ffiffiffiffiffi
G
p

G11
ffiffiffiffiffi
G
p

G12

ffiffiffiffiffi
G
p

G21
ffiffiffiffiffi
G
p

G22

" #
, and

~q 5 qMT.

With these notations, the spherical Laplacian intro-

duced in (3) can be expressed in a compact form:

ffiffiffiffiffi
G
p

=2
s U 5 $

c
� ~q, (9)

and (4) can be written as a first-order system on C:

q� $
c
U 5 0, (10)

~q 5 qMT, and (11)

›U

›t
1 $

c
� F(U)� n$

c
� ~q 5 S(U). (12)

A weak formulation corresponding to (10) for an ap-

proximate solution Uh 2 Vh with qh 5 $cUh, can be

obtained by multiplying (10) by a vector test function w

and integrating by parts. On each element Ve with

boundary Ge on C, the weak form results in

ð
V

e

q
h
� w dV 5

ð
G

e

U
h
w � n dG�

ð
V

e

U
h
$

c
� w dV, (13)

where each component of w belongs to Vh. If the flux

associated with Uh along the boundary Ge is approxi-

mated by the central flux (BR97):

[U
h
] [

1

2
(U1

h 1 U�h ) 5
1

2
(U1

h �U�h ) 1 U�h ,

then integrating the last term in (13) by parts (Green’s

method) leads to

ð
V

e

q
h
� w dV 5

ð
G

e

1

2
(U1

h �U�h )w � n dG

1

ð
V

e

$
c
U

h
� w dV, (14)

where the numerical flux (Uh
1 2 Uh

2)/2 is referred to as

the jump flux. The semidiscretized weak formulation

corresponding to (12), with the diffusion term (viscous

flux) ~qh 5 qhMT, becomes

d

dt

ð
V

e

U
h
u

h
dV�

ð
V

e

F(U
h
) � $

c
u

h
dV 1

ð
G

e

F̂ � nu
h

dG

1 n

ð
V

e

~q
h
� $

c
u

h
dV�

ð
G

e

[~q
h
] � nu

h
dG

 !

5

ð
V

e

S(U
h
)u

h
dV, (15)

where [~qh] is the central flux (~q1

h
1 ~q�

h
)/2 and F̂ is the

numerical flux (7). Note that the term ~qh 5 qhMT in (15)

is computed after finding the gradient qh using (14).

Because of the simplicity, in this study we are partic-

ularly interested in the jump flux and central flux com-

binations for (13) and (15), respectively, as described in

BR97. However, a variety of choices are available for

the numerical fluxes, with varying complexity, as needed

in the discrete weak formulations in (13) and (15). A

comprehensive list of numerical fluxes used for the LDG

method is given in Arnold et al. (2002). The theoretical

study by Arnold et al. (2002) suggests that the central

flux formulation (BR97) may lead to a weakly stable

scheme, but that did not occur in the numerical experi-

ments considered in section 4.

c. Numerical integration

Now we describe the evaluations of the discretized

weak formulations in (6), (13), and (15). An important

aspect of the DG discretization is the choice of an ap-

propriate set of basis functions (polynomials) that span

Vh. To evaluate the integrals in the weak formulations

efficiently and accurately, an orthogonal polynomial

based basis set is usually employed. Recently Levy et al.

(2007) showed that, for high-order elements, the nodal

DG version is significantly more efficient than the modal

version. Here we adopt the nodal basis set as the one

used in the HOMME dynamical core (Nair et al. 2009).

To take the advantage of efficient quadrature rules,

new independent variables ji 5 ji(xi), i 2 {1, 2} are in-

troduced in such a way that ji 2 [21, 1]. This leads to an

affine mapping of each element Ve 2 C to a unique ref-

erence element Q 5 [21, 1] 5 [21, 1]. The nodal basis

functions are the Lagrange–Legendre polynomials h‘(j
i),

with roots at the Gauss–Lobatto quadrature points. These

orthogonal basis functions are defined by

h
‘
(ji) 5

(ji � 1)(ji 1 1)L9
N

(ji)

N(N 1 1)L
N

(j
‘
)(ji � j

‘
)

;

ð1

�1

h
k
(ji)h

‘
(ji) dji ’ w

k
d

k‘
, (16)

where LN is the Legendre polynomial of degree N,

0 # k, ‘ # N; wk is the weight associated with the
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Gauss–Lagendre–Lobatto (GLL) quadrature rule and

dk‘ is the Kronecker delta function. There are other op-

tions for choosing the basis functions and quadrature

rules; Karniadakis and Sherwin (2005) provide a detailed

account on this topic.

The nodal basis set that spans PN in (5) is chosen to

be a tensor product of polynomials hk(j1)h‘(j2). Now

the approximate solution Uh and test function uh in Vh

can be expanded in terms of a tensor product of the

Lagrange basis functions, and in the case of Uh:

U
h
(j1, j2) 5 �

N

k50
�
N

l50
U

h
(j1

k, j2
l )h

k
(j1)h

‘
(j2), (17)

where fji
lg

N
l50 are the GLL quadrature points on the

reference element Q. With this setup there are Ny 3 Ny

GLL points on Q where Ny 5 N 1 1; thus, the total

degrees of freedom on C is 6Ne
2Ny

2. Note that the quad-

rature rule required for the boundary integrals needs to

be one order more accurate than the internal integrals

(Cockburn and Shu 2001) to maintain overall accuracy

in the DG discretization. Nevertheless, we use the same

order GLL quadrature rule for the internal integrals in

Ve and the boundary flux integrals along Ge, because this

approach is extremely efficient at the cost of nominal

loss of accuracy because of inexact integration (quad-

rature error).

Substitution of the expansion in (17) for Uh and uh in

the weak formulations and further simplification leads

to the following ordinary differential equation (ODE) in

time corresponding to the continuous problem (4):

dU
k‘

dt
5 L(U

k‘
) in (0, T], (18)

where Uk‘ are the time-dependent nodal (grid point)

values corresponding to Uh. For the viscous SW system

in (1) a system of ODEs in (18) must be solved for Uk‘.

In the present study we use a second- or third-order ac-

curate explicit strong stability preserving (SSP) Runge–

Kutta (RK) time integration procedure (Gottlieb et al.

2001) for (18).

4. Numerical experiments

To study the impact of diffusion, we consider two test

cases from the W92 standard test suite for evaluating

SW models on the sphere. These tests are the steady-

state geostrophic flow and the flow over an isolated

mountain often referred to as the SW test case 2 and 5,

respectively. In addition to that, the barotropic insta-

bility test case proposed by Galewsky et al. (2004) is

considered. We use the standard normalized ‘1 and ‘‘
error measures as suggested in W92 for the convergence

study.

The explicit RK time integrations are robust and

widely used for the DG discretization, even though the

resulting scheme has a stringent Courant number re-

striction. For the element-based high-order methods it is

known that the inclusion of diffusion terms further re-

strict the explicit time stepping (Henderson 1999). Con-

sidering these facts for the viscous SW model we employ

the second-order SSP RK time integration method

combined with a moderate time-step size (suboptimal).

The viscous SW model has been implemented in the

HOMME framework (Nair et al. 2009), which is highly

scalable, and its overall computational expense is de-

pendent on parallel communications. Because of the

additional flux computations (parallel communications)

needed for the LDG formulation, we found that about

FIG. 2. The normalized standard (a) ‘1 and (b) ‘‘ height errors as a function of number of

elements (Ne) for the test case 2 with the viscous SW model. Third-degree polynomials (Ny 5 4)

are used for DG spatial discretization, and the values of the diffusion coefficient n (m2 s21) in

the LDG formulations are 0.0, 1.0 3 103, and 1.0 3 104.
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30% more computational time was required for the LDG

SW model as opposed to the inviscid version. However,

the element-wise localized diffusion formulation in (6)

does not have the burden of additional parallel commu-

nications and requires only 5% more computational time

as opposed to the inviscid SW version.

The GLL grid associated with each element results in

a highly nonuniform grid on the sphere. Therefore, it is

difficult to make a strict comparison of cubed-sphere grid

resolution with that of the regular longitude–latitude

(l, u) grid. However, an average resolution at the

equator of the cubed sphere may be used for comparing

the results (Nair et al. 2009), and is given by the ap-

proximate relation 908/[Ne(Ny 2 1)]. For visualization

purpose the numerical results on the cubed-sphere grids

is interpolated onto a regular (l, u) grid.

a. Steady-state geostrophic flow

First we consider the test case 2, which is a steady-

state solution of the full nonlinear shallow-water equa-

tions. The wind field is uniform and the equations are

geostrophically balanced during the time evolution. The

initial velocity and height fields are

u 5 u
0
(cosa

0
cosu 1 sina

0
cosl sinu),

y 5�u
0

sina
0

sinl, and

gh 5 gh
0
�

u
0

2
(2aw 1 u

0
)

3 (sinu cosa
0
� cosl cosu sina

0
)2,

where a and v are the earth’s radius and angular ve-

locity, respectively; u0 5 2pa/(12 days), and gh0 5 2.94 3

104 m2 s22. The flow orientation parameter a0 is set to be

p/4, which makes the test more challenging (NTL05a).

With these initial conditions the SW model is integrated

for 5 model days as recommended in W92. An important

feature of this test is that the analytic solution is known

at any given time. Therefore, it is convenient to use this

test for studying the convergence of SW model.

In high-order element-based numerical models higher

model resolutions can be obtained by increasing the

number of elements (Ne) or increasing the degree of

the polynomials (Ny 2 1) used for discretization. For the

convergence test with test case 2 we employ both op-

tions. Figure 2 shows the convergence LDG scheme in

terms of ‘1 and ‘‘ height errors, where the degree of the

FIG. 3. The normalized standard ‘1 height error for test case 2 with different values of the

diffusion coefficient n (m2 s21). For this convergence test, the total number of elements are

fixed (with Ne 5 3) and the degree of the polynomial is gradually increased.
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polynomial is kept to be 3 (i.e., Ny 5 4) and Ne is in-

creased from 5 to 15. As the model resolution increases,

the inviscid version (diffusion coefficient n 5 0) shows

faster convergence to the exact solution, while the LDG

version converges to a ‘‘diffused state’’ depending on the

value of n. Similarly Fig. 3 shows the convergence of

the height field in terms of ‘1 error where Ne 5 3 but

polynomial degree varies from 4 to 10. In this case the

inviscid version attains exponential convergence as re-

ported in NTL05a, and for the LDG version convergence

is strongly influenced by the magnitude of the diffusion

coefficient rather than the polynomial degree. The time

step Dt used for the simulations is 180 s except for the

combination Ne 5 3, Ny 5 11, where Dt is set to 90 s. Note

that in all the cases the LDG SW model converges

monotonically to a diffused state that is dependent on n.

b. Zonal flow over an isolated mountain

This test case is particularly useful for studying the

effectiveness of the scheme in conserving integral in-

variants such as mass, total energy, and potential ens-

trophy. Gelb and Gleeson (2001) extensively used this

test for diffusion experiments in a global spectral model.

The ‘‘mountain’’ is centered at (lc 5 3p/2, uc 5 p/6) with

height hs 5 2000(1 2 r/a) m, where a 5 p/9 and r2 5

min[a2, (l 2 lc)
2 1 (u 2 uc)

2]. The mean equivalent

depth of the atmopshere is set to be h0 5 5960 m. For this

test the flow field is highly nonlinear and no analytic

solution is available. The initial conditions and other test

parameters are described in W92. This test typically

causes difficulties for high-order methods such as spec-

tral element and spectral transform methods because of

the generation of spurious oscillations (spectral ringing)

at all scales. However, despite the high-order spatial

spectral representation, the DG model in NTL05a did

not exhibit spurious oscillations.

First, we consider the SW test case 5 for a convergence

study. No analytic solution is available for this test

therefore a ‘‘high resolution’’ reference height field is

computed with high-order polynomials. The SW model

is configured with Ne 5 10 and Ny 5 10 (i.e., 9th-degree

polynomials) which corresponds to an approximate res-

olution of 1.08 at the equator, and integrated for 7 model

days. The time step Dt used for all the simulations, ir-

respective of resolution, is 30 s. The convergence results

with ‘1 and ‘‘ height errors are shown in Fig. 4 as a

function of the polynomial degree. The convergence

plots given in Fig. 4a are based on inviscid reference

solution (n 5 0.0 and Ny 5 10). Figure 4b shows the

viscid convergence of the LDG model where the refer-

ence solution is computed with n 5 1.0 3 104 m2 s21 and

Ny 5 10. The rate of convergence is slower in this case as

compared to the steady-state test case 2, possibly be-

cause of the extreme nonlinear nature of the problem

due to rough orography. As expected, the LDG model

converges monotonically and the convergence is strongly

influence by the diffusion coefficient n.

Next we test the influence of diffusion mechanism in

the evolution of relative vorticity fields. We consider the

LDG formulation and the ELD used for the discre-

tization of (6) where the interelement contributions

are ignored. The model is integrated for 15 (model) days

with approximate resolution of 2.58 at the equator (Ne 5 12,

Ny 5 4). This resolution is comparable to that of a ‘‘T42’’

FIG. 4. The normalized standard ‘1 and ‘‘ height errors for the test case 5 at model day 7. The

viscous SW model is integrated while keeping the total number of elements fixed (Ne 5 10) but

with varying polynomial degree. Since no analytic solution is available for this test, a high-order

reference solution with an approximate resolution of 18 is computed with the 9th-degree

polynomials (Ny 5 10). (a) The convergence of LDG scheme for height errors where an inviscid

reference solution (n 5 0.0) is used. (b) Convergence to a viscid reference solution with n 5 1.0 3

104 m2 s21; in this case the same diffusion coefficient is used for all the low-order model

integrations.
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global spectral model. Vorticity fields are initially gen-

erated near the mountain and are well developed after

4 days, spreading to the entire domain. Figure 5 shows

the relative vorticity fields (1025 s21) at day 7 for both

LDG and ELD. We have used a set of diffusion coeffi-

cients n with magnitude ranging from mild O(104) to

strong O(106), for the experiments. Figures 5b,d,f show

vorticity fields at model day 7 for the case of LDG

method with n 5 2.5 3 l04 m2 s21, 2.5 3 105 m2 s21, and

2.5 3 106 m2 s21, respectively. The vorticity fields cor-

responding to ELD are shown in Figs. 5c,e with n 5 2.5 3

105 m2 s21 and 2.5 3 106 m2 s21, respectively. The LDG

solutions gradually smooth the vorticity fields and de-

pend on the magnitude of n.

The vorticity field with ELD for n 5 2.5 3 104 is vir-

tually identical (results not shown) to the nondiffusive

case Fig. 5, and with n 5 2.5 3 105 m2 s21 wiggles are still

present at extreme gradients (Fig. 5c). This indicates

ELD has a role similar to that of local filter. However,

for strong diffusion n 5 2.5 3 106 m2 s21) the smooth

structure of the vorticity fields is completely destroyed

(Fig. 5e) as opposed to the LDG case (Fig. 5f). Thus, in

the case of ELD the vorticity fields are either slightly

smoothed or polluted. This is mainly due to the lack

of ‘‘communication’’ (flux exchange) between element-

wise locally smoothed fields, when computing the dif-

fusion operator directly. LDG resolves this issue by

permitting the exchange of fluxes across the element

boundaries for the diffusion terms.

Time traces of the normalized errors for total energy

and potential vorticity are shown in Fig. 6 for n 5 2.5 3

104 m2 s21 and 2.5 3 105 m2 s21, and the nondiffused

(inviscid) solution is a plotted for a reference. NTL05a

provides similar plots for the inviscid case with compu-

tational details. In the diffusive case the error growth is

at a faster rate and is dependent on the magnitude of n,

FIG. 5. The relative vorticity field (z) at day 7 for the SW test case of flow over an isolated

mountain (test case 5). The DG SW model with approximate resolution 2.58 (at the equator)

used for this simulation. (a) The vorticity field without diffusion (inviscid flow). The results with

ELD with coefficients n (m2 s21) values of (c) 2.5 3 105 and (e) 2.5 3 106. The LDG solution

with n 5 (b) 2.5 3 104, (d) 2.5 3 105, and (f) 2.5 3 106.
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which is expected for a typical second-order diffusion.

Note that the diffusion coefficient n is a resolution-

dependent parameter, and here the choice made for n is

somewhat arbitrary. A judicious choice of n is possible

by looking at the kinetic energy spectra (Collins et al.

2004; Gelb and Gleeson 2001) and is beyond the scope of

present work.

c. Barotropic instability test

The barotropic instability test proposed by Galewsky

et al. (2004) is a challenging test for the SW models

developed on the cubed-sphere grids. This test exposed

artifacts from wavenumber 4 due to the cube-edge dis-

continuities at low resolutions for various SW models

(St-Cyr et al. 2008; Chen and Xiao 2008). The test de-

scribes the evolution of a barotropic wave in the Northern

Hemisphere and exhibits continuous nonlinear transfer

of energy at the midlatitudes from large to small scales.

The test is particularly challenging on the cubed-sphere

because the vigorous barotropic instability activities are

located at the discontinuous edges of the top panel of

cubed-sphere grid.

The initial conditions are zonally symmetric and in-

troduce a strong zonal jet along the midlatitudes, and

details can be found in Galewsky et al. (2004). The test

recommends integrating for 6 days with and without

diffusion. Fine features of the vorticity fields can be

captured at a resolution about 1.258 or higher (St-Cyr

et al. 2008).

To demonstrate the effectiveness of the LDG scheme,

the barotropic instability test is run on the cube-sphere grid

with approximate resolution of 0.648 (Ne 5 20, Ny 5 8).

Figure 7 shows the relative vorticity (z) fields at day 6

with and without diffusion. The inviscid run is shown in

Fig. 7c, where the fine features of the vortex are well

captured and comparable to the reference solution given

in Fig. 4 of Galewsky et al. (2004). Small-scale noise can

be seen at the sharp gradients (Fig. 7c) but at reduced

amplitude as compared to the reference solution. A

moderate (suboptimal) time step Dt 5 6 s is used for these

simulations. The results shown in Figs. 7a,b, respectively,

show the LDG runs with n 5 1.0 3 105 m2 s21 and n 5

0.5 3 105 m2 s21. The results shown in Fig. 7a are smooth

and comparable to the converged (diffused) reference

solution given in Galewsky et al. (2004). LDG success-

fully eliminates the small-scale noises appearing in Fig. 7c

with the appropriate choice of parameter value n.

5. Conclusions

A second-order diffusion scheme is developed and

tested for the discontinuous Galerkin global shallow-water

model on the cubed sphere (Nair et al. 2005a). In a

nonorthogonal curvilinear coordinate system such as the

cubed sphere, the diffusion terms involving Laplacians

are more complex and need special treatment. The

second-order derivatives present in the diffusion terms

prevent using a direct DG discretization of the SW system.

So the diffusion scheme developed for the SW model is

based on the local discontinuous Galerkin method where

the advection–diffusion equation is solved as a first-order

system. All of the curvature terms resulting from the cu-

bed-sphere geometry are incorporated into the first-order

continuous system. The LDG shallow-water model is

based on BR97 formulation where the central flux is used

for interelement contributions.

The diffusion scheme is tested with the two standard

test cases from W92’s test suite, including the steady-

state geostrophic flow (with known analytic solution)

and zonal flow over an isolated mountain. In addition,

FIG. 6. Time traces of normalized (a) total energy and (b) potential enstrophy for the shallow-

water test case 5. The solid lines indicate runs without diffusion, dashed lines show LDG runs

with diffusion coefficient n 5 2.5 3 104 m2 s21, and the dashed–dotted lines indicate the runs

with n 5 2.5 3 105 m2 s21. The DG SW model is integrated for 15 days with an approximate

resolution of 2.58.
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the barotropic instability test proposed by Galewsky

et al. (2004) is also considered. The steady-state problem

is used for the convergence study, and it is shown that

LDG scheme converges monotonically to a diffused

state that is influenced by the diffusion coefficient n. The

convergence study is again verified with the zonal flow

over the mountain test, and the results are consistent

with the previous test.

For the flow over the mountain, LDG can smoothly

eliminate small-scale noises, depending on the magnitude

of the diffusion coefficient n. This is evident in the time

traces of total energy and potential enstrophy. Moreover,

with this test we have demonstrated that an easy way of

introducing the diffusion operator—by the element-wise

localized discretization without incorporating the inter-

element contributions—is ineffective or it can even ad-

versely affect the solution. The LDG solution (viscous

results) for the barotropic instability test is very similar to

the converged reference solution given in Galewsky et al.

(2004). The LDG scheme successfully eliminates small-

scale noises, and the simulated results are smooth.

The diffusion coefficient (n) is dependent on the res-

olution of the model, and our choice for its values in this

study is not perfect. However, a judicious choice is possible

by looking at the kinetic energy spectra (Collins et al. 2004)

and estimating the best physically accurate value for n.

The LDG method presented here is an ongoing research

effort and will be tested for the HOMME-DG dynamical

core (Nair et al. 2009) for idealized climate simulations.
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