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ABSTRACT

The discontinuous Galerkin (DG) methods designed for hyperbolic problems arising from a wide range of

applications are known to enjoy many computational advantages. DG methods coupled with strong-stability-

preserving explicitRunge–Kutta discontinuousGalerkin (RKDG) timediscretizations provide a robust numerical

approach suitable for geoscience applications including atmosphericmodeling.However, amajor drawback of the

RKDGmethod is its stringent Courant–Friedrichs–Lewy (CFL) stability restriction associated with explicit time

stepping. To address this issue, the authors adopt a dimension-splitting approach where a semi-Lagrangian (SL)

time-stepping strategy is combined with the DGmethod. The resulting SLDG scheme employs a sequence of 1D

operations for solving multidimensional transport equations. The SLDG scheme is inherently conservative and

has the option to incorporate a local positivity-preserving filter for tracers. A novel feature of the SLDGalgorithm

is that it can be used formultitracer transport for globalmodels employing spectral-element grids, without using an

additional finite-volume grid system. The quality of the proposedmethod is demonstrated via benchmark tests on

Cartesian and cubed-sphere geometry, which employs nonorthogonal, curvilinear coordinates.

1. Introduction

High-order element-based Galerkin methods are be-

coming increasingly popular in global atmospheric mod-

eling, because these methods have computationally

desirable features such as excellent parallel scalability,

geometric flexibility, and conservation properties. The

spectral-element (SE)method and discontinuousGalerkin

(DG) method belong to this class, and they have re-

cently been adopted for new generation atmospheric

modeling (Dennis et al. 2011; Nair et al. 2009; Giraldo

and Restelli 2008). However, a major drawback of these

methods is the stringent Courant–Friedrichs–Lewy (CFL)

stability limit resulting from an explicit time stepping.

For example, the linear stability analysis for the DG

method employing the Pk piecewise-polynomial solu-

tion space, combined with the Runge–Kutta discontin-

uous Galerkin (RKDG) time discretizations show that

the CFL limit is 1/(2k 1 1) (Cockburn and Shu 2001),

where k is the degree of the polynomial. A possible rem-

edy for this limitation associated with high-order methods

is to reduce the order of polynomial. The SE dynamical

core (Dennis et al. 2011) implemented in the Community

Atmospheric Model (CAM) employs a fourth-order spa-

tial discretization with an explicit time integration.

In an operational climate model, the total computa-

tional expense is dominated by that of the tracer trans-

port scheme, which is accountable for O(100) tracer

species including several moisture variables. Recently,

Erath andNair (2014) showed that theConservative Semi-

Lagrangian Multi-Tracer Transport Scheme (CSLAM;

Lauritzen et al. 2010) based on the finite-volume semi-

Lagrangian philosophy is an efficient alternative to

the native SE transport scheme based on the Eulerian
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approach in the CAM framework. As the number of

tracer species increases to more than six or so, the semi-

Lagrangian scheme becomes significantly more efficient.

This is due to the fact that once the upstream trajectory

and other geometric information are computed, they

can be reused for each tracer field. Although the semi-

Lagrangian scheme can take a larger time step, a mod-

erate value CFL ’ 1 would be desirable to maintain the

parallel efficiency. However, the CSLAM scheme em-

ploys its own uniform finite-volume cells within each

spectral element defined by highly nonuniform Gauss–

Legendre–Labotto (GLL) quadrature points (Erath and

Nair 2014). This necessitates two grids system, one for the

SE dynamics (GLL) and the other one for the CSALM

transport, requiring a grid-to-grid remapping.

In this paper, our main goal is to develop a conserva-

tive transport scheme by combining the semi-Lagrangian

(SL) approach and the DG method. The SLDG scheme

considered is a dimension-splitting approach, which

simplifies the implementation in Cartesian as well as

curvilinear (cubed sphere) geometry. The scheme is

particularly designed for a nodal DG discretization

employingGLL grid with CFL number approximately 1.

The SLDG scheme can be directly implemented for SE

grids, and does not require two grids system as in the

case of SE and CSLAM combination.

Mass conservative SLDG methods have been intro-

duced in Restelli et al. (2006), Rossmanith and Seal

(2011), and Qiu and Shu (2011). More recently, a semi-

implicit SLDG scheme was proposed for the shallow-

water equations in Tumolo et al. (2013). Our proposed

SLDG method shares some similarity with existing

methods in the sense that all of themethods consider the

DG framework coupled with some characteristics trac-

ing mechanism. It follows the weak formulation of the

Lagrangian–Galerkin approach of Childs and Morton

(1990) and Russell and Celia (2002) with piecewise dis-

continuous polynomials as solution spaces. The SLDG

method proposed in this paper differs from those in

Restelli et al. (2006) andQiu and Shu (2011). The SLDG

methods in Restelli et al. (2006) and Qiu and Shu (2011)

follows an Eulerian volume (fixed spatial cell) with nu-

merical fluxes obtained from tracing the characteristics.

However, the proposed method follows the Lagrangian

volume dynamically moving with the characteristics, in

the same spirit as in Rossmanith and Seal (2011). Our

method is more general than Rossmanith and Seal (2011),

in the sense that it permits a nonuniform velocity field

and is extendable to curvilinear coordinates, whereas

the SLDG method in Rossmanith and Seal (2011) can

only be applied to problems with constant velocity.

The remainder of the paper is organized as follows. In

section 2, the SLDG algorithm on a Cartesian mesh is

described. An extension of the SLDG scheme to the

cubed-sphere geometry is described in section 3. In

section 4, numerical experiments are presented, fol-

lowed by summary and conclusions in section 5.

2. SLDG methods on a Cartesian mesh

In this section, we introduce mass conservative SLDG

methods for a 2D linear advection problem with vari-

able coefficients:

ft 1 [u(x, y, t)f]x1 [y(x, y, t)f]y5 0. (1)

When the velocity field (u, y) is nondivergent, i.e.,

$ � (u, y)5 0, the equation is equivalent to the advective

form:

ft 1u(x, y, t)fx1 y(x, y, t)fy5 0. (2)

Our proposed algorithm is essentially a 1D algorithm for a

variable coefficient problem in the conservative (flux) form:

ft 1 [u(x, y, t)f]x5 0. (3)

The flux form facilitates element-wise mass conservation.

The algorithm can be extended to 2D problems via di-

mension splitting on aCartesianmesh (Qiu and Shu 2011).

a. SLDG for 1D problems

We assume a spatial discretization of a 1D domain

[a, b] as nonoverlapping cells (elements) such that <Ij 5
<[xj2(1/2), xj1(1/2)] with h5max_ j[xj1(1/2) 2 xj2(1/2)]. A

DG solution space is a vector space Vk
h 5 fyh : yhjIi 2

Pk(Ij)g, where Pk(Ij) denotes the set of polynomials of

degree at most k. To update the solution at the time-level

tn11 over a cell Ij from the solution at tn, we use the weak

formulation of characteristic Galerkin method of Childs

and Morton (1990) and Russell and Celia (2002). Spe-

cifically, we let the test function c(x, t) satisfy the adjoint

problem with "C 2 Pk(Ij):�
ct 1 u(x, y, t)cx5 0,

c(t5 tn11)5C(x) .
(4)

We remark that for the above advective form of equa-

tion, the solution stays constant along a trajectory; while

for the conservative form of equation, the solution var-

ies along the trajectory. It can be shown that

d

dt

ð
I
j
(t)
f(x, t)c(x, t) dx5 0, (5)

where Ij(t) is a dynamic interval bounded by character-

istics emanating from cell boundaries of Ij at t 5 tn11.

Equation (5) can be proved by the following:
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d

dt

ð
I
j
(t)
f(x, t)c(x, t) dx5

dx

dt

����
x
j1(1/2)

f[xj1(1/2)(t), t]c[xj1(1/2)(t), t]2
dx

dt

����
x
j2(1/2)

f[xj2(1/2)(t), t]c[xj2(1/2)(t), t]

2

ð
I
j
(t)
[u(x, y, t)f(x, t)]xc(x, t) dx1

ð
I
j
(t)
f(x, t)ct(x, t) dx5 ufcj

[x
j1(1/2)

(t),y,t] 2 ufcj
[x

j2(1/2)
(t),y,t]

2
n
ufcj

[x
j1(1/2)

(t),y,t] 2 ufcj
[x

j2(1/2)
(t),y,t]

o
1

ð
I
j
(t)
u(x, y, t)f(x, t)cx(x, t) dx

2

ð
I
j
(t)
f(x, t)u(x, y, t)cx(x, t) dx5 0.

A semi-Lagrangian time discretization of Eq. (5)

leads to ð
I
j

fn11C dx5

ð
I+j

f(x, tn)c(x, tn) dx , (6)

where I+j ¼: [x+j2(1/2), x
+
j1(1/2)] with x+j6(1/2) being the foot of

trajectory emanating from (xj6(1/2), t
n11) at time tn. To

update the numerical solution fn11, the following pro-

cedures are performed.

1) Locate the foot of trajectory x+j6(1/2) [see Fig. 1 (left)].

We numerically solve the following final-value prob-

lem (trajectory equation):

d

dt
x(t)5 u[x(t), y, t] (7)

with the final-value x(tn11)5 xj6(1/2) by a high-order

numerical integrator such as a classical fourth-order

Runge–Kuttamethod.Here y is fixedwith dimension

splitting for multidimensional problems.

2) Detect subintervals within I+j 5<lI
+
j,l , which are all the

intersections between I+j and the grid elements (l is the

index for subinterval). For example, in Fig. 1 (left),

there are two subintervals: I+j,1 5 [x+j2(1/2), xj2(1/2)] and

I+j,2 5 [xj2(1/2), x
+
j1(1/2)].

3) Locate the (k 1 1) local GLL points over each I+j,l ,

which are mapped from the standard GLL points

defined on the reference interval [21, 1] by an affine

transformation. We denote them as x+j,l,ig (ig is the

index for GLL points). See the red circles as 4 GLL

points per subinterval in Fig. 1 (right).

4) Trace trajectories forward in time from (x+j,l,ig, t
n) to

(xj,l,ig, tn11). Specifically, similar to the final-value

problem above, we use a high-order time integrator

to numerically solve an initial value problem in Eq.

(7) with the initial-value x(tn)5 x+j,l,ig [see the green

curve and circles in Fig. 1 (right)]. From the advective

form of the adjoint problem in Eq. (4) one has

c(x+j,l,ig, t
n)5C(xj,l,ig) .

5) Use the GLL quadrature rule to evaluateð
I+j

f(x, tn)c(x, tn) dx

’ �
l

"
�
ig

wigf(x
+
j,l,ig, t

n)C(xj,l,ig)G(I
+
j,l )

#
, (8)

with wig being the quadrature weights for a unit

length interval and G(I+j,l ) being the length of sub-

interval I+j,l . Note that the accuracy of the GLL

quadrature rule is order of 2k when k 1 1 GLL

points are used. As in the classical DG formulation,

the evaluation of volume integral will not destroy the

(k 1 1)th order of accuracy for the SLDG scheme.

Moreover, the mass conservation properties are not

affected since the numerical integration is exact for

a polynomial of degree kwith the test function c5 1.

6) Finally, find f n11 2 Pk(Ij), s.t. Eq. (6) is satisfied

"C 2 Pk(Ij) with the rhs term evaluated as described

above.

Note that the proposed 1D algorithm is fourth-order

accurate in time in the sense of local truncation error:

1

Dt

���x+j6(1/2) 2 x(tn; xj6(1/2), t
n11)

���5O(Dt4),

1

Dt

���xj,l,ig2 x(tn11; x+j,l,ig, t
n)
���5O(Dt4)

with a fourth-order Runge–Kutta method for tracing

trajectories. Here Dt 5 tn11 2 tn; x(tn; xj6(1/2), t
n11) and

x(tn11; x+j,l,ig, t
n) denote the exact solutions of the trajec-

tory equation in Eq. (7) with final-value x(tn11)5 xj6(1/2)

and initial-value x(tn)5 x+j,l,ig, respectively. The numer-

ical error is likely to be dominated by the spatial error of

the DGmethods and the second-order splitting error for

multidimensional problems. If this is not the case, one

can always reduce error from trajectory tracing by either

increasing the order of numerical integrator, or by tak-

ing smaller time steps.
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b. The bound-preserving (BP) filter

It is known that Eq. (3) is mass conservative. How-

ever, the solution does not fulfill the maximum principle

(i.e., the solution in the future time will not be bounded

by the lower and upper bound of the initial condition).

On the other hand, if the initial condition for Eq. (3) is

positive [f(x, t 5 0) $ 0, "x], then the future solution

stays positive [f(x, t)$ 0,"x, t].We call such property as

positivity preserving (PP). In our SLDG scheme, it can

be easily checked that the updated cell average at tn11

[taking C5 1 in Eq. (8)] stays positive, if the numerical

solution (piecewise polynomial function) at tn is positive.

However, the numerical solution at tn11 does not nec-

essarily stay positive. To ensure PP of the numerical

solution, we apply a BP filter (Zhang and Shu 2010a,b;

Qiu and Shu 2011; Zhang and Nair 2012), if the initial

condition stays positive. The procedure of the BP filter

can be viewed as ensuring the positivity of the numerical

solution by a linear rescaling around the cell averages,

with the assumption that the cell averages are positivity

preserving. In particular, the numerical solution is mod-

ified from f(x) to ~f(x) such that it maintains the high-

order accuracy of the original approximation, conserves

the cell average (mass) and preserves positivity:

~f(x)5 u[f(x)2f]1f, u5min

����� f

m0 2f

����, 1� , (9)

where f is the cell average of the numerical solution and

m0 is the minimum of f(x) over a given cell. A formal

proof can be found in Zhang and Shu (2010a) (Lemma

2.4). To implement the BP filter, the minimum of the

numerical solution m0 is needed. In our numerical tests,

we use up to P3 polynomials, the minimum of which can

be easily found by locating the zeros of their derivatives.

The proposed SLDG methods with the BP filter enjoy

the L1 (mass) conservation, the proof of which can be

found in Qiu and Shu (2011).

c. SLDG schemes for multidimensional problems via
operator splitting

The proposed 1D algorithm can be extended to mul-

tidimensional algorithms via the second-order Strang

dimension splitting based on a Cartesian mesh in Strang

(1968). Below, we sketch the idea of the algorithm. For

more implementation details, see Qiu and Shu (2011).

1) Split Eq. (1) into two 1D advection problems:

ft 1 [u(x, y, t)f]x5 0, (10)

ft 1 [y(x, y, t)f]y 5 0. (11)

2) Locate (k1 1) GLL points in both x and y directions

in each rectangular cell as (xig, yjg). See Fig. 2 (left).

3) Perform the Strang dimension-splitting strategy, for

which the numerical update over a time step Dt is as
follows:

(i) Evolve 1D Eq. (10) at different yjg locations

with corresponding velocities u(x, yjg, t) for a

half time step Dt/2, see Fig. 2 (middle).

(ii) Evolve 1D Eq. (11) at different xig locations

with corresponding velocities y(xig, y, t) for a

whole time step Dt, see Fig. 2 (right).

(iii) Evolve 1D Eq. (10) for another half time step

Dt/2 as in (i).

Note that the BP filter is applied separately in each di-

rection and the resulting scheme can preserve positivity

(see Rossmanith and Seal 2011; Qiu and Shu 2011). It is

difficult to design a numerical scheme that preserves

a constant field in the dimensional splitting framework.

It is our ongoing work to design a nonsplitting SLDG

scheme that preserves the constant field when the ve-

locity field is nondivergent.

FIG. 1. Schematic showing the 1D SLDGscheme, as described in the text. (left) Steps 1 and 2 and (right) steps 3 and 4.

Four GLL points per cell are used as an example.
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3. SLDG schemes for the cubed-sphere geometry

a. Cubed-sphere geometry

In this section, we extend the SLDG scheme to the

cubed-sphere geometry. The cubed-sphere geometry

(Sadourny 1972; Ronchi et al. 1996) is free from polar

singularities and well-suited for element-basedGalerkin

methods. In this paper, we consider the cubed-sphere

mesh generated by an equiangular central projection as

described in Nair et al. (2005). In the cubed-sphere grid

system, the spherical domain is partitioned into six

identical regions (faces). On each face, grid lines follow

nonorthogonal curvilinear coordinate system (x1, x2)

such that x1, x2 2 [2p/4, p/4] (see Fig. 3). Each face of

the cubed sphere is tiled withNe3Ne elements (cells) so

that 63N2
e elements span the entire spherical domain.

See Fig. 3 for the relative position of six faces and the

equiangular central projection from the Cartesian mesh

on the cube to the curvilinear mesh on the sphere with

Ne 5 5. The metric tensor associated with the equian-

gular central (gnomonic) mapping is given by

gij 5
R2

r4 cos2x1 cos2x2
3

�
11 tan2x1 2tanx1 tanx2

2tanx1 tanx2 11 tan2x2

�
,

(12)

where i, j 2 f1, 2g, r 5 1 1 tan2x1 1 tan2x2, and R is

radius of the sphere. Denote g 5 det(gij), then the

Jacobian of the transformation is given by
ffiffiffi
g

p
, which is

identical on each face. We refer to Nair et al. (2005) for

all the conversion formulas between the usual latitude–

longitude velocity components u, y and the contravariant

components u1, u2 on the cubed sphere.

b. SLDG transport on the cubed sphere

The transport equation for a scalar f on the cubed

sphere can be rewritten in (x1, x2) coordinate on each

face as follows (Zhang and Nair 2012):

›U

›t
1

›F1(U)

›x1
1

›F2(U)

›x2
5 0, (13)

whereU5f
ffiffiffi
g

p
, and the fluxes F1 5 u1U, and F2 5 u2U;

the Jacobian
ffiffiffi
g

p
is a given continuous function of the

curvilinear coordinate transform. For the DG spatial dis-

cretization, each element is furthermapped ontoNp3Np

GLL grids. Figure 3 (bottom) shows a cubed sphere dis-

cretized with uniform size elements with Ne 5 5 and

Np 5 4. Equation (13) is in a conservative form, similar

to Eq. (1) for a Cartesian mesh. Therefore, the SLDG

scheme can be implemented in a similar fashion as that

for a Cartesian mesh previously described. As we di-

rectly work with U, the mass conservation property of

numerical solution is preserved. Below, we focus our

description on the differences of implementation.

The cubed-sphere grid lines may be interpreted as

three families of piecewise closed great-circle arcs (j,h, z)

on the sphere (see Figs. 3 and 4). We exploit this idea

for solving transport equations on the cubed sphere. As

a result of this special geometric feature of the cubed-

sphere grid system, there exists three logical transport

directions denoted as j, h, and z directions as shown in

Fig. 4. Specifically,

d j is the direction along the x1 axis of face1, face2,

face3, and face4 [see Figs. 3 and 4 (upper left)].
d h is the direction along the x2 axis of face1, face3,

face5, and face6 [see Fig. 4 (upper right)]
d z is the direction along the x2 axis of face2 and face4,

and along the x1 axis of face5 and face6 [see Fig. 4

(bottom)].

In the (j, h, z) coordinate, the transport equation in

Eq. (13) on the cubed sphere can be rewritten as

›U

›t
1
›fF1(U)

›j
1

›fF2(U)

›h
1

›fF3(U)

›z
5 0, (14)

FIG. 2. Schematic showing the 2D SLDG scheme via Strang splitting, as described in the text.

(left) Locating k1 1 GLL points in both x and y directions. (middle) Evolution in x direction at

different yjg. (right) Evolution in y direction at different xig. As an example, 43 4 GLL points

per cell are used.
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where ~F1, ~F2, ~F3 2 fF1,F2g such that Eqs. (13) and (14)

are equivalent on any given face. We note that the un-

known functionU only depends on two variables (x1, x2)

on each cube face. For example,U is dependent only on

j(x1) and h(x2) on face1 and only on j(x1) and z(x2) on

face2, also see Fig. 4. Thus, Eq. (14) is essentially iden-

tical to Eq. (13) on each face. A second-order Strang-

type splitting strategy formultiple operators proposed in

Gottlieb (1972) can be used in Eq. (14). We summarize

the procedure as follows:

1) Equation (14) is split into three 1D advection prob-

lems on the cubed sphere:

›U

›t
1
› ~F1(U)

›j
5 0, (15)

›U

›t
1

› ~F2(U)

›h
5 0, (16)

›U

›t
1

› ~F3(U)

›z
5 0. (17)

2) The numerical solution is updated by a Strang-type

splitting strategy for one time step Dt:

(i) Evolve the 1D equation in Eq. (15) in the

direction j for Dt/2 [see Fig. 4 (upper left)].

FIG. 3. (top left) Schematic for the relative positions of the six cube faces (from face1 to face6), (top right) their local connectivity, and

(bottom) a cubed-spherewith total 6N2
e 5 150 elements (cells) (Ne5 5). Each element has 43 4GLLpoints (Np5 4). The thick lines show

element edges. The GLL points within each element are marked as dots. The thin lines denote the GLL grids.
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(ii) Evolve the 1D equation in Eq. (16) in the

direction h for Dt/2 [see Fig. 4 (upper right)].

(iii) Evolve the 1D equation in Eq. (17) in the

direction z for Dt [see Fig. 4 (bottom)].

(iv) Evolve the 1D equation in Eq. (16) in the

direction h for Dt/2 as in (ii).

(v) Evolve the 1D equation in Eq. (15) in the

direction j for Dt/2 as in (i).

The evolution of each 1D equation follows a similar

procedure as that for the Cartesian mesh, except for the

tracing of characteristics across face edges. As before,

we employ a fourth-order Runge–Kutta method for solv-

ing the trajectory equations:

dx1(t)

dt
5 u1[x1(t), x2jg, t] , (18)

where x2jg is a fixed GLL point. Below we only demon-

strate the initial value problem case (forward trajectory),

while the backward case is similar. Note that special

treatment is needed, since the velocity u1 takes different

expressions on different faces. Below is the procedure

implemented in our code in the case of characteristics

emanating from (x+, tn) crossing the edge of face1 and

face2, see Fig. 5.

1) Find the time point t+2 [tn, tn11], when the trajectory

reaches the face edge, denoted as xe. The following

gives a second-order way of approximating t+ when

the u1s (s 5 1 or 2 being the index for a face) is time

independent [see Fig. 5 (left)]:

xe 2 x+5
t+ 2 tn

2
[u11(xe)1 u11(x

+)], or

t+5 tn 1
2(xe 2 x+)

u11(xe)1 u11(x
+)

. (19)

In some practical applications, such as the multi-

tracer transport, u1s is only given at tn, so it is reason-

able to assume that u1s is constant in [tn, tn11]. In the

time-dependent case, assume we have a high-order

Runge–Kutta method (e.g., a fourth-order Runge–

Kutta method) to solve the initial value problem in

Eq. (18) with x1(tn) 5 x+. Denote the numerical

solution of Eq. (18) at time t as RK(t; x+, tn), then we

want to find t+ such that

FIG. 4. Schematic showing the SLDG scheme on mesh 23 23 6 of cubed-sphere geometry. As an example, 43 4

GLL points per element are used. Advection in the (top left) j direction, (top right) h direction, and (bottom)

z direction.
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RK(t+; x+, tn)5 xe . (20)

We adopt the Newton’s type method to solve Eq.

(20):

(i) Using Eq. (19) to get

t+,05 tn 1
2(xe2 x+)

u11(xe, t
n)1 u11(x

+, tn)
,

which is a good prediction of t+.

(ii) Set a threshold « and do the following

iteration:

x
j
e 5RK(t+,j; x+, tn) ;

If jxj
e 2 xej, «, stop, and let t+ 5 t+,j ,

else

t+,j115 t+,j 1
x
j
e2 xe

u11(x
j
e, t+, j)

.

In the simulation, it takes about three–five iterations to

reach an error tolerance of « 5 10210.

2) Continue evolving the characteristic on face2 to

locate the arrival point x at the next time step tn11

[see Fig. 5 (right)].

4. Numerical experiments

a. 2D Cartesian test

In this section, we apply the proposed SLDG scheme

with the BP filter to several benchmark transport

problems on the 2D Cartesian mesh, including solid-

body rotation of a smooth Gaussian hill and deforma-

tion flow. In the simulations, P3 with 4 GLL points is

used. The numerical results will demonstrate the accu-

racy, efficiency and reliability of the proposed scheme

when solving the transport equations.

1) SOLID-BODY ROTATION OF A GAUSSIAN HILL

Consider the following 2D solid-body rotation problem:

ft 1 (uf)x1 (yf)y 5 0, (21)

where the nondivergent velocity is defined to be (u, y)5
(2y, x), on a periodic domainD5 [21, 1]2. For the solid-

body rotation test, the initial distribution will translate

on a circular trajectory centered at origin without in-

curring any deformation.Moreover, the exact solution is

known at any time andwill return to the initial state after

a 2p evolution. We choose the initial condition as a

smooth Gaussian hill:

f(x, y, t5 0)5 ac expf2bc[(x2 x0)
2 1 (y2 y0)

2]g ,

where ac5 1, bc5 100/3, and x05 y05 0.2.We let CFL5
0.92, which is approximately 7 times larger than CFL5
0.13 for the RKDG P3 scheme. We compute the

numerical solution at T 5 2p and report the l2 and l‘
errors and orders of accuracy in Table 1. TheNe 3Ne in

Table 1 denotes the number of the elements we used in

the simulation. It is clear that the second order of conver-

gence is observed, which comes from the splitting error.

2) DEFORMATIONAL FLOW TEST

We consider the 2D deformation flow on Cartesian

mesh proposed by Blossey and Durran (2008), which is

a challenging benchmark test as opposed to the solid-

body rotation test. Unlike the solid-body rotation test,

the velocity field in Eq. (21) is space and time de-

pendent, whereas the exact solution is available only at

FIG. 5. Obtain the arrival point x of the SLDG scheme at the edge of face1 and face2. (left) Find the time t+when the

trajectory emanating from x+ reaches the edge. (right) Get the arrival point x starting at time t+.

TABLE 1. Normalized standard errors and order of accuracy for

f for the solid-body rotation of cosine bell test on Cartesian mesh.

The SLDG P3 scheme with the BP filter is used and CFL5 0.913.

The numerical solution is computed at T5 2p. Do the same in the

next tables.

Ne 3 Ne l2 l2 order l‘ l‘ order

16 3 16 3.40 3 1024 — 1.57 3 1022 —

32 3 32 5.44 3 1025 2.65 2.98 3 1023 2.40

64 3 64 1.23 3 1025 2.14 5.28 3 1024 2.50

128 3 128 3.03 3 1026 2.03 1.02 3 1024 2.37

256 3 256 7.54 3 1027 2.01 2.20 3 1025 2.22
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the final time t 5 T. The initial circular distribution de-

forms into a crescent shape as it moves on the domain,

and returns to the initial position when the flow reverses.

The computational domain D 5 [0, 1]2, with periodic

boundaries, and the velocity field is defined as

u(x, y, t)5 uu(r, t) sin(u), y(x, y, t)52uu(r, t) cos(u) ,

where r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 0:5)2 1 (y2 0:5)2

q
, u 5 tan21[(y 2 0.5)/

(x 2 0.5)], and

uu(r, t)5
4pr

T

(�
12 cos

�
2pt

T

��
12 (4r)6

11 (4r)6

)
.

The initial condition is given by

f(x, y, t5 0)5
f0 1

"
11 cos(p~r)

2

#2
if ~r# 1

f0 if ~r. 1,

8>>><>>>:

FIG. 6. The 2D deformation flow on Cartesianmesh. The SLDGP3 scheme without the BP filter is used.Ne5 60 in

both x and y direction and CFL5 0.95. The deformation of the initial distribution during the simulation at time (a)T,

(b) T/4, (c) 3T/4, and (d) T/2. The contours are plotted in the range from20.05 to 0.95 with increment of 0.1, and an

additional contour at 0 is added (see the dashed line). Numerical oscillations appear and a negative numerical

solution is observed. Thick contours are the highlighted exact (initial) solution for the contour values 0.05 and 0.75.
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where ~r5 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 0:3)2 1 (y2 0:5)2

q
and the background

field is set as f0 5 0. Though the velocity field is very

complicated, the analytical solution is known at the final

time t5T and identical to the initial state; therefore, the

error measures can be computed at time T.

For the simulation, the SLDG P3 scheme with the

number of elements Ne 5 60, in both x and y directions

were used, and the CFL number is set to 0.95. In Figs. 6

and 7, we show the contour plots of the numerical so-

lutions at (Figs. 6a and 7a) t 5 T, (Figs. 6b and 7b) t 5
T/4, (Figs. 6c and 7c) t 5 T/2 and (Figs. 6d and 7d) t 5
3T/4, without and with the BP filter, respectively. The

numerical solution of the SLDG scheme captures the fine

features of exact solution (Fig. 6) even without the BP

filter. Note that the BP filter enforces the positivity on

numerical solution and helps to get rid of unphysical

oscillations. The SLDG scheme with the BP filter

provides high-quality numerical result, at the same

time, keeps the solution positivity preserving and

conservative.

b. 2D spherical tests

In this section, we consider two types of 2D spherical

advection tests for the SLDG scheme on the sphere. The

tests include a solid-body rotation and two deformation

flow tests.

1) SOLID-BODY ROTATION OF A COSINE BELL

Solid-body rotation of a cosine bell is a widely used

standard test for 2D spherical advection problem

FIG. 7. As in Fig. 6, but with the BP filter. The numerical solution is exactly positivity preserving.
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(Williamson et al. 1992). The initial scalar distribution

(cosine bell) is defined by

f(l, u, t5 0)5

�
(h0/2)[11 cos(prd/r0)] if rd, r0
0 if rd$ r0 ,

where rd is the great-circle distance between (l, u) and

the bell center, which is (3p/2, 0) at t5 0, h0 5 1000m is

the maximum height of the cosine bell, and r0 5 R/3

represents the radius of the bell, hereR5 6.371 223 106

is the earth’s radius. The wind components in the lon-

gitudinal (l) and latitudinal (u) directions are defined as

follows:

u5 u0(cosa0 cosu1 sina0 cosl sinu),

y52u0 sina0 sinl ,

where u0 5 2pR/(12 days) and a is the rotation angle,

which is between the axis of the solid-body rotation and

the polar axis of the spherical coordinate. The flow is

oriented along the equatorial direction when a 5 0 and

the northeast direction when a 5 p/4. Note that the

configuration with a 5 p/4 is more challenging for the

cubed-sphere geometry. In this case, the cosine bell goes

through four vertices, two edges, and all six faces. The

wind field is nondivergent, which means the maximum

principle holds. The exact solution is available at all

times and the cosine bell reaches its initial state after

a complete (12 days) rotation, thus error measures can

be computed.

We apply the SLDG P3 scheme to the solid-body ro-

tation problem with mesh 203 203 6 corresponding to

1.58 resolution at the equator for the cubed-sphere ge-

ometry. The time step is set as Dt 5 3600 s, which is

6 times larger than that used by the RKDG P2 scheme in

Zhang and Nair (2012). In Table 2, we report the stan-

dard normalized error norms based on Williamson et al.

(1992) with a 5 0 and a 5 p/4. The error measured are

comparable to those by the RKDG scheme in Nair et al.

(2005) and Zhang and Nair (2012). Note that the pro-

posed scheme is exactly mass conservative. In Fig. 8, the

contour plots of the numerical solution are reported

for a 5 p/4. The results are observed to be comparable

to those produced by a nonoscillatory RKDG scheme

presented in Zhang and Nair (2012). The evolution of

error norms are given in Fig. 9 for a5 0 (Figs. 9a,b) and

a 5 p/4 (Figs. 9c–f). Note that the l‘ error grows

TABLE 2. Normalized standard errors for f for the 2D solid-body rotation test with a5 0 and a5 p/4 on the cubed-sphere geometry.

The SLDGP3 scheme is used on a 203 203 6 (1.58 resolution) and time step is set asDt5 3600 s. The numerical solution is computed after

a full rotation.

Scheme l1 l2 l‘ Mass error

a 5 0 SLDG 1.04 3 1022 7.03 3 1023 6.53 3 1023 25.20 3 10213

SLDG 1 BP 8.50 3 1023 5.82 3 1023 6.72 3 1023 25.20 3 10213

a 5 p/4 SLDG 1.17 3 1022 7.70 3 1023 7.20 3 1023 24.13 3 10213

SLDG 1 BP 8.93 3 1023 6.06 3 1023 7.46 3 1023 24.12 3 10213

FIG. 8. An orthographic projection of the solution of the solid-body rotation of a cosine bell with a 5 p/4. The SLDG P3 scheme is

applied on a cubed-sphere mesh 20 3 20 3 6 (1.58 resolution) and time step is set as Dt 5 3600 s. (a) Exact (initial) solution. (b) The

numerical solution by the SLDGP3 schemewithout the BP filter. Negative height is observed. (c) The numerical solution by the SLDGP3

scheme with the BP filter.
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significantly when a cosine bell goes through a corner for

a 5 p/4 with Dt 5 3600 s. However, the l‘ error drops

back quickly when it is away from the corner (see Figs.

9c,d). If the time step Dt is reduced to 1800 s, the l‘ error

is also reduced (see Figs. 9e,f). This indicates that the l‘
error around corners comes from time discretization. In

Fig. 10 (top), numerical error is plotted when the cosine

bell approaches (left), reaches (middle), and passes

(right) a corner on the cubed sphere. It is observed that

error magnitude at cube edges is much larger than

elsewhere. The error grows as the peak of the cosine bell

approaches a corner on the cubed sphere; the error starts

to drop as the peak passes the corner. We then consider

a different ordering for dimensional splitting: we first

evolve Eq. (17), then Eq. (15), and finally Eq. (16). Sim-

ilar error patterns but with opposite signs are observed

FIG. 9. The histories of error norms evolution for the solid-body rotation. The SLDGP3 scheme is applied on a cubed-spheremesh 203
20 3 6 (1.58 resolution). The time step is set as (a)–(d) Dt 5 3600 s and (e),(f) Dt 5 1800 s. (a) Evolution of error norms for the SLDG

scheme without the BP filter when a5 0. (b) Evolution of error norms for the SLDG scheme with the BP filter when a5 0. Comparable

result is observed in (a). (c) Evolution of error norms for the SLDG scheme without the BP filter when a 5 p/4. The l‘ grows when the

cosine bell goes through a corner, where the splitting error is larger than elsewhere. (d) Evolution of error norms for the SLDG scheme

with the BP filter when a5 p/4. (e) Evolution of error norms for the SLDG scheme without the BP filter when a5 p/4 and Dt5 1800 s.

The l‘ does not excessively growwhen the cosine bell goes through the corner. (f) Evolution of error norms for the SLDG schemewith the

BP filter when a 5 p/4 and Dt 5 1800.
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in Fig. 10 (bottom). This is an indication that such error

comes from the dimensional splitting, and there exists

a certain symmetry property for different dimensional-

splitting orderings. Such symmetry property, together

with the symmetry of the cosine bell profile, may con-

tribute to the dropping of the l‘ error after the cosine

bell passed the corner.

We compare the proposed SLDG scheme with the

RKDG scheme and the ‘‘CSLAM’’ scheme by Lauritzen

et al. (2010), in terms of error norms. In Table 3, we show

the comparison between the SLDG scheme and the

RKDG scheme when P3 is used. The mesh is set as 303
303 6 (Ne 5 30), which corresponds to approximately 18
resolution at the equator. Note that the SLDG scheme

can take a very large time step but the RKDG scheme

suffers from the time step restriction (1400 s is nearly the

limit for time step in this case). The CPU time for the

SLDG scheme is 3 times smaller than that of the RKDG

scheme. We remark that the computational cost per time

step of the SLDG scheme is larger than that of the

RKDG scheme. It is due to the need to evaluate volume

integrals in several subintervals for one element, see Eq.

(8). We also remark that the SL scheme is significantly

efficient for the multitracer transport because the geo-

metric information such as upstream trajectories can be

reused for each field. In spite of the larger time steps

used with the SLDG scheme, the error norms are still

FIG. 10. The error pattern for the solid-body rotation problem when the cosine bell passes one corner. The SLDG P3 scheme is applied

on a cubed-sphere mesh 20 3 20 3 6 (1.58 resolution). The time step is set as Dt 5 3600 s. (a)–(c) The method using the dimensional

splitting as described in section 3b. (d)–(f) The method with another ordering for dimensional splitting as described in section 4b. (a),(d)

t 5 36 h; (b),(e) t 5 43 h; (c),(f) t 5 50 h.

TABLE 3. Comparison between the RKDG scheme and the

SLDG scheme in terms of error norms and CPU time when solving

the solid-body rotation of a cosine bell. Themesh is set as 303 303 6

corresponding to 18 resolution. DG P3 is adopted. The numerical

solutions are computed after a full rotation.

Scheme

Time

step (s)

CPU

time (s) l2 l‘

a 5 0 RKDG P3 1440 9.76 1.14 3 1022 7.55 3 1023

SLDG P3 7200 3.32 3.70 3 1023 4.33 3 1023

SLDG P3 3600 6.31 2.80 3 1023 3.12 3 1023

a 5 p/4 RKDG P3 1440 9.76 1.21 3 1022 7.97 3 1023

SLDG P3 7200 3.32 1.72 3 1022 3.56 3 1022

SLDG P3 3600 6.31 5.15 3 1023 9.25 3 1023
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comparable to those of the RKDG scheme. This

shows the SLDG scheme to be more efficient when

solving the solid-body rotation problem. Finally, we

compare the SLDG scheme with the CSLAM (Lauritzen

et al. 2010), when the horizontal resolution and the time

step are comparable. For this experiment, the mesh for

the SLDG P3 scheme is set to 10 3 10 3 6 (Ne 5 10),

which corresponds to 38 resolution, and a 32 3 32 3 6

mesh is set for the CSLAM scheme, which corresponds

to 2.81258 resolution. Note that we use a little lower-

resolution mesh for the SLDG scheme. Table 4 shows

the error norms of the two schemes performing the

solid-body rotation of a cosine bell with a 5 0 and a 5
p/4. The time step is set as 4050 s. It is observed that the

error norms of SLDG P3 scheme are a little smaller than

those of the CSLAM. The comparison with the two pop-

ular transport schemes as discussed above shows the

SLDG scheme is very competitive.

2) DEFORMATIONAL FLOW ON THE SPHERE

(MOVING-VORTEX PROBLEM)

The second test is a challenging deformational flow

test, the moving-vortex problem, proposed by Nair and

Jablonowski (2008). The test represents the roll-up of an

idealized moving atmospheric vortex such as hurricane

or tropical cyclone (Hall andNair 2013). In this test case,

two vortices are generated located on the diametrically

opposite sides of the sphere. The wind field is a combi-

nation of wind vectors of the solid-body rotation, which

is considered in the previous case, and that of the de-

formational flow. The two vortices move along a great

circle and the exact solution is available at any time. In

a rotated coordinate system (l0, u0), the scaled tangential

velocity Vt of the vortex field is defined by

Vt 5u0
3

ffiffiffi
3

p

2
sech2(r) tanh(r) ,

where r 5 r0 cos(u
0) is the radial distance of the vortex

with the parameters r0 5 3, and rotational speed u0 5
2pR/12 (days) such that 12 days are required for a full

vortex evolution. The associated angular velocity is de-

fined to be

v(u0)5
�
Vt/(Rr) if r 6¼ 0,

0 if r5 0.

The exact solution in rotated coordinates is

f(l0, u0, t)5 12 tanh

�
r

g0
sin[l0 2v(u0)t]

	
, (22)

where parameter g05 5. The time-dependent wind field

for the moving vortex is given by

u(t)5u0(cosu cosa1 sinu cosl sina)

1Rv(u0)fsinuc(t) cosu
2 cosuc(t) cos[l2 lc(t)] sinug,

y(t)52u0 sinl sina

1Rv(u0)fcosuc(t) sin[l2 lc(t)]g ,

where a is the flow orientation parameter described

earlier and [lc(t), uc(t)] is the center of one of themoving

vortices, which is directed along a great circle trajectory.

For the current test, the initial vortex center is located at

[lc(0), uc(0)]5 (3p/2, 0), which is also the location of the

north pole of the rotated sphere.

We applied the SLDG P3 scheme to the moving-

vortex problem with a mesh 30 3 30 3 6 (18 resolution)
on the cubed-sphere geometry. The time step is set as

Dt 5 3600 s which is 6 times larger than that used in

Zhang and Nair (2012). In Fig. 11, the evolution of nu-

merical solution is shown for a 5 p/4 as a series of or-

thographic projections centered on one of the vortices.

The initial condition is shown in Fig. 11a and the nu-

merical solution at day 3, day 6, and day 12 are shown in

Figs. 11b–d, respectively. The numerical solutions are

visually indistinguishable from the exact solution, which

is not shown for saving space. At this resolution, the

SLDG scheme resolves the fine filaments of the vortex

field and is comparable to the results shown in Fig. 2 of

Nair and Jablonowski (2008) and Fig. 8 of Pudykiewicz

(2011). When approximated to two decimal places, the

normalized standard l1, l2, and l‘ errors are 4.40 3 1024,

1.063 1023, and 9.553 1023, respectively. The histories of

error norms evolution are plotted in Fig. 12 for a 5 0 and

a 5 p/4. A similar phenomenon is observed that the l‘
error normgrowswhen the vortices go through the corners,

then it drops back when they are away from the corners.

We employ the SLDG scheme with high-order ele-

ments (P6) to study its performance. For this test a mesh

15 3 15 3 6 is adopted, which corresponds to 18 reso-
lution on the cubed-sphere geometry. The time step is

TABLE 4. Comparison between the SLDG P3 scheme and

CSLAM (Lauritzen et al. 2010) in terms of error norms when

solving the solid-body rotation of a cosine bell. The mesh is set as

10 3 10 3 6 for SLDG scheme corresponding to 38 resolution and

32 3 32 3 6 for CSLAM corresponding to 2.81258 resolution. The
numerical solutions are computed after a full rotation with time

step Dt 5 4050 s.

Scheme l1 l2 l‘

a 5 0 SLDG P3 7.52 3 1022 4.20 3 1022 3.31 3 1022

CSLAM 7.9 3 1022 4.6 3 1022 3.4 3 1022

a 5 p/4 SLDG P3 7.15 3 1022 3.66 3 1022 2.25 3 1022

CSLAM 7.6 3 1022 4.1 3 1022 2.5 3 1022
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set to be 3600 s as before. The numerical solution is vi-

sually indistinguishable from the exact solution, so it is

not shown to save space. Here we give the normalized

standard l1, l2, and l‘ errors after 12 model days. They

are 3.53 3 1024, 7.28 3 1024, and 8.28 3 1023, respec-

tively. Note that the error norms are somewhat smaller

than those computed by the SLDG P3 scheme with the

same resolution; this is an expected behavior of high-

order methods with smooth problems.

3) DEFORMATIONAL FLOW ON THE SPHERE

(SLOTTED CYLINDER)

The last benchmark test we consider is a challenging

test from a class of deformational flow tests proposed by

Nair and Lauritzen (2010). This test is quite challenging

for any advection scheme on the sphere because the flow

filed is extremely deformational (nondivergent) with a

nonsmooth initial condition. Since the analytic solution

FIG. 11. An orthographic projection of the solution of moving-vortex test with a 5 p/4. The SLDG P3 scheme is

applied on a cubed-sphere mesh 303 303 6 (18 resolution) and time step is set as Dt5 3600 s. (a) Initial vortex field.

(b) The numerical solution by the SLDG P3 scheme at day 3. (c) The numerical solution by the SLDG P3 scheme at

day 6. (d) The numerical solution by the SLDG P3 scheme at day 12. The numerical solutions are visually identical to

the exact solution; therefore, it is not shown.
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is available at the final time, errors measures can be

made available for comparison.

The nondivergent wind field is defined to be

u(l, u, t)5 k sin2(l0) sin(2u) cos(pt/T)1 2p cos(u)/T ,

y(l, u, t)5 k sin(l0) cos(u) cos(pt/T) ,

where l0 5 l2 2pt/T, k 5 2, and T5 5 units. Note that

the wind field is a combination of a deformational field

and a zonal background flow, avoiding the possible

cancellations of errors due to the reversal of the flow

along the same flow path after the half timeT/2 (see Nair

and Lauritzen 2010). The initial condition is the twin

slotted-cylinder defined by

c(l, u)5

c if ri # r and jl2 lij$ r/6 for i5 1, 2,

c if r1# r and jl2 l1j, r/6 and u2 u1,2
5

12
r ,

c if r2# r and jl2 l2j, r/6 and u2 u2.
5

12
r ,

b otherwise

8>>>>>><>>>>>>:
(23)

where c 5 1, b 5 0, r 5 1/2 is the radius of the cylinder,

and ri5 ri(l, u) is the great-circle distance between (l, u)

and a specified center (li, ui) of the cylinder, which is

given by

ri(l, u)5 arccos[sinui sinu1 cosui cosu cos(l2 li)] .

The centers of the initial distribution are located at

(l1, u1)5 (5p/6, 0) and (l2, u2)5 (7p/6, 0), respectively.

The slots are oriented in opposite directions for the two

cylinders so that they are symmetric with respect to the

flow. The wind field and initial distributions are defined

in nondimensional units on the unit sphere (R5 1). Note

that the distribution is stretched into thin filaments and

at half time T/2 while they are being transported along

the zonal direction by the background flow. The exact

solution is only available at the final time t5 T, which is

identical to the initial condition.

We apply the SLDG P3 scheme with the BP filter to

the deformational flow problemwith amesh 303 303 6

corresponding to 18 resolution at the equator for the

cubed-sphere geometry. The time step is set as Dt 5
T/800 such that it takes 800 steps to complete a full

evolution. Note that Dt is chosen as 5 times larger than

that used for the RKDG P2 scheme in Zhang and Nair

(2012). Figure 13 shows the initial condition (Fig. 13a),

FIG. 12. The histories of error norms evolution for themoving-vortex test. The SLDGP3 scheme is applied on a cubed-spheremesh 303
303 6 (18 resolution) and time step is set as Dt5 3600 s. Evolution of error norms for the SLDG scheme when (a) a5 0 and (b) a5 p/4.

The l‘ grows when the vortices go through the edges and corners, where the the splitting error is larger than elsewhere. However, it drops

back when the vortex is away from the edges or corners.
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the numerical solution at half time t5 T/2 (Fig. 13b) and

final time t 5 T. It is clearly observed that the SLDG

scheme resolves the very thin filament solution struc-

tures at half time and the original shape of the twin

slotted cylinder at final time is also captured. Moreover,

the numerical solution preserves the positivity exactly

and compares to that reported in the Zhang and Nair

(2012).

We consider a variant of this test by changing the

initial condition where the non-smooth twin slotted

cylinder is replaced by two symmetrically located

quasi-smooth cosine bells defined as follows (Nair and

Lauritzen 2010):

c(l, u)5

8<:
b1 ch1(l, u) if r1, r ,

b1 ch2(l, u) if r2, r ,

b otherwise,

(24)

where c 5 0.9, b 5 0.1, and

hi(l, u)5
1

2
[11 cos(pri/r)] if ri, r, for i5 1, 2:

Other parameters are the same as those used for the

slotted-cylinder case. Note that the initial condition is

quasi-smooth (C1 smoothness). We want to use this test

case to compare the proposed SLDG scheme with the

CSLAM scheme in terms of error norms. Themesh is set

as 20 3 20 3 6 corresponding to 1.58 resolution at the

equator and the time step is set asDt5T/600. In Table 5,

we show the l1, l2, and l‘ error norms of the SLDG P3

scheme and those of CSLAM reported in Nair and

Lauritzen (2010) with the same resolution and time step.

It is observed that the l1, l2, and l‘ error norms by SLDG

are approximately 2/3–3/4 of those by CLSAM. We con-

clude that when the CFL number approximately equals

1 and the same resolutions are considered, the errors by

the SLDG scheme are smaller than those by CSLAM

when solving the deformational flow problem.

5. Summary and conclusions

In the paper, a SLDG transport scheme has been de-

veloped on the Cartesian domain and extended to

the cubed-sphere geometry. The scheme is inherently

FIG. 13. Numerical solution for the deformational flow test with twin slotted cylinder as the initial condition. The SLDGP3 scheme with

BP filter is applied on a cubed-sphere mesh 303 303 6 (18 resolution) and time step is set as t5 T/800. (a) Initial condition: twin slotted-

cylinder. (b) The numerical solution by the SLDGP3 at half time t5T/2. The thin filaments are resolved. (c) The numerical solution by the

SLDG P3 at the final time T 5 5. The slotted cylinders are captured by the SLDG scheme. The value of T is set as 5. Also note that, the

numerical solution is exactly positivity preserving.
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conservative with positivity preserving (or bound pre-

serving) property. The main advantage of the SLDG

scheme is that it can take an arbitrary time step without

a stability issue. Such a property makes the proposed

SLDG scheme more efficient than the well-known

Runge–Kutta discontinuous Galerkin (RKDG) scheme

when solving the transport equations. A set of bench-

mark tests were performed to demonstrate the robust-

ness of the proposed SLDG scheme on the Cartesian

plane and sphere. The comparison between the SLDG

scheme and another two popular global transport schemes

including the RKDG scheme and Conservative Semi-

Lagrangian Multi-Tracer Transport Scheme (CSLAM)

was performed.

Multitracer transport schemes are essential for prac-

tical climate models where hundreds of tracers species

need to be advected. In a computational point of view,

the semi-Lagrangian transport scheme has several ad-

vantages in this context, because the upstream trajectory

information can be efficiently reused for each tracer, and

monotonicity (or positivity) conditions can be enforced.

For new generation models based on highly scalable

spectral-element and discontinuous Galerkin methods,

application of multitracer scheme is not obvious because

of the highly nonuniform Gaussian quadrature grids

(elements) they use. A possible option is to employ

finite-volume semi-Lagrangian methods such as the

CSLAM scheme on spectral-element grids. However,

this necessitates a dual finite-volume overlaid grid com-

bined with grid-to-grid remapping. The proposed SLDG

scheme has the potential to address this issue because

the scheme is developed on the native spectral-element

grid and no dual grid is required. In the context of

multitracer transport on the sphere, the proposed P3

SLDG scheme is an efficient alternative for the Eulerian

(RKDG) transport scheme and qualitatively compara-

ble or better than the semi-Lagrangian-based CSLAM

scheme.

Our approach for the SLDG scheme relies on the

Strang-type splitting, which is subject to splitting errors.

For the cubed-sphere geometry splitting error is further

exacerbated by the grid discontinuity at the cube-sphere

edges resulting from the patched mapping. We are cur-

rently investigating a way to avoid splitting approach,

and reduce the error norms at the cubed-sphere edges.

In the future, we plan to extend the SLDG scheme

to more general cases, such as the Euler system and

shallow-water equations.
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