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a b s t r a c t

A central-upwind finite-volume (CUFV) scheme for shallow-water model on a nonorthogonal

equiangular cubed-sphere grid is developed, consequently extending the 1D reconstruction

CUFV transport scheme developed by us. High-order spatial discretization based on weighted

essentially non-oscillatory (WENO) is considered for this effort. The CUFV method combines

the alluring features of classical upwind and central schemes. This approach is particularly

useful for complex computational domain such as the cubed-sphere. The continuous flux-

form spherical shallow water equations in nonorthogonal curvilinear coordinates are uti-

lized. Fluxes along the element boundaries are approximated by a Kurganov–Noelle–Petrova

scheme. A fourth-order strong stability preserving Runge–Kutta time stepping scheme for

time integration is employed in the present work. The numerical scheme is evaluated with

standard shallow water test suite, which accentuate accuracy and conservation properties.

In addition, an efficient yet inexpensive bound preserving filter with an optional positivity

filter is used to remove spurious oscillations and to achieve strictly positive definite numer-

ical solution. To tackle the discontinuities that arise at the edges of the cubed-sphere grid,

we utilize a high-order 1D interpolation procedure combining cubic and quadratic interpola-

tions.The results with the high-order scheme is compared with the results for the same tests

for various schemes available in literature. Since, the scheme presented here uses local-cell

information, it is expected to be scalable to high number of processors count in a distributed

node high-performance computer.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Finite-volume (FV) methods offer many computationally desirable properties including inherent conservation, ease of apply-

ing monotonicity (non-oscillatory, positivity-preserving properties etc.), geometric flexibility to adapt to complex grid systems

and have the potential to utilize available massive parallel computers. Because of these features FV based discretization tech-

niques are becoming increasingly popular in atmospheric numerical modeling. In addition, the new generation atmospheric

(climate) models are computationally intense and are designed for currently available petascale computers. For parallel effi-

ciency of the model, the choice of underlying numerical algorithm and spherical grid system (computational domain) are very

crucial and directly linked to the scalability of the model. For example, the new generation atmospheric models avoid using the

global spectral transform methods due to its non-local nature which impedes efficient parallel implementation. However, FV
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scheme being local method is a very good choice for spatial discretization. The disadvantage of these CUFV schemes is that they

are more diffusive than analogous discretizations which use expensive and complicated approximate Riemann solvers. Although

element-based Galerkin schemes such as the high-order continuous and discontinuous Galerkin methods provide excellent

parallel scalability ([1–4]), they have stringent Courant–Friedrichs–Lewy (CFL) stability limit with explicit time-stepping, and

issues with creating a non-oscillatory solution ([5–7]).

Representation of the spherical geometry plays a vital role in the performance of the modern FV based model. Latitude-

longitude grid system is a popular choice but has a stringent limitation to scale to massively parallel machines, and also has

complications close to the poles, due to the singularities in the governing equations, these reasons make latitude-longitude grid

systems not favorable for the next generation global modeling systems. Other choices for global grid systems are the icosahedral

hexagonal grid [8–10], Yin–Yang grid [11] and cubed-sphere grid [12,13], these grid systems provide quasi-uniform grid structures

(control-volumes). Cubed-sphere grid is gaining popularity, since it is free from polar singularities, and its grid uniformity leads

to excellent parallel efficiency [14,15]. The cubed-sphere grid system is very well suited for FV discretization, because of the

underlying control volumes (grid cells) are logically rectangular, facilitating easy implementation. Cubed-sphere consists of six

identical spherical patched surfaces, which are discontinuous at the edges and corners. These edges and corners need preferential

treatment. In order to predict the cell-averages at the new time level, FV methods require a reconstruction procedure for fluxes

at the cell edges from the known cell-averages. This involves a computational halo region (stencil) encompassing several grid

cells. We make use of high-order 1D interpolation procedure combining cubic and quadratic interpolations for calculation of cell

averages in the halo region.

In modeling of the global atmospheric flows, the shallow water equations on sphere are considered to be the standard test

problems. Spherical shallow-water models are often used as a test-bed to validate horizontal aspects of the numerical schemes

of a complex 3D model. Williamson et al. [16] standardized a suite of tests for global shallow water models. Recently, several

upwind-based FV numerical schemes have been tested in shallow-water models on the cubed-sphere [15,17–19]. However,

these models employ specialized Riemann solvers which are computationally cumbersome, particularly for the nonorthogonal

curvilinear geometry. In this present work we employ the cubed-sphere grid for the proposed FV scheme, and validate the

performance by using benchmark tests [16].

High-order extensions of Godunov schemes are the basis of presently available large class of FV methods for solving hyperbolic

conservation laws, collectively known as the Godunov-type schemes [20,21]. These schemes essentially have three basic steps

in the solution process: reconstruction, evolution and projection. They are broadly classified into upwind and central schemes

depending on the final projection step. Upwind schemes employ Riemann solvers to resolve discontinuity at cell interfaces, this

requires characteristic information of the wave propagation at the discontinuity (Riemann fans), often resulting in a complex

and expensive upwind algorithm (see for example [15,17,22]). Where as the central schemes do not require characteristic

decomposition or expensive Riemann solvers, and the projection is done by averaging over the Riemann fans [23], nevertheless,

the central schemes are dissipative but computationally inexpensive. The central-upwind finite-volume (CUFV) scheme combines

the nice features of the classical upwind and central FV methods as introduced in [24–28]. Semi-discrete formulation of CUFV

schemes avoid staggered grids and are relatively easy to implement for practical applications, moreover, due to the semi-

discretized formulation time integration can be performed by explicit high-order Runge–Kutta method.

The spatial order of accuracy as well as non-oscillatory property of central FV scheme depends on the reconstruction polyno-

mials. The high-order weighted essentially non-oscillatory (WENO) method ([29]) can be utilized in the reconstruction stage as

shown in [26]. The WENO philosophy of Jiang and Shu [30] involves a weighted sum of polynomials where the least oscillatory

polynomials are weighted the highest, which results in a class of robust reconstruction procedure. Recently, Katta et al. [31,32]

tested two CUFV schemes on cubed-sphere for a transport problem with strict monotonicity option. The reconstruction in the

present work relys on a fifth-order WENO (WENO-5), a dimension-split 1D reconstruction. In the present work, we extend the

CUFV transport scheme [32] further by solving shallow-water equations on the cubed-sphere.

The remainder of the paper is organized as follows. Section 2 describes the shallow water formulation on the cubed-sphere.

Section 3 introduces CUFV scheme with WENO-5 reconstruction. Numerical experiments are given in Section 4, followed by

results and conclusions in Section 5.

2. Shallow water model

In this work, the cubed-sphere geometry and the continuous flux form non-linear shallow water (SW) equations in curvilinear

coordinates are considered to test the performance of the proposed CUFV scheme.

2.1. Cubed-sphere geometry

The cubed-sphere geometry was introduced by Sadourny [12], which became popular in atmospheric modeling community

[13,33]. The cubed-sphere geometry consists of partitioning sphere S into six identical regions which are obtained by the

equiangular central projection (gnomonic) projection of the faces of the inscribed cube onto the surface of S . Each of the local

coordinate systems is free of singularities, and creates a nonorthogonal curvilinear coordinate system on S . The cubed-sphere

grid provides a quasi-uniform rectangular grid (logically rectangular) on the sphere without pole problems. This type of grid

system has been recently adapted by a number of cell-centered FV methods (see [14,17,18,31,34]) Cubed-sphere grid system
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Fig. 1. Schematic (left) of a cubed-sphere with cell-centered points for each cell. Each face of the cubed-sphere is partitioned into Nc × Nc cells (control volumes)

for the FV discretization, 6 N2
c cells span the entire spherical surface. The right panel shows a cubed-sphere edge with two cell-wide extension to create halo

regions. The grid-lines along x1-direction extended at the edges by performing 1D interpolation in x2-direction (shown as dotted arcs) over the halo zone, which

lies on the neighboring face.
is highly scalable on currently available massively parallel computer architectures. There are different variants for the cubed-

sphere grid system, however, here we consider the cubed-sphere geometry employing the equiangular central (gnomonic)

projection.

A sphere S with radius Ra is decomposed into six identical regions, by an equiangular central (gnomonic) projection of the

faces of an inscribed cube. The central angles of projection x1 = x1(λ, θ ), x2 = x2(λ, θ ) are the local coordinates for each face

such that x1, x2 � [−π /4, π /4], where λ and θ , are respectively, the longitude and the latitude of the sphere S . This results

in a nonorthogonal curvilinear coordinate system (x1, x2), which is free of singularities. Fig. 1 shows a cubed-sphere with Nc

× Nc cells (control volumes) on each face. The orientation of the different cube faces and their local connectivity is shown

in [35].

The metric tensor associated with the central projection is given by:

Gıj = R2
a

ρ4 cos2 x1 cos2 x2
×

[
1 + tan2 x1 − tan x1 tan x2

− tan x1 tan x2 1 + tan2 x2

]
(1)

where ρ2 = 1 + tan 2x1 + tan 2x2, and the tensor indices ı, j � {1, 2}. The Jacobian (metric term) of the transformation is

G = det[Gıj ]. The horizontal velocity vector on the sphere v(λ, θ ) = (us, vs) can be expressed in terms of covariant (u1, u2) and

contravariant (u1, u2) vectors, which are related through the tensor relation uı = Gıju
j, uı = Gıjuj where Gıj = G−1

ıj . For each face

of the cubed-sphere,[
u1

u2

]
= A−1

[
us

vs

]
,

[
u1

u2

]
= AT

[
us

vs

]
(2)

where

A = Ra

[
cos θ(∂λ/∂x1) cos θ(∂λ/∂x2)

∂θ/∂x1 ∂θ/∂x2

]
. (3)

The matrix A is local to each face of the cubed-sphere such that Gıj = ATA. For the details of the local transformation laws and

the matrix A see [35].

2.2. Shallow water equations

Flux-form shallow water equations in curvilinear coordinates are considered in this present work, which is equivalent to the

vector-invariant form [36]. The shallow water equations are derived from depth-integrating the Navier–Stokes equations, the

horizontal length scale is considered to be much greater than the vertical length scale. Under this condition, conservation of mass

implies that the vertical velocity of the fluid is insignificant and can be neglected.
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The governing equations for an inviscid flow of a thin layer of fluid in two-dimension (2D) are the horizontal momentum and

continuity equations for the height h, where h is the height of the fluid and is related to free surface geo-potential height (above

sea level) � = g(hs + h), here hs is the height of underlying mountains and gravitational acceleration is denoted by g.

The continuity and momentum equations for the shallow water system in curvilinear coordinates, can be represented as

follows ([3,13]):

∂

∂t
(
√

Gh)+ ∂

∂x1
(
√

Gu1h)+ ∂

∂x2
(
√

Gu2h) = 0, (4)

∂u1

∂t
+ ∂

∂x1
(E) = −

√
Gu2(f + ζ ), (5)

∂u2

∂t
+ ∂

∂x2
(E) =

√
Gu1(f + ζ ), (6)

Where

E = � + 1

2
(u1u1 + u2u2), ζ = 1√

G

[
∂u2

∂x1
− ∂u1

∂x2

]
, f = 2ω sin θ

Here f is the Coriolis parameter, ω is the rotation rate of the earth and ζ is the relative vorticity.

The six local cartesian coordinate systems (x1, x2) are projected onto the sphere using equi-angular central projection [3], in

such a way that x1 = x1(λ, θ ), x2 = x2(λ, θ ), and −π
4 ≤ x1, x2 ≤ π

4 . The flux form of the shallow water equations (4)–(6) can be

written as:

∂

∂t
(U)+ ∂

∂x1
F1(U)+ ∂

∂x2
F2(U) = S(U) (7)

Where U = [
√

Gh, u1, u2]T , F1 = [
√

Ghu1, E, 0]T , F2 = [
√

Ghu2, 0, E]T and source term S = [0,
√

Gu2(f + ζ ), −√
Gu1(f + ζ )]T .

3. CUFV scheme for cubed-sphere geometry

For simplicity, we consider a scalar component of Eq. (7) to describe descretization. The flux form Eq. (7) can be represented

as follows:

∂U

∂t
+ ∇ · F(U) = S(U), in D × (0, T), (8)

for all (x1, x2) � D, and initial condition U0(x1, x2) = U(x1, x2, t = 0). In Eq. (8), U = U(x1, x2, t), gradient operator � = (�/�x1, �/�x2),

F = (F1, F2) is the flux function, and S(U) is the source term. D is the computational domain, spanning six identical non-overlapping

sub-domains of the surface of cubed-sphere, herein, we only define descretization for single subdomain �, since all the faces of

cubed-sphere are identical.

The subdomain � is partitioned into Nc × Nc non-overlapping rectangular cells �i, j, where i, j = 1,2,...,Nc, so that �ij = [(x1 ∈
(x1

i−1/2
, x1

i+1/2
), x2 ∈ (x2

j−1/2
, x2

j+1/2
)]. The total number of cells on the cubed-sphere are M = 6 × Nc × Nc. The size of each cell is

x1
i

= (x1
i+1/2

− x1
i−1/2

) and x2
i

= (x2
j+1/2

− x2
j−1/2

) in x1 and x2 directions respectively.

The semi-discrete CUFV scheme corresponding to (8) can be represented as follows [32]:

∂Uij

∂t
= −1

�x1
i
�x2

j

[
4∑

k=1

∫
γk

F̂ · n

]
+ Sij, (9)

where Uij is the cell-average, F̂ is the numerical flux function defined at the cell walls (interfaces), and Sij is the cell-averaged

source term. The line integrals along the cell walls are evaluated using three-point Simpson’s rule, as indicated on the right panel

of Fig. 2. Here we only show the evaluation for the east wall, and the evaluation for the other walls follows the same pattern. The

formula is given as:∫
γEast

F̂ · n ≈
�x2

j

6

[
Hi+1/2,j−1/2 + 4Hi+1/2,j + Hi+1/2,j+1/2

]
, (10)

where Hi + 1/2, j is the one-sided central-upwind flux formula [25], which is dependent on the local speed ai + 1/2, j as follows:

Hi+1/2,j =
a+

i+1/2,j
F(U−

i+1/2,j
)− a−

i+1/2,j
F(U−

i+1/2
)

a+
i+1/2,j

− a−
i+1/2,j

+
a+

i+1/2,j
a−

i+1/2,j

a+
i+1/2,j

− a−
i+1/2,j

[
U+

i+1/2,j
− U−

i+1/2,j

]
. (11)

where a+ and a− are local speeds which are given by the eigenvalues λ1 < λ2 < ��� < λN of the flux Jacobian ( �F/�U) at the left

(U−) and the right (U+) sides of the cell interface, and defined to be [25,37]:

a+ = max

{
λN

(
∂F

∂U

)
, 0

}
, a− =

∣∣∣∣min

{
λ1

(
∂F

∂U

)
, 0

}∣∣∣∣ .
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Fig. 2. 2D stencil (left) for KL scheme. Thick lines indicate the 2D stencil (W-E and S-N direction) for WENO-5 scheme. Schematic of a 2D control volume (right),

where the fluxes are evaluated on the cell boundaries at eight points (‘X’ marks). Non-oscillatory reconstruction polynomials are used for the flux evaluation.
For the SW equations on cubed-sphere geometry, the eigenvalues of the flux Jacobian are given in [3]. In x1-direction eigenvalues

are {u1, u1 ±
√

�G11}, similarly in x2-direction they are {u2, u2 ±
√

�G22}.

To evaluate the flux Hi + 1/2, j in Eq. (11), eight point-values along the cell walls (as shown in Fig. 2) are required. These values are

computed from 2D piecewise reconstruction polynomials Pn
ij
(x1, x2) ≈ Un

ij
(x1, x2)at time t = tn, where Un

ij
(x1, x2) = U(x1, x2, tn)|�ij

.

Reconstruction polynomials are subject to the following conservation constraint,

U
n

ij = 1

�x1
i
�x2

j

∫ x2
j+1/2

x2
j−1/2

∫ x1
i+1/2

x1
i−1/2

Pn
ij(x

1, x2)dx1dx2, (12)

where U
n
ij is the cell-average at time t = tn. The reconstruction polynomials can be obtained by different approaches, in the

present context, we employ high-order WENO scheme, briefly outlined below, the details are described in [31], The scheme

considered herein is non-oscillatory and is capable of removing the oscillations, but there is no guarantee that it would keep

the numerical solution within the physical bounds, this issue may occur near the flux evaluation step. To ensure the numerical

solution is always between the physical bounds, which is a basic requirement of atmospheric models we have coupled a bound

preserving filter with the CUFV scheme. The details of the filter are mentioned in [38].

3.1. Dimension-split fifth-order WENO reconstructions

WENO methods are deemed to be robust for solving conservation laws, Shu in his work [39], has given inclusive assessment of

WENO schemes. We consider CUFV scheme based on WENO reconstruction method, where fifth-order accurate 1D reconstruction

is used in a dimension-split (i.e. dimension-by-dimension) manner, hereafter this is referred to as WENO-5. The WENO-5 scheme

is widely used for various applications, including atmospheric modeling [31,40], Bryson and Levy [37] utilized a 1D central

WENO-5 scheme for a system of conservation laws. The reconstruction polynomial Pn
ij
(x1, x2) is based on 1D WENO-5 scheme,

and used in a dimension-by-dimension manner which splits the 2D scheme into two 1D reconstructions along each coordinate

direction (i.e., x1 and x2 directions).

Fig. 2 shows the computational stencil used for CUFV schemes. The thick solid lines portrayed in Fig. 2 represent the

computational stencil (five cell-wide in each direction) for WENO-5 scheme. For a single cell �ij as shown in Fig. 2 (right

panel), two 1D WENO-5 polynomials are constructed along W-E and S-N directions, for estimating four point-values on the

cell edges at east, north, west and south sides. These are shown in Fig. 2 (right panel) as E, N, W and S, respectively. Thus, flux

evaluation for the split-scheme requires only at four points on cell walls, in this case flux integral (10) simplifies into a point-value

estimation. The dimension-split approach makes the computational procedure relatively simple, particularly on cubed-sphere

grid where the corner ghost cells are not required [31]. The WENO-5 implementation on the cubed-sphere closely follows that

described in Katta et al. [31], therefore we skip the details herein.

3.2. Special treatment for cubed-sphere edges

Cubed-sphere is essentially a patched domain consists of subdomains (faces) with discontinuous edges and corners as

shown in Fig. 1. This necessitates special treatment for the high-order FV scheme which requires wider halo region. WENO-5
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reconstruction scheme requires a halo region spanning at least two cells from either side of the neighboring panels. Because of

the dimension-split approach WENO-5 does not require corner cells. Recently, Katta et al. [31] have implemented CUFV schemes

for linear transport problems on the cubed-sphere by extending the grid-lines by two grid cells at the edges. Note that the

cubed-sphere grid-lines (x1, x2) are great-circle arcs [33], the cells can be extended beyond its usual range [π /4, −π /4] by means

of high order 1D interpolation. We use this strategy, where 1D interpolations performed along the great-circle arcs as indicated

in Fig. 1 right panel.The treatment of edges is discussed in detail in [31], so the details are not mentioned herein.

The covariant velocity vectors (u1, u2), i.e., prognostic variables in the momentum equations, are not in general continuous

across the cubed-sphere edges due to the inherent coordinate discontinuity at the cubed-sphere edges. To make the reconstruction

process smooth, we consider the orthogonal spherical velocity components (us, vs) which are smooth over the entire domain.

The velocity fields (u1, u2) can be easily converted to (us, vs) through the transformation (2). The derivative quantity such as

vorticity filed (ζ ) is computed using a high-order central differencing method. At the edges, we employ backward or forward

differencing method (one-sided) depending on the location as discussed in [17]. Note that because of the equiangular central

projection considered for the cubed-sphere geometry, �x1
i

= �x2
j
, which simplifies the computation.

3.3. Time integration scheme (SSP-RK3 scheme)

The semi-discretized ODE represented in Eq. (9) should be solved to attain the solution in next time step, this semi-discrete

FV scheme can be represented in the following general form:

d

dt
Ū(t) = L(Ū) in (0, T]. (13)

There are a wide variety of time integrators available to solve the ODE (13), however, we consider the explicit Runge–Kutta (RK)

time integration methods.

In the present work, we use a strong stability preserving (SSP) third-order and three-stage RK (SSP-RK3) time integration [41]

for the proposed FV schemes. The SSP time integration schemes are widely used in DG literature [42], the advantages of this type

of time integration scheme include: they do not generate new local maxima or minima (or total variation diminishing property

in time) due to the time discretization. The SSP-RK3 scheme can be represented as follows,

Ū(1) =
[
Ūn + �tL(Ūn)

]
,

Ū(2) = 3

4
Ūn + 1

4

[
Ū(1) + �tL(Ū(1))

]
,

Ūn+1 = 1

3
Ūn + 2

3

[
Ū(2) + �tL(Ū(2))

]
.

where the superscripts n and n + 1 denote time levels t and t + �t, respectively. The CFL limit for FV scheme with SSP-RK3 is

approximately 1.00.

4. Numerical experiments and results

Williamson et al. [16] proposed a suite of benchmark test cases for SW equations on the sphere. We consider 3 tests from the

suite, which are widely used for validating SW models. For better consistency, the initial data for the test is computed from 3 × 3

point-values (see the right stencil shown in Fig. 2) on each FV cell. The cell-averaged value Uij for the scheme is computed using

the following formula based on Simpsons rule:

Uij = 1

36

(
Ui−1/2,j−1/2 + Ui−1/2,j+1/2 + Ui+1/2,j−1/2 + Ui+1/2,j+1/2 + 4Ui−1/2,j

+ 4Ui+1/2,j + 4Ui,j−1/2 + 4Ui,j+1/2 + 16Uij

)
. (14)

The normalized standard errors L1, L2 and L� [16], are used for comparing WENO-5 and KL schemes for one of the test cases

where the analytic solution is known.

4.1. Steady state geostropic flow

The first test considered is a steady-state geostropic flow test problem, which has a steady-state solution of the full non-linear

SW equations. The wind field is uniform and the equations are geostropically balanced during the time evolution. So, both

the height and flow fields remain same during the simulation. For this particular test analytical solution is the same as initial

condition. The initial velocity and height fields can be given as follows:

u = u0(cos α0 cos θ + sin α0 cos λ sin θ)

v = −u0 sin α0 sin λ
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Fig. 3. Height errors (numerical − analytic) after 5 days with steady state geostrophic flow test on 40 × 40 × 6 grid, and a CFL of 0.50 is chosen. (a) Initial height

field and (b) WENO-5. Contour lines for (b) are plotted from −2.0 to 2.0 with an interval of 0.2 m.
gh = gh0 − u0

2
(2aω + u0)(sin θ cos α0 − cos λ cos θ sin α0)

2

where a is the earth’s radius, u0 = 2πa/(12 days) and gh0 = 2.94 × 104m2 s−2. Here we chose alpha α0 = π /4, which makes the

test more challenging on the cubed-sphere. The numerical results of height (error = numerical − analytic) and vorticity fields

after 5 model days are given in Fig. 3 for WENO-5 scheme. The grid resolution considered is 40 × 40 × 6 and a CFL limit of 0.50

is chosen for this test case. The normalized L1, L2 and L� errors for WENO-5 are 1.41E–4 , 1.59E–4 and 2.58E–4 respectively. As

compared to results with other high-order SW models [3,17,18], the absolute error plots seems to be smooth, and this may due

to the diffusive nature of the flux scheme (11) used for the CUFV scheme.

4.2. Zonal flow over an isolated mountain

The second test we considered is listed as the SW test-case 5 in [16], which consists of a zonal flow of a shallow fluid over an

isolated mountain. The wind and height fields are the same as in the previous test, except for the parameters α = 0, h0 = 5960 m
0
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Fig. 4. Numerical solution for the zonal flow over an isolated mountain test on 40 × 40 × 6 grid and CFL = 0.50. Contour levels are from 5050 m to 5950 m in

intervals of 50 m. The top and bottom rows represent the solution obtained by WENO-5 scheme at 5 and 15 days respectively.
and u0 = 20 m/s . The bottom of the “mountain” is centered at (λc, θ c) = (3π /2, π /6), and defined by the following:

hs = hs0

(
1 − r/r0

)
,

where hs0 = 2000 m, r0 = π /9 and r = min

[
r0,

√
(λ − λc)

2 + (θ − θc)
2
]

.

There is no analytic solution available to this test case, we compare the results of the solution with other high-order FV results

in literature. The Numerical solution of height field and vorticity field is shown in Figs. 4 and 5 respectively. The simulation is

carried out on 40 × 40 × 6 grid, and CFL = 0.50 is chosen. The results with high-order multi moment FV model [18] and a fourth-

order upwind FV model [17] shows comparable results for this test. The evolution of vorticity fields across the cubed-sphere

edges found to be smooth (Fig. 5). Time traces of normalized errors of potential enstrophy and total energy are given in Fig. 6,

and the errors are comparable to the results given in [17]; conservation of mass (h) is up to the machine-precision and therefore

not shown here.

4.3. Rossby–Haurwitz wave

A 4-wave Rossby–Haurwitz wave (test case 6 in [16]) is considered as the third experiment in this present work. The initial

state is an exact steadily propagating solution of the non-divergent barotropic vorticity equation. This case is not considered for
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Fig. 5. Numerical solution of vorticity field (ζ ) for the zonal flow over an isolated mountain test, experiment settings are same as in Fig. 4. Contour levels are

from (−3 to 3 in intervals of .50) × 10−5 s−1. The top and bottom rows represent the solution obtained by WENO-5 scheme at 5 and 15 days respectively.

Fig. 6. All the experiment settings are same as in Fig. 4. Evolution of the normalized errors of potential enstrophy (left) and total energy (right).



K.K. Katta et al. / Applied Mathematics and Computation 266 (2015) 316–327 325
testing the long-term performance of a numerical model, because it is dynamically instable, but it still provides a good test bed

for short to middle-term simulations. The divergence-free flow field can be given by the following:

ψ = −R2ω sin θ + R2K cos2 θ sin θ cos rλ

the initial field is given by:

gh = gh0 + R2A + R2B cos rλ + R2C cos 2rλ

Here ω = K = 7.848 × 10−6s−1 and r = 4 are the constants, and A, B, and C are the functions of latitude. Please refer to [16]

for complete details for this test case. The Numerical solution of height field is shown in Fig. 7. The simulation is carried out on

48 × 48 × 6 grid, and CFL = 0.50 is chosen. From the comparison to other results given in literature we found that WENO-5

scheme produces accurate results. The evolution of normalized errors of potential enstrophy and total energy are given in Fig. 8,

the errors are comparable to the results reported with the high-order FV model [17]. In order to be consistent with the test-case

5, we chose a resolution of 40 × 40 × 6 to produce the normalized errors.
Fig. 7. Numerical solution for the Rossby–Haurwitz wave test on 48 × 48 × 6 grid and CFL = 0.50. Contour levels are from 8100 m to 10,500 m in intervals

of 100 m. The top and bottom rows represents the solution obtained by WENO-5 scheme, the left and right columns represents the solution at 7 and 14 days

respectively.



326 K.K. Katta et al. / Applied Mathematics and Computation 266 (2015) 316–327

Fig. 8. All the experiment settings are same as in Fig. 7, except the grid resolution is 40 × 40 × 6. Evolution of the normalized conservation errors of potential

enstrophy (left) and total energy (right).
5. Summary and conclusions

The central-upwind finite-volume (CUFV) scheme developed for linear transport problem by Katta et al. [31] have been

extended for the shallow-water equations on the cubed-sphere. We consider semi-discretized high-order CUFV scheme with

a dimension-split fifth-order WENO reconstruction (WENO-5). The flux computations are based on flux formula introduced

in Kurganov et al. [24,25], a compact approach which relies on one-sided local speed. Time integration is performed with a

third-order Runge–Kutta method, and several standard benchmark tests have been considered to validate the CUFV based SW

model.

A novel feature of this method is its simplicity, in terms of implementation. The CUFV scheme does not rely on characteristic

decomposition or expensive Riemann solvers, moreover, a staggered grid [14] is not required. This feature greatly simplifies

implementation in complex domain such as the cubed-sphere. The high-order dimension-split approach on the cubed-sphere

did not create any significant accuracy issue as compared to a fourth-order fully 2D reconstruction, which is consistent with the

results reported for liner transport problems in Katta et al. [31]. The nonlinear shallow-water results are comparable to those

with high-order conventional upwind based Godunov-type FV SW models [17,18]. The fourth-order FV scheme [17] requires a

sophisticated Riemann solver combined with an ortho-normalization procedure for the SW model on nonorthogonal curvilinear

cubed-sphere domain, however, CUFV SW model does not require any of these to produce comparable results as demonstrated

for the unsteady test cases. For the steady steady-state case, CUFV SW model results seems to be more diffusive as compared to

upwind based models [17,18], a less diffusive flux formula might improve this deficiency.

High-order WENO reconstructions schemes are expensive as opposed to regular polynomial reconstructions, in a fully 2D

(unsplit) case they are computationally prohibitive for practical application. In our experience with CUFV SW model, the results

with dimension-split WENO-5 scheme is comparable to that with the Kurganov–Liu (KL) scheme (results of KL scheme are not

reported here, since they are identical to that of the results obtained by WENO-5 scheme) in terms of quality and computational

expense, this corroborates the results reported in [31] for linear problems. The foremost disadvantage of WENO-5 scheme is the

reduction in the formal order of accuracy of the resulting 2D scheme due to the dimension-split approach even though the 1D

component of WENO5 scheme is fifth-order accurate. However, for cubed-sphere implementation WENO-5 is more preferable

because of the simple stencil (there is no need for corner ghost cells). The 1D method used for creating halo regions in the present

work might not be the most accurate and efficient solution, especially for high-order FV scheme. We would further investigate

the possibility of employing halo regions using 2D interpolations for future extension. The 2D CUFV schemes considered herein

will be further tested to a 3D non-hydrostatic atmospheric model in future.
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