
1

Rotated versions of the Jablonowski steady-state and baroclinic
wave test cases: A dynamical core intercomparison

Peter H. Lauritzen 1, Christiane Jablonowski 2, Mark A. Taylor 3, and Ramachandran D.
Nair 4

1Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO, USA.
2University of Michigan, Department of Atmospheric, Oceanic and Space Sciences, Ann Arbor, MI, USA.
3Sandia National Laboratories, Albuquerque, New Mexico, USA.
4Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO, USA.

Manuscript submitted August 5, 2009, revised November 27, 2009

The Jablonowski test case is widely used for debugging and evaluating the numerical characteristics of global dynamical cores that
describe the fluid dynamics component of Atmospheric General Circulation Models. The test is defined in terms of a steady-state
solution to the equations of motion and an overlaid perturbation that triggers a baroclinically unstable wave. The steady-state initial
conditions are zonally symmetric. Therefore, the test case design has the potential to favor models that are built upon regular
latitude-longitude or Gaussian grids. Here we suggest rotating the computational grid so that the balanced flow is no longer aligned
with the computational grid latitudes. Ideally the simulations should be invariant under rotation of the computational grid. Note
that the test case only requires an adjustment of the Coriolis parameter in the model code.

The rotated test case has been exercised by six dynamical cores. In addition, two of the models have been tested with different
vertical coordinates resulting in a total of eight model variants. The models are built with different computational grids (regular
latitude-longitude, cubed-sphere, icosahedral hexagonal/triangular) and use very different numerical schemes. The test-case is a
useful tool for debugging, assessing the degree of anisotropy in the numerical methods and grids, and evaluating the numerical
treatment of the pole points since the rotated test case directs the flow directly over the geographical poles. Special treatments such
as polar filters are therefore more exposed in this rotated test case.

1. Introduction

The need for developing global test cases for dynamical
cores is becoming increasingly important as modeling
groups move towards seamless modeling systems where
the same flow solvers are intended for both high weather
resolutions as well as for coarser climate resolutions.
Hence the dynamical core should be accurate across an
even wider range of scales. To meet the requirements of
a high degree of computational parallelism and scalabil-
ity in the numerical algorithms non-traditional spherical
grids, that are more isotropic than the widely used reg-
ular latitude-longitude grids, are being explored. In ad-
dition, novel numerical techniques are being assessed by
the global atmospheric modeling community. All these

factors raise questions about the accuracy of these new
models as compared to traditional approaches that have
been tested and used extensively during the last 20-30
years.

At any resolution it is inevitable that a numerical
method introduces errors and thereby misrepresent the
flow in some way. It is hard to distinguish cause and
effect in model runs with parameterized physical pro-
cesses. Therefore, running idealized test cases have be-
come standard during model development. Standard test
cases for passive tracer transport (see Machenhauer et
al. 2008 for an overview) and two-dimensional shal-
low water tests (e.g., Williamson et al. 1992, Galewsky
et al. 2004, Läuter et al. 2005) are well estab-
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lished in the atmospheric modeling community whereas
global test cases for three dimensional models are not
as widespread. A global test case gaining popularity
was recently proposed by Jablonowski (2004) and ex-
amined by Jablonowski and Williamson (2006a; here-
after referred to as JW06). It consists of a steady-state
solution and a baroclinic wave resulting from adding a
perturbation to the steady-state initial condition. The
Jablonowski test case targets the large scale (hydrostatic)
performance of the model and its ability to retain a bal-
anced flow. An analytic solution exists for the steady-
state test case provided the model utilizes a hydrostatic
or non-hydrostatic shallow-atmosphere equation set. No
analytic solution exists for the baroclinic wave test and
therefore the ‘exact’ solution must be approximated nu-
merically. The test is deterministic and convergence
can be established based on an ensemble of high reso-
lution reference solutions (JW06). Other idealized test
cases for three-dimensional dynamical cores have also
recently been proposed by Polvani et al. (2004), Stani-
forth and White (2008b), Staniforth and White (2008c)
and Jablonowski et al. (2009). In addition, test cases
targeting the smaller scale and non-hydrostatic perfor-
mance of the dynamical cores were suggested by Wedi
and Smolarkiewicz (2009). Global non-hydrostaticmod-
els should also be able to retain large scale balances in
the flow. It is therefore expected that the non-hydrostatic
models run at hydrostatic resolutions (scales) converge
to the hydrostatic model reference solutions.

Here we propose a variant of the Jablonowski test
cases where the physical flow remains the same but the
computational grid is rotated with respect to the physi-
cal flow. Ideally the dynamical core should be invariant
under rotation of the computational grid. However, usu-
ally the numerical algorithms are less challenged when
the flow is aligned or quasi-aligned with the computa-
tional grid in contrast to flows that predominantly tra-
verse the computational grid lines at a slantwise angle.
Therefore the Jablonowski test cases somewhat favors
regular latitude-longitude grids since the flow is predom-
inantly parallel to the latitude circles throughout the do-
main. The grid rotations suggested in this paper are
schematically explained in Fig. 1. The figure shows a
regular latitude-longitude grid with different rotation an-
gles α that are superimposed upon a zonally symmetric
flow field. The white thick lines depict the rotated coor-
dinate system in geographical coordinates. In the rotated
latitude-longitude grids the flow is no longer alignedwith

the coordinate lines throughout the global domain of in-
tegration, thereby challenging the schemes’ ability to
maintain balances in the flow.

In this paper we present results from six dynami-
cal cores that participated in a 2-week summer collo-
quium at the National Center for Atmospheric Research
(NCAR) in 2008 1. In addition, two of the models are
tested with different vertical coordinates resulting in a
total of eight model variants. The colloquium was enti-
tled Numerical Techniques for Global Atmospheric Mod-
els and was part of the annual NCAR Advanced Study
Program (ASP) colloquium series (for more information
see http://www.cgd.ucar.edu/cms/pel/colloquium.html).
Apart from its educational aspects the summer collo-
quium presented an unprecedented opportunity to inter-
compare a wide range of global dynamical cores with
different spherical grids and numerical methods. All
models were tested with an identical dynamical core test
suite that is documented in Jablonowski et al. (2009).

The paper is organized as follows. In Section 2 the
rotated test case is defined. In Section 3 we briefly de-
scribe the suite of models that ran the test cases. Section
4 discusses the simulation results followed by conclu-
sions in Section 5.

2. Test case description

Since the new rotated test case is expressed in terms
of the unrotated test case described in JW06, we first
present the unrotated initial conditions. Then the rotated
initial conditions are formulated.

2.1. Unrotated initial conditions

2.1.1. Steady-state

The initial conditions comprise a zonally symmetric ba-
sic state with a jet in the midlatitudes of each hemisphere
and a quasi-realistic temperature distribution. They are
formulated in terms of the zonal wind component u,
meridional wind component v, temperature T , surface
pressure ps and surface geopotential Φs. Extensions to
other prognostic variable sets are straightforward. In
addition, we assume vertical coordinates that are typi-
cally used in General Circulation Models (GCMs) today.
These are the pressure-based σ = p/ps (Phillips 1957)
coordinate or an η (hybrid σ− p; Simmons and Burridge

1results from participating models that did not produce a complete dataset are not included in this study
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Rotated test cases and dynamical core intercomparisons 3

Figure 1: Color scales show the zonal wind (m s−1) at model level 3 near 14 hPa. White solid lines show the regular
latitude-longitude grid rotated at the angle α = 0◦ (left), α = 45◦ (middle) and α = 90◦ (right), respectively. The
coordinate axis refer to the geographical coordinates.
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0 0.002194067 0. 9 0.07590131 0.03276228 18 0.04468960 0.4243822
1 0.004895209 0. 10 0.07424086 0.05359622 19 0.03752191 0.5143168
2 0.009882418 0. 11 0.07228744 0.07810627 20 0.02908949 0.6201202
3 0.01805201 0. 12 0.06998933 0.1069411 21 0.02084739 0.7235355
4 0.02983724 0. 13 0.06728574 0.1408637 22 0.01334443 0.8176768
5 0.04462334 0. 14 0.06410509 0.1807720 23 0.00708499 0.8962153
6 0.06160587 0. 15 0.06036322 0.2277220 24 0.00252136 0.9534761
7 0.07851243 0. 16 0.05596111 0.2829562 25 0. 0.9851122
8 0.07731271 0.01505309 17 0.05078225 0.3479364 26 0. 1.

Table 1: Vertical coefficients used do define the hybrid η-vertical coordinate, where k is the vertical index, the parame-
terAk+ 1

2
denotes the pure pressure component andBk+ 1

2
defines the σ part of the vertical coordinate. The coefficients

are the same as used in JW06.

1981) vertical coordinate as defined by

p(λ, ϕ, η) = A(η)p0 + B(η)ps(λ, ϕ) . (2.1)

The interface coefficients A and B (half indices) are
given in Table 1, λ ∈ [0, 2π] and ϕ ∈ [−π/2, π/2] de-
note the longitudinal and latitudinal directions, the refer-
ence pressure p0 is set to 1000 hPa, and the initial sur-
face pressure ps is constant and set to ps = 1000 hPa.
Throughout this paper, 26 vertical model levels are used.
The hybrid coordinate η ∈ [0, 1] is unity at the surface
and approaches a constant at the model top. Note that
the value of p0 might not be standard in all GCMs that
utilize the hybrid vertical coordinate system.

The flow field is comprised of two symmetric non-
divergent zonal jets in the midlatitudes:

usteady(λ, ϕ, η) = u0 cos
3
2 ηv sin2 (2 ϕ) (2.2)

vsteady(λ, ϕ, η) = 0 (2.3)

where ηv is defined as ηv = 0.5(η − η0)π, η0 = 0.252

is the center position of the jet, and the maximum am-
plitude u0 is set to 35 m s−1. This velocity distribution
resembles the zonal-mean time-mean jet streams in the
troposphere. For non-hydrostatic models the vertical ve-
locity is set to zero.

The temperature distribution consists of a horizontal-
mean temperature and a horizontal variation at each
level. The horizontally averaged temperature T̄ (η) is
given by

T̄ (η) =

{
T0 η

RdΓ
g for ηs ≥ η ≥ ηt

T0 η
RdΓ

g + ΔT (ηt − η)5 for ηt > η
(2.4)

with the surface level ηs = 1, tropopause level ηt =
0.2 and horizontal-mean temperature at the surface
T0 = 288 K. The temperature lapse rate Γ is set to
0.005 K m−1 which is similar to the observed diabatic
lapse rate. The empirical temperature difference ΔT is
set to 4.8 × 105 K, Rd = 287.04 J (kg K)−1 represents
the ideal gas constant for dry air and g = 9.80616m s−2
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is the gravitational acceleration. The three-dimensional
temperature distribution is then defined by

T (λ, ϕ, η) = T̄ (η) +
3
4

η π u0

Rd
sin ηv cos

1
2 ηv ×{(

− 2 sin6 ϕ (cos2 ϕ +
1
3
) +

10
63

)
×

2 u0 cos
3
2 ηv +( 8

5
cos3 ϕ (sin2 ϕ +

2
3
) − π

4

)
a Ω

}
,

(2.5)

where Ω = 7.29212 × 10−5 s−1 is the Earth’s angu-
lar velocity and a = 6.371229 × 106 m is the radius
of the Earth. The geopotential Φ = gz completes the
description of the steady-state initial conditions where z
symbolizes the elevation of a model level η. The total
geopotential distribution comprises the horizontal-mean
geopotential Φ̄ and a horizontal variation at each level.
This is analogous to the description of the temperature
field. The geopotential is given by

Φ(λ, ϕ, η) = Φ̄(η) + u0 cos
3
2 ηv ×{(

− 2 sin6 ϕ (cos2 ϕ +
1
3
) +

10
63

)
×

u0 cos
3
2 ηv +( 8

5
cos3 ϕ (sin2 ϕ +

2
3
) − π

4

)
a Ω

}
,

(2.6)

with

Φ̄(η) =

⎧⎨
⎩

T0 g
Γ

(
1 − η

Rd Γ
g

)
for ηs ≥ η ≥ ηt

T0 g
Γ

(
1 − η

Rd Γ
g

)
−K for ηt > η

(2.7)
where

K = Rd ΔT ×
{(

ln
( η

ηt

)
+

137
60

)
η5

t

− 5 η4
t η + 5 η3

t η2 − 10
3

η2
t η3 +

5
4

ηt η4 − 1
5

η5
}
.

(2.8)

This formulation enforces the hydrostatic balance an-
alytically and ensures the continuity of the geopotential
at the tropopause level ηt. In hydrostatic models with
pressure-based vertical coordinates, it is only necessary
to initialize the surface geopotential Φs = gzs. It bal-
ances the non-zero zonal wind at the surface with sur-
face elevation zs and is determined by setting η = ηs in

(2.6). This leads to the following equation for the surface
geopotential

Φs(λ, ϕ) = u0 cos
3
2

(
(ηs − η0)

π

2

)
×{(

− 2 sin6 ϕ (cos2 ϕ +
1
3
) +

10
63

)
×

u0 cos
3
2

(
(ηs − η0)

π

2

)
+( 8

5
cos3 ϕ (sin2 ϕ +

2
3
) − π

4

)
a Ω

}
.

(2.9)

Note that Φs is a function of latitude only. The geopo-
tential equation (2.6) can fully be utilized for dynami-
cal cores with height-based vertical coordinates. Then, a
root-finding algorithm is recommended to determine the
corresponding η-level for any given height z. This iter-
ative method, which is also applicable to isentropic ver-
tical coordinates, is outlined in the Appendix of JW06.
The resulting η-level is accurate to machine precision
and can consequently be used to compute the initial data
set.

The test design guarantees static, inertial and sym-
metric stability properties, but is unstable with respect to
baroclinic or barotropic instability mechanisms.

2.1.2. Baroclinic wave

A baroclinic wave can be triggered if the initial condi-
tions for the steady-state test described in the previous
subsection are overlaid with a perturbation. Here a per-
turbation with a Gaussian profile is selected and centered
at (λc, ϕc) = (π/9, 2π/9) which points to the location
(20◦E,40◦N). The perturbation overlays the zonal wind
field. The zonal wind perturbation upert is given by

upert(λ, ϕ, η) = up exp
(
−

( r

R

)2 )
(2.10)

with the great circle distance r

r = a arccos
(

sinϕc sin ϕ+cosϕc cosϕ cos(λ−λc)
)

.

(2.11)
The radius of the perturbation is R = a/10. The maxi-
mum perturbation amplitude is set to up = 1 m s−1. It
is superimposed on the balanced zonal wind field (2.2)
by adding upert to the wind field at each grid point at all
model levels:

uwave(λ, ϕ, η) = usteady + upert (2.12)

The meridional wind component is zero as in the steady-
state initial condition: vwave = vsteady = 0.
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The baroclinic wave, although idealized, represents
very realistic flow features. Strong temperature fronts de-
velop that are associated with the evolving low and high
pressure systems. Note that the baroclinic wave test case
does not have an analytic solution. Therefore, high reso-
lution reference solutions and their uncertainties are used
(JW06).

2.2. Rotated initial conditions

The rotated initial conditions are formulated in terms of
the unrotated initial conditions. The physical flow re-
mains the same but the computational grid is rotated with
respect to the physical flow. However, two changes are
necessary. First, because of the rotations the Coriolis pa-
rameter f is a function of both latitude ϕ and longitude
θ:

f(λ, ϕ) = 2Ω
( − cosλ cosϕ sin α + sin ϕ cosα

)
.

(2.13)
Second, the initial conditions need to be rotated. The ro-
tation is schematically depicted in Fig. 2 that shows the
location of the rotated North pole (λp, ϕp) with respect
to the North (N) and South (S) poles of the unrotated
Earth. In short, the rotated coordinate locations (λ′, ϕ′)
need to be determined in terms of the unrotated coordi-
nates (λ, ϕ). This allows the analytical evaluation of the
initial conditions at that location. Note that the unrotated
coordinates are also referred to as the geographical coor-
dinates.

2.2.1. Transformations for rotated coordinates

The rotation of the coordinates, together with their
inverse relations, has been described in, e.g., Ritchie
(1987), Nair and Jablonowski (2008) and Staniforth and
White (2008a). Note that the trigonometric functions
as outlined below might suffer from precision problems
due to multiple applications of trigonometric functions.
Therefore, a slightly different but highly precise method
has been implemented in the Fortran example code made
available to the modeling groups on the NCAR web page
http://www.cgd.ucar.edu/cms/pel/colloquium links.html.

The following steps illustrate the basic principle be-
hind the rotations. Let the North pole of a rotated co-
ordinate system (λ′, θ′) be located at the point (λp, ϕp)
of the regular unrotated (geographical) coordinate sys-
tem as shown in Fig. 2. Let us assume λp = 0. For a
flow orientation parameter (or rotation angle)α the North
Pole position is given by (λp, π/2 − α). The following

identities hold between the rotated (λ′, ϕ′) and unrotated
(λ, ϕ) coordinate systems:

sin ϕ′ =sin ϕ sinϕp+
cosϕ cosϕp cos(λ − λp), (2.14)

sin ϕ =sin ϕ′ sin ϕp−
cosϕ′ cosϕp cosλ′, (2.15)

cosϕ′ sin λ′ =cosϕ sin(λ − λp), (2.16)

(see, e.g., Ritchie 1987). For the steady-state conditions
of section 2.1.1, expressed in the unrotated (λ, ϕ) coor-
dinate system, the horizontal wind components at each
vertical level satisfy

u(ϕ) = a cosϕ
dλ

dt
, v = a

dϕ

dt
= 0, (2.17)

whilst the wind components in the rotated system satisfy

u′(λ′, ϕ′) = a cosϕ′ dλ′

dt
, v′(λ′, ϕ′) = a

dϕ′

dt
. (2.18)

Differentiating (2.14) with respect to time and using
equations (2.17) and (2.18) gives

v′(λ′, ϕ′) cosϕ′ = − cosϕp sin(λ − λp)u(ϕ). (2.19)

Differentiating Eqs. (2.15) and (2.16) with respect to
time and manipulating the resulting equations using
(2.16) - (2.19) then yields

u′(λ′, ϕ′) = u(ϕ)
[
cosλ′ cos(λ − λp) +

sinϕp sin λ′ sin(λ − λp)
]
. (2.20)

2.3. Procedure for computing rotated initial
conditions

Suppose now that the initial conditions in sections 2.1.1
and 2.1.2 are to be expressed in the (λ′, ϕ′) coordinate
system, whose North Pole is located at the point (λp, ϕp)
of the unrotated (geographical) coordinate system (λ, ϕ).
The steps for obtaining the initial conditions at the mesh-
points (λ′, ϕ′) of the rotated system are:

1. Compute the latitude location ϕ using (2.15)
which yields

ϕ = arcsin
(
sin ϕ′ sin ϕp−cosϕ′ cosϕp cosλ′

)
(2.21)
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λ θ
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Figure 2: A position (λ, θ) at the equator (dashed arrow) of a rotated coordinate system (λ′, θ′) whose North pole is
at (λp, θp) with respect to the regular (λ, θ) sphere. N and S are the poles of the unrotated Earth and the dashed line is
the equator of the unrotated coordinate system (geographical coordinates). The flow orientation parameter α (rotation
angle) is the angle between the axis of the unrotated Earth and the polar axis of the rotated Earth.

2. Compute the inverse relation λ derived as

λ =λp+

arctan
(

cosϕ′ sin λ′

sin ϕ cosϕp + cosϕ′ cosλ′ sin ϕp

)
(2.22)

Inverting the trigonometric functions, particularly
for λ can be problematic due to the non-unique
nature of the inverted (arctan) function values.
To avoid this problem we recommend using the
intrinsic Fortran function atan2(y,x) for
arctan(y/x) which provides values in the range
[−π, π]. The negative values between [−π, 0) then
need to be shifted by adding 2π. This guarantees
the proper branch cut in the longitudinal direction
between [0, 2π].

3. Depending on the choice of the test case compute
the zonal wind field for either the unperturbed con-
ditions according to equation (2.2) and (2.3) or
the perturbed initial conditions for the baroclinic
wave test (equation 2.12). Use the results from
Eqs. (2.21) and (2.22) for ϕ and λ. Note that
the center position (λc, ϕc) of the perturbation in
Eq. (2.11) needs to be expressed in the unrotated
coordinates (π/9, 2π/9).

4. Now rotate the wind vector components, that is,
computeu′(λ′, ϕ′, η) and v′(λ′, ϕ′, η) using (2.20)

and (2.19). The (λ′, ϕ′) coordinates are the mesh-
points of the computational grid. For the compu-
tation of cos(λ−λ′) and sin(λ−λ′) in (2.19) and
(2.20) one can also use Eqs. (2.14) and (2.16) in-
stead of (2.21) and (2.22). Equations (2.14) and
(2.16) yield

cos(λ − λp) =
sin ϕ′ − sin ϕ sin ϕp

cosϕ cosϕp
(2.23)

sin(λ − λp) =
cosϕ′ sin λ′

cosϕ
. (2.24)

5. Compute the scalar fields T ′(λ′, ϕ′, η) and
(Φs)′(λ′, ϕ′, η) in the rotated system by using the
result of (2.21) in the temperature equation (2.5)
and the expression for the surface geopotential
(2.9).

This completes the definition of the rotated initial condi-
tions for the steady-state and baroclinic wave test cases.

2.4. Test case strategy

We suggest the following test strategy for the steady-
state test case. The dynamical core is initialized with
the balanced initial conditions and run for 30 model
days at varying horizontal resolutions and rotation angles
α = 0◦, 45◦, 90◦.

Here we assess the convergence with resolution and
the dependence of the simulated solution on the rota-
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tion angle. Ideally the model results should be invari-
ant under rotation. Any shortcomings with regard to
rotation of the computational grid are due to lack of
isotropy in the model. Note that a discretization scheme
on an anisotropic grid can be isotropic (as is the case for
the spectral transform method) and that a quasi-isotropic
grid (such as the icosahedral type grids described below)
not necessarily guarantees that the model dynamics is
isotropic.

In addition, different horizontal resolutions should
be assessed for the baroclinic wave test case to esti-
mate the convergence characteristics. The results should
also be examined as a function of rotation angle α =
0◦, 45◦, 90◦. The baroclinic wave starts growing observ-
ably around day 4 and evolves rapidly thereafter with
explosive cyclogenesis at model day 8. The wave train
breaks after day 9 and generates a full circulation in both
hemispheres between day 20-30 depending on the model.
Therefore the models herein are run for 15 days to cap-
ture the initial and rapid development stages of the baro-
clinic disturbance. As observed in JW06 the spread of
the numerical solutions increases noticeably from model
day 12 onwards indicating a predictability limit of the
test case.

Here all models are run at two resolutions. The low
resolution simulations utilize a grid spacing of approxi-
mately 2◦ at the model equator, the high resolution cor-
responds to a grid spacing of about 1◦ at the model equa-
tor. For the baroclinic wave test case we use 7 high-
resolution reference solutions. High resolution reference
solutions with different models still produce a certain
spread in the solution. Therefore, we use the uncertainty
of the reference solution as defined in JW06 to define
convergence (see Section 4.2 for more details). When
the 	2 errors are below the uncertainty of the reference
solutions given in JW06 the model is within the spread
of the reference solutions and we can no longer term one
model more accurate than another.

3. Models

Below is a brief description of the dynamical cores as-
sessed in this paper. The corresponding model abbrevia-
tions used in this paper are listed in Table 2. The meta-
data for the models are given in Tables 3, 4 and 5. The
definitions of the metadata entries are defined in the Ap-
pendix. The model metadata has been developed in col-
laboration with the Earth System Curator and Earth Sys-
tem Grid teams at NCAR. Models defined on three dif-

ferent spherical grids are considered: Regular or Gaus-
sian latitude-longitude (Fig. 3a), cubed-sphere (Fig. 3b)
and icosahedral grids (Fig. 3c). For the icosahedral class
of grids one can either discretize on hexagons-pentagons
or triangles. Both types of icosahedral grids are used by
models in this ensemble.

3.1. Latitude-longitude grid models

The two dynamical cores defined on a regular or Gaus-
sian latitude-longitude grid are part of NCAR’s Com-
munity Atmosphere Model (CAM) version 3 (Collins
et al. 2006). CAM EUL is based on a spectral trans-
form method on a Gaussian grid whereas the two model
variants CAM FV and CAM ISEN are based on the
Lin (2004) finite-volume approach with a floating La-
grangian coordinate in the vertical and regular latitude-
longitude grid in the horizontal direction. The latter two
utilize the hybrid sigma-pressure coordinates (CAM FV)
or isentropic coordinates (Chen and Rasch 2009) as their
reference grids. The prognostic variables are interpolated
back to the reference grid periodically (every 4-10 time
steps).

The Eulerian spectral transform dynamical core
CAM EUL is based on the traditional vorticity-
divergence form using the three-time-level semi-implicit
Leapfrog time-stepping method. To damp the compu-
tational mode of the Leap-frog time-stepping scheme a
Robert-Asselin filter (Asselin 1972) is applied which for-
mally reduces the time-stepping scheme to first order.
The horizontal approximation is based on spectral trans-
forms and a quadratically unaliased transform grid with
triangular truncation. In the vertical direction, centered
finite differences are utilized. Note that the spherical har-
monic functions are invariant under rotation. The hori-
zontal resolution is referred to as T42, T85, etc. that de-
notes the triangular truncation with the total wave num-
bers 42 and 85, respectively. The corresponding Gaus-
sian grids have 64×128 and 128×256 (latitude × longi-
tude) grid points, resulting in a grid spacing of ≈ 2.8◦

(T42) and ≈ 1.4◦ (T85), respectively. As argued in
Williamson (2008) these spectral resolutions are com-
parable to other grid-point based dynamical cores with
mesh spacings of about 2◦ and 1◦. To control the inertial
range of the total kinetic energy spectrum fourth-order
linear horizontal diffusion (also referred to as hyperdif-
fusion) is applied to the vorticity (ζ), divergence (δ) and
temperature (T ). The horizontal and vertical grid stag-
gering utilizes the ArakawaA (Arakawa and Lamb 1977)
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Model abbreviations Grid
CAM EUL NCAR’s Eulerian spectral transform dynamical core Gaussian latitude-longitude

in the Community Atmosphere Model (CAM)
CAM FV NCAR’s finite-volume dynamical core in the regular latitude-longitude

Community Atmosphere Model (CAM)
CAM ISEN same as CAM FV but using a hybrid regular latitude-longitude

isentropic vertical coordinate
GEOS FV CUBED GFDL/NASA’s Goddard Earth Observing System Model cubed-sphere

(GEOS) model on a cubed-sphere grid
HOMME NCAR’s High Order Method Modeling Environment cubed-sphere

(HOMME) model
ICON Max Planck Institute for Meteorology (MPI-M) icosahedral (triangles)

Icosahedral Nonhydrostatic model
CSU SGM Colorado State University’s (CSU) general icosahedral (hexagons)

circulation model using a σ vertical coordinate
CSU HYB same as CSU SGM but using a hybrid σ − Θ icosahedral (hexagons)

vertical coordinate

Table 2: List of model abbreviations (left column), affiliation/full name of the dynamical cores assessed in this paper
(middle column) as well as spherical grid used by the model in question (right column). The acronym GFDL stands
for NOAA’s Geophysical Fluid Dynamics Laboratory in Princeton, NJ.

and Lorenz (Lorenz 1960) grid, respectively. The ver-
tical coordinate is the traditional hybrid sigma-pressure
coordinate. A-posteriori total mass and total energy fix-
ers are applied to restore the conservation of these quan-
tities at every time step. Details about the energy fixer
can be found in Williamson et al. (2009).

CAM FV is based on a flux-form finite-volume
method that is built upon the Lin and Rood (1996) ad-
vection scheme and a CD-grid approach for the two-
dimensional shallow water equations. The algorithm in-
volves a half-time-step update on the Arakawa C grid
that provides the time-centered winds to complete a
full time step on the Arakawa D grid (Lin and Rood
1997). The momentum equations are expressed in their
vector-invariant form. The Eulerian model design has
semi-Lagrangian extensions in the longitudinal direc-
tion as documented in Lin and Rood (1996). The Lin-
Rood advection scheme utilizes the monotonic Piecewise
Parabolic Method (PPM, Colella and Woodward 1984)
that implicitly prevents grid-scale noise in the vorticity
field through the use of limiters. However, divergent
modes must be controlled through the explicit applica-
tion of horizontal divergence damping where the damp-
ing coefficient in CAM FV is:

ν =
C L2

Δt
, (3.1)

where C = 1/128 and L2 = a2ΔλΔθ. This avoids
a spurious accumulation of energy at and near the grid
scale. In CAM FV second-order divergence damping is
used with increasing strength near the model top. To
stabilize the model a one-dimensional digital filter is
applied along longitudes in the midlatitudes (approxi-
mately between 36◦ N/S to 66◦ N/S) and a Fast Fourier
Transform (FFT) filter is used in the polar regions pole-
ward of 69◦. The shallow water system is extended to a
three-dimensional hydrostatic model using a floating La-
grangian vertical coordinate (Lin 2004). The levels float
for a few (4-10) consecutive time steps before a verti-
cal remapping step maps the variables back to the refer-
ence vertical levels. CAM FV uses hybrid-sigma verti-
cal coordinates as the reference grid. The Lin and Rood
(1996) advection scheme is formulated in terms of inner
and outer operators that are applied in the coordinate di-
rections in a combination to reduce the operator-splitting
error. In CAM FV the outer operators are based on PPM,
and the inner operators are first-order (upwind scheme).
The stability properties of this scheme are discussed in
Lauritzen (2007). More details on e.g. the time step
length for a 1◦ grid spacing are listed in Table 3. Note
that the PPM algorithm is formally third-order accurate
in one dimension, but it reduces to a second-order ad-
vection algorithm in the chosen two-dimensional finite-

JAMES-D



Rotated test cases and dynamical core intercomparisons 9

CAM EUL CAM FV/ISEN
Numerical method spectral transform Eulerian finite volume Eulerian

with semi-Lagrangian extensions
in the longitudinal direction

Spherical grid Gaussian latitude-longitude regular latitude-longitude
Projection none none
Spatial approximation spectral, triangular truncation, Piecewise Parabolic

quadratic transform grid Method (PPM); second-order

Advection Scheme spectral transform (dynamical core), Lin and Rood (1996)
tracers: shape-preserving semi-Lagrangian

Williamson and Rasch (1989)
Conservation type none mass dry air
Conservation fixers total energy, mass of dry air total energy
Time Stepping semi-implicit explicit
Δt for approximately 600s 180s
1◦ at the equator
Internal resolution for Δt T85,≈ 156 km #lon=360, #lat=181,≈ 110 km
Temporal approximation three-time level, Leapfrog, first-order two-time level, 2nd-order

due to Robert-Asselin filter (Asselin 1972)
Temporal filter Robert-Asselin (coefficient: 0.06) none
Explicit spatial diffusion 4th-order linear horizontal diffusion 2nd-order horizontal

of ζ, δ, T (coefficient 1 × 1015 m4 s−1), divergence damping
2nd-order diffusion near the model top (see equation (3.1))

Implicit diffusion none 1D monotonicity constraint in horizontal
coordinate directions, increased diffusion
near the model top (3-layer sponge)
due to lower-order numerical methods

Explicit spatial filter none polar Fast-Fourier-Transform (FFT) filter,
3-point digital filter

Prognostic variables ζ, δ, T , ln(ps) Δp, mass-weighted θ, u, v
Horizontal staggering co-located ζ, δ, scalars (spectral space), mixed Arakawa C & D

Arakawa A (Arakawa and Lamb 1977)
in grid point space

Vertical coordinate hybrid sigma-pressure floating Lagrangian coordinate
(interpolated to Eulerian hybrid

sigma-pressure/isentropic periodically)
Vertical staggering Lorenz grid (Lorenz 1960) none

Table 3: Metadata for the models based on a regular latitude-longitude grid with approximately 1◦ grid spacing. ζ is
the relative vorticity, δ the horizontal divergence and Δp = pk+1/2 − pk−1/2 describes the pressure thickness of a
model layer with vertical index k that is surrounded by the interface levels with half indices k ± 1/2. The metadata
entries are defined in the Appendix.
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HOMME GEOS FV CUBED

Numerical method spectral element Eulerian finite volume Eulerian
Spherical grid cubed-sphere cubed-sphere
Projection gnomonic (equi-angular) gnomonic, equal-distance along

cube edges (undocumented)
Spatial approximation piecewise polynomials of degree 3 Piecewise Parabolic

Method (PPM); second-order

Advection Scheme spectral element Eulerian Putman and Lin (2007,2009)
Conservation type total energy, mass dry air mass dry air
Conservation fixers none total energy
Time Stepping explicit explicit
Δt for approximately 90s 180s
1◦ at the equator
Internal resolution for Δt 30×30 elements per face with 90×90 cells per cubed-sphere face

4×4 Gauss-Legendre-Lobatto ≈ 110 km spacing
points within each element (≈ 110 km)

Temporal approximation three-time level, Leapfrog, two-time level, 2nd-order
first-order due to Robert-Asselin filter

Temporal filter Robert-Asselin (coefficient 0.05) none
Explicit spatial diffusion 4th-order linear horizontal diffusion 2nd-order and 4th-order horizontal

of u, v, T (coefficient 9.6 × 1014 m4 s−1) divergence damping, increased damping
near model top, external mode damping
(coefficients 0.005× ΔAmin/Δt,

[0.05 × ΔAmin]2 /Δt,0.02× ΔAmin/Δt)
Implicit diffusion none 1D monotonicity constraint in

horizontal coordinate directions
Explicit spatial filter none none
Prognostic variables u, v, T , ps Δp, mass-weighted θ, u, v
Horizontal staggering Arakawa A mixed Arakawa C & D

(unstaggered)
Vertical coordinate hybrid pressure-sigma floating Lagrangian coordinate

(interpolated to Eulerian hybrid
sigma-pressure periodically)

Vertical staggering Lorenz grid none

Table 4: Same as Table 3 but for models based on cubed-sphere grids.
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ICON CSU SGM/HYB

Numerical method finite difference Eulerian finite difference Eulerian
Spherical grid icosahedral triangular icosahedral hexagonal
Projection none none
Spatial approximation 2nd-order finite-differences 3rd-order finite-differences
Advection Scheme Ahmad el al. (2006) Appendix B of

based on MPDATA Hsu and Arakawa (1990)
(Smolarkiewicz and Szmelter, 2005)

Conservation type mass dry air mass dry air
Conservation fixers none none
Time Stepping semi-implicit (implicitness parameter explicit

is 0.7, Wan 2009)
Δt for approximately 300 s 60 s
1◦ at the equator
Internal resolution for Δt 46080 triangular cells (mass points) 40962 hexagonal cells, distance

69120 edges (velocity points), between cell centers ≈ 120 km
average mesh width ≈ 93 km

Temporal approximation 3-time level, Leapfrog, 4-time-level, Adams-Bashforth,
first-order due to Robert-Asselin filter 3rd-order

Temporal filter Robert-Asselin (coefficient 0.1) none
Explicit spatial diffusion 4th-order linear horizontal none

diffusion of u, v, T
e-folding times 0.45h and 0.2h
for 2◦ and 1◦ resolutions

Implicit diffusion none monotonicity constraint
Explicit spatial filter none none
Prognostic variables u, v, T , ps ζa, δ, θ, mass (pseudo-density)
Horizontal staggering C grid Z grid (Randall 1994)

(Bonaventura and Ringler 2005)
Vertical coordinate hybrid sigma-pressure pure sigma / hybrid sigma-theta

(Konor and Arakawa 1997)
Vertical staggering Lorenz grid Charney-Philips

(Konor and Arakawa 1997)

Table 5: Same as Table 3 but for models based on icosahedral grids. ζa is the absolute vorticity, f is the Coriolis
parameter.

Journal of Advances in Modeling Earth Systems – Discussion



12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models

The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×ΔAmin/Δt

and [0.05 × ΔAmin]2 /Δt, respectively, where ΔAmin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×ΔAmin/Δt) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 4: (left) A graphical illustration of the Gauss-Legendre-Lobatto quadrature points (red unfilled circles) in an
element (blue boundary) of the HOMME model. (right) The mapping of every element onto the sphere. Green lines
are the boundary of the cubed-sphere faces.

machine precision) and total energy conservative (to the
truncation error of the time-integration scheme) (Tay-
lor et al. 2007, Taylor et al. 2008). The cubed-sphere
grid consists of elements with boundaries defined by an
equiangular gnomonic grid (Nair et al. 2005) and each
element has (p + 1) × (p + 1) Gauss-Legendre-Lobatto
quadrature points. The positions of the Gauss-Legendre-
Lobatto quadrature points in each element are depicted
in Fig. 4. For the simulations presented here p = 3 is
used and the resolution is determined by h, the num-
ber of elements along a face side. The grid spacing at
the equator is approximately 90◦/(h ∗ p) hence the ap-
proximately 1◦ solutions use h = 30 and p = 3. The
model applies fourth-order linear horizontal diffusion to
the prognostic variables u, v and T . The diffusion coeffi-
cient is tuned empirically with the help of kinetic energy
spectra as done in CAM EUL.

3.3. Icosahedral grid models

Two icosahedral-grid based models are tested with three
model variants. Among them is the model ICON that is
under development at the Max-Planck Institute for Me-
teorology, Germany, and the German Weather Service
DWD. Some documentation on ICON is given in Wan
(2009). The second model labeled CSU has been de-
veloped at the Colorado State University, Fort Collins,
U.S.. Here two model variant of CSU are assessed that
use different vertical coordinates. The icosahedral grids
are special types of geodesic grids where an icosahedron
inscribed in a sphere is subdivided recursively to form a
quasi-uniform grid of triangles. In the CSU model the

grid resolution is specified in terms of the number of
refinement levels of the icosahedron that initially con-
sists of 20 triangles. Each refinement level subdivides
the mesh, thereby doubling its resolution. The hexago-
nal grid is the dual of the triangular grid. It is created by
connecting the centroids of the triangles sharing a vertex
with great circle arcs. It consists primarily of hexagons
and 12 pentagons. If 	 is the number of bisections of an
original icosahedral edge the number of hexagonal grid
cells is given by

2 + 10 × 4�. (3.2)

A resolution of approximately 1◦ is obtained with 	 = 6
(40962 cells) corresponding to a minimum and maxi-
mum grid point distance between the cell centers of 110
km and 132 km, respectively. The number of triangles in
this grid is given by

20 × 4� (3.3)

which corresponds to 81920 triangles for 	 = 6. Note
that the ICON results discussed in this paper are based
on a slightly different distribution of the triangular grid
cells. The main difference is the initial refinement strat-
egy for the icosahedron. Instead of bisecting the grid,
the original icosahedron is first split by a factor of three
along each edge before further recursive bisections are
introduced. If m = 	 − 2 = 4 is the number of bisec-
tions after the initial 3-way split the number of triangular
cells nc, triangle edges ne and triangle vertices nv is then
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given by

nc = 20 × 32 × 4m (3.4)

ne = 30 × 32 × 4m (3.5)

nv = 10 × 32 × 4m + 2. (3.6)

For the approximately 1◦ triangular grid with m = 4,
46080 triangular cells with 69120 edges and 23042 ver-
tices result in an average mesh width of 93 km. One can
either use the hexagons (pentagons) or triangles as con-
trol volumes for the discretization. The icosahedral grids
give an almost homogeneous and quasi-isotropic cover-
age of the sphere. The hexagonal grid has a somewhat
higher degree of symmetry than triangular grids whereas
triangular grids are more straight forward to refine if
mesh refinement is desired. Both icosahedral grid mod-
els (CSU and ICON) optimize the icosahedral grid so
that the truncation error for the spatial finite-difference
operators is guaranteed to converge to zero as the grid-
cell sizes decrease to zero. See Heikes and Randall
(1995) for more details.

In this study, we use a development version of the
ICON (Icosahedral Nonhydrostatic) dynamical core that
utilizes the triangular control volumes. Although the
model abbreviation refers to a non-hydrostaticmodel, the
version used here is based on the hydrostatic equation set
in vector-invariant form. The model applies 2nd-order
finite-difference approximations on an Arakawa C hori-
zontal grid (Bonaventura and Ringler 2005) and a Lorenz
grid in the vertical. The velocity reconstruction algo-
rithm is based on Radial Basis Functions (RBF). The ver-
tical coordinate is the hybrid sigma-pressure coordinate.
The time-stepping algorithm is semi-implicit using an
implicitness parameter of 0.7 (see Wan 2009). The com-
putational mode of the three-time-level Leapfrog time-
stepping scheme is damped with a Robert-Asselin fil-
ter. The advection scheme is MPDATA (Smolarkiewicz
1983; Smolarkiewicz and Szmelter 2005) adapted to the
icosahedral grid (Ahmad el al. 2006). Efforts are on-
going to develop a higher-order advection scheme for
ICON (A. Gassman, personal communication 2009).
Fourth-order linear horizontal diffusion is applied to u, v,
T along the model levels. The time steps used for the 1◦

(46080 cells) and 2◦ (11520 cells) runs are 300 s and 600
s, respectively. It should be noted that the ICON model
is undergoing rapid development (partly due to the expe-
rience with the test case suite run during the NCAR ASP
2008 summer colloquium). Hence, the results presented
here are with an older version of ICON.

The CSU dynamical core is based on hexagons (and

12 pentagons). The model directly predicts vorticity and
divergence. Stream function and velocity potential are
obtained by solving elliptic equations using multigrid
methods. The vorticity and divergence are co-located
at cell centers following the Z-grid (Randall 1994) that
provides attractive linear dispersion properties for, e.g.,
geostrophic adjustment and has no computationalmodes.
A four-time-level third-order Adams-Bashforth time-
integration method is used for mass (pseudo-density), θ,
absolute vorticity ζa, and divergence δ. The advection
scheme of the CSU model is described in Appendix B
of Hsu and Arakawa (1990). Two options for the verti-
cal coordinates are used in these tests. One is the tra-
ditional pure sigma coordinate (CSU SGM) while the
other is a hybrid sigma-theta vertical coordinate (Konor
and Arakawa 1997) referred to as CSU HYB. The ver-
tical staggering is an equivalent Charney-Philips stag-
gering (Konor and Arakawa 1997). Monotonicity con-
straints in the advection operator (flux-corrected trans-
port, Zalesak 1979) may produce implicit diffusion. The
time steps for the 1◦ (40962 cells) and 2◦ (10242 cells)
grid spacings are 60 s and 120 s, respectively.

4. Results

To facilitate data handling and model comparisons the
output for each model was interpolated to a regular
latitude-longitude grid. In the model HOMME the in-
terpolation was performed by evaluating the internal ba-
sis functions at the regular latitude-longitude grid points.
CSU SGM and CSU HYB use area-weighted interpola-
tion and GEOS FV CUBED use bilinear interpolation.
For the baroclinic wave test case, the 	2-error for a partic-
ular model are computed by interpolating the non-rotated
high-resolution reference solution (CAM EUL at T340
resolution) to the regular latitude-longitude grid to which
the native model data has been interpolated.

4.1. Rotated steady-state test case

The steady-state test case measures the model’s ability
to maintain a steady-state solution and its sensitivity to
the rotation of the grid while keeping the physical flow
the same. For simplicity the test is evaluated in terms
of the surface pressure field which avoids vertical inter-
polations to pressure levels. No new insights are found
when assessing other variables like T , u, v, ζ, δ. Fig-
ure 5 shows the ps field in model coordinates (not geo-
graphical coordinates) at day 1 for models based on reg-
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ular latitude-longitude and cubed-sphere grids with the
approximately 2◦ horizontal resolution. The figures also
show some of the grid lines of the computational grid as
well as selected wind vectors at model level 3 near 14
hPa. The wind vectors show the locations of the jets in
the model’s coordinate system. The computational grid
lines illustrate how the grid impacts the numerical solu-
tion (discussed separately below for each model). Note
that the contours for ps are not the same for all plots.
Figure 6 is the same as Fig. 5 but for the icosahedral-grid
based models.

In addition to model day 1 we also show the surface
pressure fields at day 9 when the grid effects are more
pronounced. Model day 9 is depicted in Figs. 7 and 9
that show the dynamical cores based on regular latitude-
longitude and cubed-sphere grids at approximately 2◦

and 1◦ horizontal resolutions, respectively. A common
contour interval is used. Results for the icosahedral grid
models are presented in Figs. 8 and 10. The steady-state
test has an analytic solution (ps=1000 hPa) that allows
the computation of root mean square 	2 error. The 	2

error for the regular latitude-longitude and cubed-sphere
grids are shown in Fig. 11. Figure 12 depicts the time
series of the surface pressure error for the icosahedral-
hexagonal models. The definition of the 	2-error is pro-
vided in JW06. Each figure is discussed in greater detail
below.

The three-dimensional steady-state flow is baroclini-
cally and barotropically unstable due to its horizontal and
vertical shear characteristics, hence any perturbation in-
troduced into the flow will grow. Due to the basic mech-
anisms in baroclinic instability the flow is more sensitive
to perturbations introduced around the midlatitudes near
the latitudinal position of the jets in contrast to, for ex-
ample, perturbations introduced at the equator.

Depending on the rotation angle when 	2 grows to a
value somewhere in the interval ]0.2, 0.4[ hPa the spuri-
ous waves start growing exponentially. We define (some-
what arbitrarily) 	2 = 0.5 hPa as the threshold value after
which a model is termed unable to maintain a balanced
flow. At that point the amplitude of the spurious waves
has grown beyond approximately 0.5 hPa and grows ex-
ponentially. Note that the same conclusions could be
drawn by using any threshold value larger than approxi-
mately 0.3 hPa (and less than approximately 8 hPa).

4.1.1. Regular latitude-longitude grid models

The unrotated results of the regular latitude-longitude
models show that the numerical schemes maintain the

balances in the flow for at least 30 days (left column in
Fig. 11). However, when the computational grid is ro-
tated so that the flow is no longer aligned with the grid
lines, spurious waves start growing early during the sim-
ulation. In case of CAM FV and CAM ISEN (Fig. 5)
noisy patterns appear in the surface pressure fields by
day 1. The spurious waves have larger amplitudes for
α = 45◦ than forα = 90◦. Forα = 45◦ the jets cross the
poles of the computational grid (Fig. 1). Numerical ap-
proximations near the poles such as filtering, averaging,
etc., trigger a wave train in each hemisphere similar to the
wave train triggered by the boundaries in the limited-area
model of Lauritzen et al. (2008). In their case however,
the growing wave was triggered by the boundary relax-
ation scheme and elliptic solver in the boundary zone.

For α = 90◦ the poles of the computational grid are
at the equator and hence far away from the baroclinically
most unstable region located in the mid-latitudes. Hence
less accurate approximations in the polar regions of the
computational grid are not the main trigger for spurious
waves rather the fact that the grid lines predominantly
are at an angle with respect to the jets (see, e.g., Fig. 1).
In fact the angle between the jet maximum and the com-
putation grid latitudes is approximately 45◦ in four loca-
tions and less than 45◦ elsewhere. The numerical approx-
imations tend to be most accurate for flow aligned with
grid lines (angle between jet and computational latitudes
≈ 0◦) and least accurate for traverse flow (angle between
jet and computational latitudes ≈ 45◦). This seems to
trigger the wavenumber four pattern apparent in the sur-
face pressure fields of the two finite volume models at
day 9 (Fig. 7, right column).

The growth of the baroclinic wave is slightly stronger
in CAM ISEN than in CAM FV.When doubling the hor-
izontal resolution similar results are obtained (Figs. 7 and
9). Nevertheless, the growth of the spurious waves is de-
layed by approximately two days (Fig. 11) at the higher
resolution. This is expected since higher resolutions re-
duce the numerical truncation errors.

For CAM EUL the results at day 9 at low and high
resolutions (Figs. 7 and 9) appear to be invariant under
rotation. This might be expected due to the fact that a tri-
angular truncation of spherical harmonics is invariant un-
der rotation. However, the 	2-error in Fig. 11 reveal that
the rotated versions of CAM EUL cannot maintain a bal-
anced initial state throughout the 30-day integration. At
about day 19 and 26 the rotated versions of CAM EUL
lose the symmetry at the 2◦ and 1◦ resolutions, respec-
tively. It is speculated that the spurious wave is triggered
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because the spherical harmonic functions do not repre-
sent the initial conditions exactly.

4.1.2. Cubed-sphere models

Both cubed-spheremodelsHOMME and GEOS FV CUBED
show a distinct wavenumber 4 grid imprint in the surface
pressure field at day 9 at the coarse 2◦ resolution (Fig. 7,
last two rows). The grid imprint appears in each hemi-
sphere for α = 0◦ and α = 90◦. The corners of the
cubed-sphere in each hemisphere are located near the
centers of the jets for α = 0◦ and α = 90◦, thereby
positioning them in the baroclinically most unstable re-
gions. This is depicted in Fig. 5 that shows the cubed-
sphere panel-side outline and the position of the jets.
The discretizations tend to have the largest errors near
the corners of the inscribed cube. Since these are near
the baroclinically most unstable regions, the wavenum-
ber 4 spurious wave is induced into the circulation and
grows fast. The amplitude of the spurious wave is larger
in GEOS FV CUBED than in HOMME. This is most
likely due to the high-order numerical scheme and con-
sistent finite-element-based treatment of the corners in
HOMME. There is some indication that the Putman and
Lin (2007) advection scheme introduces additional er-
rors, in particular near the edges, due to its dimensional
split characteristics as explained in the next paragraph.

In the challenging moving vortices advection test
case of Nair and Jablonowski (2008) the convergence
rates for the Lauritzen et al. (2009) scheme is approx-
imately one order of magnitude higher than for the Put-
man and Lin (2007) scheme. Both schemes use the same
order of reconstruction function so the only major dif-
ference between the two schemes is that the Lauritzen et
al. (2009) scheme is fully two-dimensional, in particular
it uses a rigorous fully two-dimensional treatment of the
corners of the cube, whereas the Putman and Lin (2007)
scheme uses a dimensional split approach. This seems
to indicate that the dimensional split approach has a less
accurate treatment of the corners of the cubed-sphere as
compared to other approaches.

GEOS FV CUBED can no longer maintain the
steady-state at approximately day 6 and 12 for the 2◦

and 1◦ resolution (Fig. 11). Hence, doubling the hori-
zontal resolution delays the break-down of the steady-
state by 6 days which is a large improvement com-
pared to most other models. This could indicate that
GEOS FV CUBED is below its minimal recommend-
able resolution at a 2◦ grid spacing. The model HOMME
can maintain the steady-state for 16 and 18 days at the

coarse and fine resolutions.
In the α = 45◦ case (Fig. 11, middle column)

we observe that the performance of the models degrade
and the break-down of the steady-states occurs approx-
imately 2 days earlier in comparison to α = 0◦, 90◦

(apart from GEOS FV CUBED at 2◦ resolution). The
wave signature in the surface pressure field has an over-
laid wavenumber 2 and wavenumber 4 characteristic
rather than a pure wavenumber 4 imprint as seen before
(Figs. 7 and 9). The following reasons are suggested.
At the α = 45◦ rotation angle the flanks of the jets tra-
verse two vertices rather than four (Fig. 5). This trig-
gers the wavenumber 2 error signature that overlays the
wavenumber 4 background error. In addition, the advec-
tion operators tend to be more accurate when the flow is
quasi-parallel to coordinate lines which is predominantly
the case for α = 0◦ and α = 90◦. At the α = 45◦ ro-
tation angle the flow mostly traverse the coordinate lines
at an angle, thereby triggering enhanced errors as also
discussed in Lauritzen (2007).

4.1.3. Icosahedral models

Similar to the corners of the cubed-sphere grid and the
pole points of the regular latitude-longitude mesh, the
hexagonal-icosahdral grids have 12 pentagons that usu-
ally require special attention in the model discretizations.
The triangular-hexagonal grids show the largest devia-
tions from their almost uniform grid spacings near the
dual-grid pentagons. This triggers a distinct and ex-
pected wavenumber 5 grid imprint in the icosahedral-
grid based models in the non-rotated case (Fig. 8). The
spurious wave trains in the Northern and Southern at-
mosphere are offset by 36◦ degrees due to the relative
location of the pentagons in the two hemispheres (Fig. 8
and 10). Note that the pentagons are located near the
maximum intensity of the jets (Fig. 6) where the flow is
baroclinically most unstable. The model ICON already
shows the wavenumber 5 pattern at day 1.

In the rotated cases it is less clear how the numer-
ical discretizations near the pentagons adversely affect
the solution. For α = 45◦ and α = 90◦ the locations of
the pentagons in each hemisphere of the computational
domain are not symmetric since (regular) hexagons have
symmetry properties for 60◦ rather than 45◦ and 90◦.
This triggers the asymmetric response in the surface
pressure field in all icosahedral simulations at the ro-
tation angles α = 45◦ and 90◦ (Fig. 8 and 10, mid-
dle and right column). At the 1◦ resolution (Fig. 10)
the amplitudes of the growing spurious waves in ICON
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are largest at the α = 45◦ rotation angle, whereas they
are largest at the 90◦ angle in the models CSU HYB
and CSU SGM. All three icosahedral model variants im-
prove their representation of the steady-state at the higher
resolution. The ICON model can maintain the steady-
state solution the shortest. It breaks down after approxi-
mately 8 and 10 days at the 2◦ and 1◦ resolutions, respec-
tively. The steady-states in the high-resolution versions
of CSU SGM and CSU HYB break down after approxi-
mately 12 days whereas the lower resolution version dif-
fers by a day (Fig. 12). The CSU HYB model variant
with the hybrid isentropic vertical coordinate shows that
the spurious perturbations introduced by the numerics
grow slightly faster than the perturbations in the tradi-
tional sigma-pressure model version. A similar observa-
tion was made for the CAM FV and CAM ISEN model
pair.

4.2. Rotated baroclinic wave test case

As for the steady-state test case we consider the sur-
face pressure at day 9 with three rotation angles (α =
0◦, 45◦, 90◦) and the two 2◦ and 1◦ resolutions. The fig-
ures for surface pressure are grouped as before for the
steady-state test case. In particular, the surface pres-
sure field at the low resolution for the regular latitude-
longitude and cubed-sphere grid based models are shown
in Fig. 13. The icosahedral-grid based models are de-
picted in Fig. 14. The plots zoom in on the main wave
train in the northern hemisphere. The corresponding
plots for the high 1◦ resolution runs are presented in
Figs. 15 and 16. Since the relative vorticity fields for
this test case contain more fine-scale structures than the
surface pressure we also show the 850 hPa relative vor-
ticity (see Figs. 17, 18, 19 and 20). Finally, the l2 surface
pressure error for non-icosahedral and icosahedral grid
based models are presented in Figs. 21 and 22 at approx-
imately 2◦, respectively, and similary for the 1◦ solutions
on Figs. 23 and 24.

To compute the l2-errors a reference solution is
needed as no analytical solution is known for the baro-
clinic wave test case. Here we use all high-resolution
reference solutions available (at 0.25◦ resolution) to
compute l2-errors. These are GEOS FV CUBED,
CAM EUL (T340 truncation), CAM FV, HOMME,
CSU SGM as well as the reference solutions used in
JW06 that are not part of our model suite: CAM SLD
and GME which are a semi-Lagrangian version of
CAM EUL and a finite-difference icosahedral (hexago-

nal) model developed at the DWD, respectively (formore
details see JW06). JW06 used four models (CAM EUL,
CAM SLD, CAM FV, GME) to define the uncertainty of
the reference solutions based on the argument that by in-
creasing the resolution beyond 0.25◦ one does not get
a better estimate of the ‘true’ solution. This is illus-
trated on JW06’s Figure 10 in that increasing the reso-
lution from approximately 0.5◦ to 0.25◦ the differences
in l2-errors between the models does not decrease. The
maximum difference in l2-error between any two mod-
els and any of the 0.5◦ and 0.25◦ resolutions defines the
uncertainty of the reference solutions. Our model en-
semble is larger than the four models used in JW06 and
one could argue that the spread in the model solutions
could increase by using more models. However, by com-
puting the l2-errors between all 0.25◦ reference solution
models for which we have data, all l2-errors are within
the uncertainty of the JW06 ensemble (see Fig. 25) and
we therefore find it adequate to use the JW06 uncertainty
estimate (yellow regions on Fig. 21, 22, 23, 24).

We use the following terminology regarding conver-
gence of models to within the uncertainty of the refer-
ence solutions: If all l2-errors based on all available ref-
erence solutions are outside the yellow region, we term
the model non-converged at that particular resolution.
And similarly, if all l2-errors based on all available ref-
erence solutions are in the yellow region, we term the
model converged at that particular resolution. If none
of the above, some reference solutions produce l2 errors
inside the yellow area and some outside, the model is
termed converging (tend to convergence) in the sense that
the model has started to converge but higher resolution is
needed to term the model converged with higher fidelity.
As noted by JW06 the initial phase of the wave growth
(0-6 days) is easily dominated by interpolation errors and
the predictability of the test is approximately 12 days.
So the terminology regarding convergence applies to the
time span from approximately 6 to 12 days.

4.2.1. Regular latitude-longitude models

The CAM EUL model exhibits relatively little variation
of the surface pressure evolution with rotation angle at
both low and high resolution. Nevertheless, Fig. 13
shows a slight indication that the development of the
baroclinic wave in CAM EUL is less strong in the ro-
tated versions of the test at approximately 2◦ resolution.
This becomes even clearer in the relative vorticity field
in Fig. 17. However, at the higher resolution (Figs. 15
and 19) the observed anisotropy in the solution is drasti-
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cally reduced and CAM EUL has converged at the high
resolution.

Overall, CAM FV and CAM ISEN show the same
behavior but with a generally less strong baroclinic de-
velopment in terms of the highs and lows in the wave
train. This observation is confirmed in the error mea-
sures in Fig. 23 where the approximately 1◦ runs with
CAM FV and CAM ISEN are converging but have not
converged. At the 1◦ resolution the differences be-
tween the unrotated and rotated model experiments is
larger for the CAM FV and CAM ISEN models than
for the spectral transform model. The observation that
CAM FV and CAM ISEN need higher resolution for
convergence in this test case has also been demonstrated
in more complex simulations with physical parameter-
izations. For example, Williamson (2008) showed in
so-called aqua-planet experiments (Neale and Hoskins
2000) that CAM FV needs a higher horizontal resolu-
tion to match the CAM EUL results in terms of a wide
range of diagnostics.

4.2.2. Cubed-sphere models

The cubed-sphere models perform very similarly and
show little dependence on rotation angle. At the approx-
imately 2◦ resolution the deep low in surface pressure at
day 9 is slightly deeper for the rotated cubed-sphere runs
than for the corresponding CAM EUL run (Fig. 13). At
high resolution CAM EUL and the cubed-sphere models
show almost identical ps fields (Fig. 15). This indicates
that the cubed-sphere models have converged as is con-
firmed in the l2 error measures in Fig. 23. There is a
slight indication in the l2 error that for α = 45◦ the solu-
tions are slightly less accurate than for the other rotation
angles. In fact GEOS FV CUBED at α = 45◦ is on
the verge to be termed converging rather than converged.
Also, the relative vorticity fields show some slight vari-
ation with rotation angle at both low and high resolution
for the cubed-sphere models (Fig. 17 and 19). This is
most likely due to the flow being predominantly traverse
to grid cells at α = 45◦. In contrast the flow is predomi-
nantly parallel to the grid lines for α = 0◦ and α = 90◦.

4.2.3. Icosahedral models

Among the icosahedral models the ICON model shows
large variation in surface pressure and relative vorticity
fields under the rotation of the computational grid. This
is especially apparent at the low 2◦ resolution (Fig. 14).

At the higher 1◦ resolution the dependence of the solu-
tion on the rotation angle strongly decreases (Fig. 16). It
suggests that the minimal recommendable resolution for
the ICON model is higher than approximately 2◦. How-
ever, even at the 1◦ resolution the relative vorticity field
for ICON still shows relatively large variation with rota-
tion angle (Fig. 20).

The CSU SGM and CSU HYB models show fewer
variations with rotation angle but differences are visible
in the surface pressure field for the low resolution runs
(Fig. 14). The deep low of the wave train is strongest
for α = 90◦ contrary to the regular latitude-longitude
models that had the strongest baroclinic developments
for the non-rotated version of the test case. This depen-
dence on rotation angle practically disappears at higher
resolution as can be seen in both the ps field (Fig. 16)
and the 850 hPa relative vorticity fields (Fig. 20). The
CSU HYB model based on isentropic vertical coordi-
nates has a stronger baroclinic development than its con-
ventional vertical coordinate counterpart (CSU SGM).
The l2 error shows that CSU HYB is on the verge of
being termed convergent at approximately 1◦ resolution
whereas the CSU SGM is not. In fact CSU SGM is
non-convergent at the high resolution. Note that even in
the steady-state test case the spurious perturbations grew
faster in the isentropic vertical coordinate version of the
model in comparison to the hybrid sigma-pressure model
variant (Fig. 12). It is unknown whether this character-
istic is due to a slightly inaccurate initialization (e.g. in-
troduced by interpolations) or a general property of the
isentropic vertical coordinate models.

5. Conclusions

In this paper a rotated version of the Jablonowski steady-
state and baroclinic wave test case for dry dynamical
cores of GCMs has been introduced. The underlying idea
is to rotate the computational grid with respect to the
physical flow to eliminate any symmetries between the
grid and the flow field. Models based on regular latitude-
longitude grids are somewhat favored by the unrotated
version of the Jablonowski test case since the flow is
predominantly zonal and thereby aligned with the grid
lines. This makes it less challenging for regular latitude-
longitude grid based models to maintain the balance in
the steady-state test. Other grid configurations such as
cubed-sphere and icosahedral meshes do not exhibit any
zonal symmetries. Therefore, they are more challenged
to maintain the zonally symmetric balance. However,
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these non-traditional grids provide a more uniform grid
coverage on the sphere. Their variation of the grid cell
area is small in comparison to regular latitude-longitude
grids with convergingmeridians. It is therefore expected
that they only exhibit weak dependencies on the rotation
angle when displacing the computational grid poles from
the geographical poles.

The rotated steady-state and baroclinic wave test
case were tested by a wide variety of global dynam-
ical cores that participated in a dynamical core inter-
comparison. The latter was part of the NCAR ASP
2008 summer colloquium that evaluated the character-
istics of 12 dynamical cores at large scales. Here we
present results of six models with eight model vari-
ants. The models represent a wide spectrum of nu-
merical schemes and computational grids like regular
latitude-longitude grids, cubed-sphere meshes and icosa-
hedral grids. Among them are the four dynamical cores
that are part of the NCAR Community Atmosphere
Model CAM: CAM EUL, CAM FV, CAM ISEN and
HOMME. In addition we present results from the CSU
models CSU HYB, CSU SGM, the newly developed
MPI model ICON as well as the GFDL/NASA dynam-
ical core GEOS FV CUBED on the cubed-sphere grid.
We focus on the simulations with the two horizontal res-
olutions 1◦ and 2◦ (at the model equator) and three rota-
tion angles 0◦, 45◦, 90◦.

First, the ability to maintain a balanced steady-state
flow field was examined as a function of rotation angle
and resolution. Since the flow is baroclinically unstable
any perturbation will eventually grow and result in spu-
rious waves. After reaching a certain threshold level the
spurious waves grow exponentially. We term a particular
model unable to maintain a balanced flow when the l2
surface pressure errors increase beyond a certain thresh-
old level, here set to 	2 = 0.5 hPa. The number of days a
model retains a balanced flow field as a function of res-
olution and rotation angle was examined. For the mod-
els defined on different grids we found different spurious
forcings, also referred to as grid imprinting. The grid
imprinting depends on the rotation angle, the relative lat-
itudinal location of the jets, which are also the baroclin-
ically most unstable regions, and the strong/weak singu-
larities of the underlying spherical grid. As expected,
unrotated versions of the steady-state test case developed
a wavenumber 4 pattern for cubed-sphere models and a
wavenumber 5 pattern for models based on an icosahe-
dral grid. When rotating the grid at the 45◦ angle the
cubed-sphere models developed an overlaid wavenum-

ber 2 and 4 pattern. The wavenumber 2 occurs since the
flanks of the jet now traverse two corners of the cubed-
sphere grid rather than four in this configuration. The
icosahedral models have symmetry properties for a 60◦

rotation angle rather than 45◦. Therefore, the icosahe-
dral models show an asymmetric response under the 45◦

and 90◦ rotation. Assuming that the growth rates for
the spurious waves are equal in all respective models,
the strength of the grid imprinting is proportional to the
breakdown of the steady-state. The times of the break-
down vary significantly among the models and rotation
angles. At the 1◦ and 2◦ resolutions they varied between
6 - 26 days.

For the rotated versions of the baroclinic wave test
case the surface pressure and 850 hPa relative vorticity
at day 9 were examined. In addition, the l2 surface pres-
sure errors were computed for all models using 7 high
resolution reference solutions. The l2 errors indicate the
resolution at which the models converge to within the
uncertainty of the high-resolution reference solutions (as
defined in JW06). We term a model converged when
l2 based on all reference solutions are within the uncer-
tainty of the reference solutions and non-convergedwhen
all l2 errors are outside. If some of the l2-errors are out-
side and some inside the uncertainty region we term the
model converging in the sense that the model has started
to converge but higher resolution is needed to term the
model converged with higher fidelity.

All models were non-converged at the lower 2◦ reso-
lution and they showed large variation with rotation an-
gle. At the high 1◦ resolution most models show a de-
crease in (or almost no) dependence on the rotation angle
in terms of ps, the relative vorticity and l2 errors. The
models CAM EUL, HOMME and GEOS FV CUBED
were converged at 1◦ grid spacing and CSU HYB was
on the verge of being termed converged. CAM FV and
CAM ISEN were converging at the high resolution but
slightly higher resolution is needed to be termed con-
verged. CSU HYB and ICON were non-convergent and
therefore need higher resolution for convergence.

We argue that this test case is a useful tool for debug-
ging model code and for model development in general
when evaluating the anisotropy in the solutions with var-
ious grid systems. For example, the cubed-sphere model
runs should be identical for the non-rotated and 90◦ ro-
tation angles because of the symmetry properties of the
grid. In addition, the impact of filtering and numerical
discretizations near the (weak) singularities can be read-
ily assessed with this test case. It also provides a simple
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framework to estimate the minimal recommendable res-
olutions to simulate large scale baroclinic instability. It is
largely unknown how the spurious grid forcing (grid im-
printing) is impacting full model simulations with phys-
ical parameterizations. For example, the paleo-climate
community models at low resolution (relatively speak-
ing) mainly due to limitations in computing power. The
grid imprinting at low resolutions could potentially be a
problem in long runs if its magnitude is comparable to
the physical forcings in the system. More research in
this area is needed. The test cases presented herein give
an indication of the magnitude of the grid forcing in a
short term simulation.

In this study, we did not attempt to compute an effec-
tive resolution of each model, e.g. the resolution needed
to hold a steady state for some fixed number of days. Nor
did we compare the relative computational cost between
the different models, e.g. we did not compute the ratio
between accuracy versus computational cost. Since some
models were highly optimized for the computer used dur-
ing the NCAR ASP colloquium and others were not, it
was found unfair to try and compare computational cost.
Also, in the light of massive parallel computing the per-
formance of a model at low processor count as used dur-
ing the colloquium may be very different in comparison
to massive processor usage. Our main goal was not to
rank models but rather to demonstrate the usefulness of
the test in model development. Obviously, good perfor-
mance in an idealized test case does not guarantee supe-
rior performance when coupled to the full physics pack-
age or run at fine scales. However, if a model show ex-
cessive spurious grid forcing and is unable to maintain
large scale balances in the flow, it would be questionable
if such a model would be adequate for long term simula-
tions, especially at coarse climate resolutions.
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Appendix: Definition of metadata

The definitions of the metadata entries used in Tables 3,
4 and 5 are given below:

Numerical method: The basic numerical method used
to discretize the equations of motion (excluding tracer
transport). Examples are finite-difference, finite-volume,
spectral element or spectral transform methods. In ad-
dition, the Eulerian or semi-Lagrangian formulation of
the equations is denoted. Note that a combinations of the
numerical methods are used in some models.

Projection: Any projection used for the discretization of
the equations of motion. For example, cubed-sphere
grids can use gnomonic (equiangular) or gnomonic
(equal-distance along cube edges). Also, planar pro-
jections used in some icosahedral grid models etc.

Spatial approximation: Spatial approximations used for
the discretization of the equations of motion. The formal
order of accuracy is denoted. Examples are second-order
finite-differences, finite-volume with polynomial sub-
grid distributions (e.g. the piecewise parabolic method
PPM). Note that some models use different classes of
spatial approximations for different variables.

Advection Scheme: Scheme used to approximate the
advective operator in the equations of motion as well
as for tracers. Examples are the Lin and Rood (1996)
scheme, spectral transform, MPDATA (Smolarkiewicz
and Szmelter 2005), etc. Note that some models use a
different scheme for the advection operator in the equa-
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tions of motion than for tracers.

Conservation type: Physical characteristics of the equa-
tions of motion that are conserved by the numerical
discretization. For example, mass of dry air, total energy.

Conservation fixers: Any physical quantities that are for-
mally conserved by the continuous equations of motion
and restored with an a-posteriori fixer in the dynamical
core (due to non-conservation in the numerical schemes).
For example, dry air mass, total energy.

Time Stepping: Time stepping used in the schemes used
to discretize the equations of motion. For example, ex-
plicit, implicit, semi-implicit.

Δt for approximately 1◦ at the equator: Time step size
Δt used for running the model at approximately 1◦ at
the model equator.

Internal resolution for Δt: Horizontal resolution used in
the model corresponding to theΔt given above. The res-
olution is specified in terms of internal representation of
resolution used in the model. For example, 90x90 cells
per cubed-sphere face (approximately 110 km grid spac-
ing), T85 spectral resolution (approximately 156 km),
#lon=360 #lat=181 for the regular latitude-longitude grid
(approximately 110 km).

Temporal approximation: The temporal approximation
used in the time-steppingmethod for advancing the equa-
tions of motion forward in time. It is specified in terms
of number of time-levels, name of scheme (if applica-
ble, with reference) and order of accuracy. For exam-
ple, three-time-level Leapfrog (formally second-order,
order reduced if filtered), two-time-level (second-order
accurate), four-time-level Adams-Bashforth (third order
accurate).

Temporal filter: Any filters applied to the time-stepping
method to remove spurious waves. For example, Robert-
Asselin (Asselin 1972).

Explicit spatial diffusion: Any explicit diffusion terms
added to the equations of motion. For example, 4th order
linear horizontal diffusion, 2nd order divergence damp-
ing.

Implicit diffusion: Implicit diffusion is inherent diffusion

in the numerical schemes not enforced through the ad-
dition of diffusion operators in the equations of motion.
For example, monotonicity constraints in the sub-grid-
cell reconstruction function, FCT (flux corrected trans-
port), off-centering.

Explicit spatial filter: Filtering that is applied in space
that is not implemented in terms of explicit diffusion
operators and implicit diffusion. For example, FFT fil-
tering, digital diltering, Shapiro filter.

Prognostic variables: Prognostic variables used in the
discretizations of the equations of motion. For example,
(u,v,T ,ps), (vorticity, divergence, potential temperature,
surface pressure).

Horizontal staggering: Staggering used in the horizon-
tal. For example, Arakawa A, B, C or D (Arakawa and
Lamb 1977).

Vertical coordinate: Vertical coordinate used in the dis-
cretizations of the equations of motion. For example,
hybrid sigma-pressure, sigma, hybrid sigma-theta (isen-
tropic). Some models use a combination of Eulerian
and Lagrangian vertical coordinates, that is, an initial
Eulerian vertical coordinate evolves as a Lagrangian sur-
face for a number of time-steps and is then periodically
remapped back to an Eulerian reference vertical coordi-
nate (Lin 2004, Nair et al. 2009).

Vertical staggering: Staggering used in the vertical. For
example, Lorenz (Lorenz 1960) staggering.
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Figure 5: Surface pressure (hPa) at day 1 in model coordinates (not geographical coordinates) for models based on
regular latitude-longitude and cubed-sphere grids at approximately 2◦ horizontal resolution at rotation angles α = 0◦

(left column), α = 45◦ (middle column) and α = 90◦ (right column). The figures also show some of the grid lines
for the computational grid (white solid lines) as well as the vector wind field at model level 3 near 14 hPa for the
initial condition (the offset in the wind vectors around 120E in the first column reflects a plotting problem rather than
a change in the zonal winds). The wind vectors are only shown to indicate the location of the jets with respect to the
model grid. Each plot has different color contouring. The model abbreviation is above each plot (see also Table 2).
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Figure 6: Same as Fig. 5 but for the icosahedral grid models at day 1. The pentagons of the hexagon grid are marked
with thick white lines.
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Figure 7: Surface pressure (hPa) at day 9 for models based on a regular latitude-longitude and cubed-sphere grids for
different rotation angles (left, middle and right columns are α = 0◦, 45◦ and 90◦, respectively). The models use a grid
spacing of ≈ 2◦.
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Figure 8: Same as Fig. 7 but for the icosahedral grid models at day 9. To faciliate the visual comparison of ps among
the models the contour interval is from 997.5 hPa to 1002.5 hPa. Obviously the contours for ps for ICON, CSU HYB
and CSU SGM go beyond this range (the full range for ICON is approximately from 992 hPa to 1004 hPa).
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Figure 9: Same as Fig. 7 but for a grid spacing of ≈ 1◦.
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Figure 10: Same as Fig. 9 but for models based on an icosahedral grid.
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Figure 11: Time series of the root mean square 	2-errors (in hPa) for dynamical cores defined on regular latitude-
longitude and cubed-sphere grids using rotation angles (left column) 0◦, 45◦ (middle column) and 90◦ (right column),
respectively. The model abbreviations are defined in Table 2. Solid and dashed lines are for horizontal grid spacings
of ≈ 2◦ and ≈ 1◦, respectively. In the upper row the y-axis is on a logarithmic scale and in the lower row the y-scale
is linear. The yellow region marks the 	2 < 0.5 hPa region.
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Figure 12: Same as Fig. 11 but for models defined on icosahedral grids.
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Figure 13: Surface pressure (hPa) at day 9 for the baroclinic wave test case for models based on a regular latitude-
longitude and cubed-sphere grids for different rotation angles (left, middle and right columns are α = 0◦, 45◦ and 90◦,
respectively). The grid spacing is ≈ 2◦. The plots zoom into the baroclinic wave.

Figure 14: Same as Fig. 13 but for the icosahedral grid models.
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Figure 15: Same as Fig. 13 but for a grid spacing of ≈ 1◦.

Figure 16: Same as Fig. 15 but for models based on an icosahedral type grid.
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Figure 17: Relative vorticity (day 9) at 850hPa in units of 10−5s−1 for models based on a regular latitude-longitude and
cubed-sphere grids for different rotation angles (left, middle and right columns are α = 0◦, 45◦ and 90◦, respectively).
The models use a grid spacing of ≈ 2◦.

Figure 18: Same as Fig. 17 but for the icosahdral grid models.
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Figure 19: Same as Fig. 17 but for a grid spacing of ≈ 1◦.
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Figure 20: Same as Fig. 19 but for models based on an icosahedral type grid. The unrotated results of the model ICON
have been filtered by a standard nine point filter.
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Figure 21: Time series of the root mean square 	2(ps − pref
s ) errors (in hPa) using rotation angles (left column) 0◦,

45◦ (middle column) and 90◦ (right column) for CAM EUL (1st row), CAM FV (2nd row), CAM ISEN (3rd row),
HOMME (4th row) and GEOS FV CUBED (5th row), respectively, at approximately 2◦ horizontal resolution. The
errors on each plot have been computed using reference solutions pref

s from CAM SLD, GME (see JW06 for descrip-
tion), GEOS FV CUBED, CAM EUL, CAM FV and CSU SGM at approximately 0.25◦ resolution, respectively. For
the computation of 	2 the reference solutions have been bi-linearly interpolated to the regular latitude-longitude grid
on which the model data are available. The yellow region marks the uncertainty of the reference solutions as defined
by JW06.
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Figure 22: Same as Fig. 21 but for CSU HYB (1st row), CSU SGM (2nd row) and ICON (3rd row), respectively.
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Figure 23: Same as Fig. 21 but for approximately 1◦ horizontal resolution.
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Figure 24: Same as Fig. 22 but for approximately 1◦ horizontal resolution.
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Figure 25: Time series of the root mean square 	2 errors (in hPa) between ps for all high resolution reference solutions
(≈ 1/4◦) used in this paper.
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