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Abstract

Three different high-order finite element methods are used to solve the advection problem—two implementations of a

discontinuous Galerkin and a spectral element (high-order continuous Galerkin) method. The three methods are tested

using a 2D Gaussian hill as a test function, and the relative L2 errors are compared. Using an explicit Runge–Kutta time

stepping scheme, all three methods can be parallelized using a straightforward domain decomposition and are shown to be

easily and efficiently scaled across multiple-processor distributed memory machines. The effect of a monotonic limiter on a

DG scheme is demonstrated for a non-smooth solution. Additionally, the necessary geometry for implementing these

methods on the surface of a sphere is discussed.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

With the rise in popularity of distributed memory
parallel processing, high-order methods such as
spectral element (SE or continuous Galerkin)
methods and discontinuous Galerkin (DG) methods
are becoming more common in atmospheric models
(Taylor et al., 1997; Nair et al., 2005a). The
advantages of these local methods are high-order
e front matter r 2007 Elsevier Ltd. All rights reserved
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accuracy, parallel efficiency, and geometric flexibility,
including adaptive mesh refinement capability.

Traditional models use low-order finite difference
methods or rely on global methods employing
spectral transforms, which have dominated global
climate modeling for the past two decades
(Washington and Parkinson, 2005). Unfortunately,
such numerical methods are not well-suited to
exploit the massively parallel computers; for exam-
ple, the spectral transform methods cannot take
advantage of the computer power found in dis-
tributed memory parallel computers because of the
non-local communication.
.
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Conventional global atmospheric models based
on latitude–longitude spherical geometry have polar
singularities due to mesh convergence. Eulerian
grid-point models based on such grid systems not
only have severe stability restrictions in the polar
regions, but also require non-local polar filtering
which greatly impedes efficient communication on a
massively parallel machine. To address these issues,
atmospheric modelers recently reintroduced the
cubed sphere geometry for global modeling (Rančić
et al., 1996; Ronchi et al., 1996), based on the
earlier work of Sadourny (1972). The cubed sphere
geometry partitions the sphere into six identical
subdomains by mapping a cube onto the spherical
surface and is free from the polar singularities. The
subdomains (faces of the cubed sphere) can be
further partitioned into non-overlapping elements
which are ideally suited for high-order Galerkin
methods (Dennis et al., 2005).

The SE method was introduced by Patera (1984).
The main difference between SE and the finite
element methods available at the time was that
Patera used high-order elements, whereas prior to
his research low-order (linear or quadratic) elements
were used. This led to a change in the interaction at
the boundary of elements to enforce the continuity
restriction. Exponential convergence of the spectral
element method is seen in both Patera (1984) and
Harkin (1995); an extensive review of SE methods
can be found in Karniadakis and Sherwin (1999)
and Deville et al. (2002). DG methods may be
considered as a hybrid approach, combining finite
element and finite volume methods, and became
popular after the work of Cockburn and Shu
(1989). They combined the classical DG method
with a total-variation bounded Runge–Kutta time
stepping scheme along with the DG spatial
discretization. DG methods retain all the properties
of SE methods, and in addition are inherently
conservative. For long-term time integration con-
servation properties are very crucial, therefore
DG methods are more attractive than SE methods
in climate modeling (Nair and Tufo, 2006).
A detailed review of the DG methods and their
application can be found in Cockburn and Shu
(2001).

Galerkin methods have been shown to efficiently
scale onto large distributive memory machines.
Dennis et al. (2005) implemented a DG method on
Oð1000Þ processes and Loft et al. (2001) implemen-
ted a SE method on Oð10 000Þ processes; results
from both indicate that the methods will scale well
on even larger machines. Since parallel machines
continue to grow, these methods are becoming more
attractive.

Advection plays a major role in atmospheric
dynamics. We consider the advection equation in
Cartesian and spherical geometry to evaluate the
DG scheme. In this paper, the main focus is given to
the DG schemes and we compare two variants of a
DG method. In addition, a SE method is used as a
reference for convergence and scalability in Carte-
sian geometry. All three solvers are introduced in
detail in Section 2, with a discussion of scalability in
Section 2.5. Section 3 discusses techniques for
implementing a DG method on the surface of a
sphere using the cubed sphere geometry.
2. Two-dimensional Galerkin methods

In two dimensions, the conservative transport
equation is given as follows:

qU

qt
þ r � FðUÞ ¼ SðUÞ, (1)

where U¼Uðx1;x2; tÞ, ðx1;x2Þ 2O, t2 ½0;T �, FðUÞ ¼
ðF ðUÞ;GðUÞÞ is the flux function, SðUÞ is the source
term, and r ¼ ðq=qx1; q=qx2Þ. For the given initial
conditions Uðx1;x2; t ¼ 0Þ ¼ U0ðx

1; x2Þ for all
ðx1; x2Þ 2 O, the solution Uðx1;x2; t ¼ TÞ is sought.
The first step in implementing a DG or SE method
is to partition O into Ne non-overlapping elements
Oij. For this study, we consider a periodic rectan-
gular domain (O) that consists of rectangular
elements Oij such that:

Oij ¼ fðx
1; x2Þ:x1 2 ½x1

i�1=2; x
1
iþ1=2�; x

2 2 ½x2
j�1=2; x

2
jþ1=2�g,

where i 2 f1; . . . ;Nig and j 2 f1; . . . ;Njg, so there
are Ne ¼ Ni �Nj elements tiled as shown in Fig. 1.

For the approximate solution Uhðx
1;x2; tÞ in a

finite-dimensional function space V h, a weak DG
formulation of Eq. (1) is required. This is done by
substituting Uh for U, multiplying the equation by
an arbitrary test function fh ¼ fhðx

1; x2Þ 2 Vh, and
integrating over each element:

Z
Oij

qUh

qt
fh dOþ

Z
Oij

ðr � FðUhÞÞfh dO

¼

Z
Oij

SðUhÞfh dO.
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Fig. 1. Rectangular domain partitioned into elements.
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Fig. 2. Communication between element boundaries in the DG

method, where the flux is the only ‘‘communicator’’.
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Integrating the second term by parts yields:Z
Oij

ðr � FðUhÞÞfh dO ¼
Z
Gij

ðFðUhÞ � n̂Þfh ds

�

Z
Oij

ðFðUhÞ � rfhÞdO,

where Gij is the boundary of Oij and n̂ represents the
normal (outward) vector to Gij . Thus the weak form
corresponding to Eq. (1) can be rewritten asZ
Oij

qUh

qt
fh dO ¼

Z
Oij

SðUhÞfh dO

þ

Z
Oij

ðFðUhÞ � rfhÞdO

�

Z
Gij

ðFðUhÞ � n̂Þfh ds. ð2Þ

In the DG method, functions in Vh are continuous
on the interior of each element, but continuity
across the element boundaries is not required. In
this case, FðUhÞ is not uniquely defined along
element boundaries and instead is replaced with a
numerical flux. A wide range of flux formulas are
available (Cockburn and Shu, 2001), for simplicity
we consider the Lax–Friedrichs flux given by

F̂ ðU�h ;U
þ
h Þ ¼

1
2
½ðFðUþh Þ þ FðU�h ÞÞ � n̂� āðUþh �U�h Þ�,

(3)

where Uþh and U�h are the right and left limits,
respectively, of Uh approaching the element bound-
ary and ā is an upper bound on the absolute value of
the Flux Jacobian, jF0ðUhÞj. This interaction is
schematically shown in Fig. 2.

The numerical flux resolves the discontinuity and
provides the only mechanism by which two adjacent
elements interact. Therefore, for the DG methods,
parallel communication is built with the boundary flux
operations (Baggag et al., 1999; Dennis et al., 2005).

Interchanging the time differentiation with the
spatial integral and using the numerical flux from
Eq. (3), the weak Galerkin formulation takes the
form:

q
qt

Z
Oij

Uhfh dO ¼
Z
Oij

SðUhÞfh dO

þ

Z
Oij

ðFðUhÞ � rfhÞdO

�

Z
Gij

F̂ ðUhÞfh ds. ð4Þ

2.1. Local coordinate systems

The integrals in (4) need to be evaluated in an
efficient manner, and their accuracy is crucial to
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maintaining the overall order of accuracy of the
Galerkin scheme. It is therefore important to have a
common computational grid on which every ele-
ment can be mapped, allowing numerical integrals
to be calculated using Gauss quadrature rules. For
rectangular elements the domain ½�1; 1� � ½�1; 1� is
taken to be the reference element (or computational
grid). Denote the Cartesian coordinate directions x1

and x2 as xn, with n 2 f1; 2g. Let xn
i ¼

1
2
ðxn

iþ1=2 þ

xn
i�1=2Þ and Dxn

i ¼ xn
iþ1=2 � xn

i�1=2, and define the
local coordinates xn for points in Oij by xn ¼ 2ðxn �

xn
i Þ=Dxn

i so that xn 2 ½�1; 1�. Thus the variables x1

and x2 are projections of x1 and x2 into the reference
element.

In order to perform the numerical integra-
tion efficiently, a Gauss–Lobatto–Legendre (GLL)
quadrature rule is employed on the reference
element. In addition to allowing accurate integral
computation, the GLL grid includes the two end-
points of the interval so points that lie on
the boundary between two elements are included
in the numerical grid on both elements. Details
on computing the GLL nodes can be found in
Appendix A.1.

It is also necessary to choose a basis set
for Vh, and to properly define Uh. Two different
bases for the DG method are discussed, one of
which is easily adapted to the spectral element
method.
2.2. Spatial discretization for the discontinuous

Galerkin method

The two implementations of the DG method
discussed in this section are mathematically equiva-
lent—they differ only in the choice of basis functions
for the finite-dimensional space the solution lies in.
This leads to differences in calculating inner
products and norms, but both bases span the same
space.
2.2.1. Modal expansion

Denoting the kth-degree Legendre polynomial by
LkðxÞ, let the tensor-products L‘ðx

1
ÞLmðx

2
Þ

(‘;m 2 f0; 1; . . . ;Ngg) form a basis for V h. The
approximate solution Uhðx

1; x2; tÞ can be expressed
in terms of the basis functions as follows:

Uhðx
1; x2; tÞ ¼

XNg

‘¼0

XNg

m¼0

~U ‘mðtÞL‘ðx
1
ÞLmðx

2
Þ, (5)
where ~U ‘m are the spectral coefficients associated
with the Legendre transform,

~U ‘mðtÞ ¼
ð2‘ þ 1Þð2mþ 1Þ

4

�

Z 1

�1

Z 1

�1

Uðx1; x2; tÞL‘ðx
1
ÞLmðx

2
Þdx2 dx1.

With this terminology, the left-hand side of Eq. (4)
can be re-written as

q
qt

Z
Oij

Uhfh dO

¼
Dx1

i Dx2
j

4

 !
d

dt

Z 1

�1

Z 1

�1

XNg

‘¼0

XNg

m¼0

~U ‘mðtÞL‘ðx
1
Þ

�Lmðx
2
Þfhðx

1; x2Þdx2 dx1,

where fh is an arbitrary test function in Vh, and
defined to be

fhðx
1; x2Þ ¼ Lpðx

1
ÞLqðx

2
Þ; p; q 2 f0; 1; . . . ;Ngg.

Using the orthogonality property of Legendre
polynomials,Z 1

�1

Z 1

�1

L‘ðx
1
ÞLmðx

2
ÞLpðx

1
ÞLqðx

2
Þdx1 dx2

¼
4

ð2‘ þ 1Þð2mþ 1Þ
d‘pdmq,

where dij is the Kronecker delta (i.e., dij ¼ 1 if i ¼ j

and 0 otherwise), Eq. (4) can be further simplified
and written as the ODE

d

dt
~U ‘mðtÞ ¼Mij‘m½IF þ IG þ IS�, (6)

where

Mij‘m ¼
ð2‘ þ 1Þð2mþ 1Þ

Dx1
i Dx2

j

,

IF ¼

Z
Oij

F ðUhÞL
0
‘ðx

1
ÞLmðx

2
ÞdO

þ

Z
Oij

GðUhÞL‘ðx
1
ÞL0mðx

2
ÞdO,

IS ¼

Z
Oij

SðUhÞL‘ðx
1
ÞLmðx

2
ÞdO,

IG ¼ �

Z
Gij

F̂ ðUhÞL‘ðx
1
ÞLmðx

2
Þds.

Note that the mass matrix Mij ¼ ½Mij‘m�
�1 asso-

ciated with the discretization in Oij can be easily
inverted, and for the global discretization in O, the
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mass matrix M is block-diagonal. The surface
integrals IF and IS and the boundary (contour)
integral IG appearing in the right-hand side of the
ODE (6) are evaluated by employing the GLL
quadrature (Nair et al., 2005b). Pre-computing the
mass matrix, as well as Legendre polynomial values
and its derivatives (L0m) on the GLL grid, greatly
simplifies the solution process.
2.2.2. Nodal expansion

The nodal basis set contains the Ng-degree
Lagrange–Legendre polynomials, with Lagrange
nodes on the GLL quadrature points (fx0; . . . ;
xNg
g). Fig. 3 shows the plots of the modal and

nodal basis set for Ng ¼ 4. The modal basis, seen in
Fig. 3a, consists of the GLL polynomials up to
degree Ng (representing different modes), but the
nodal basis (Fig. 3b) contains polynomials with
fixed degree Ng.

The orthogonality of the nodal basis set is
established in a discrete manner by exploiting a
property of the Lagrange polynomials (Deville et al.,
2002). The nodal basis functions are denoted as
hiðxÞ, i 2 f0; . . . ;Ngg, and defined to be

hiðxÞ ¼
ðx� 1Þðxþ 1ÞL0Ng

ðxÞ

NgðNg þ 1ÞLNg
ðxiÞðx� xiÞ

; x 2 ½�1; 1�.

Since hi is a Lagrange polynomial it follows that
hiðxjÞ ¼ dij . Using the GLL quadrature discussed in
Section 2.1, these polynomials form a (discrete)
orthogonal basis for V h:Z 1

�1

hiðxÞhjðxÞdx �
XNg

k¼0

wkhiðxkÞhjðxkÞ ¼ widij, (7)
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Modal Basis Functions

x

L
(x

)

h
(x

)

ig. 3. Plots of: (a) the modal basis set (Legendre polynomials) having

olynomials) with degree Ng ¼ 4.
with quadrature weights wi defined explicitly in
Appendix A.1. However, the quadrature rule is only
exact for polynomials of degree 2Ng � 1 or lower,
so the integration is not exact.

For 2D application the tensor-products h‘ðx
1
Þ

hmðx
2
Þ, with ‘;m 2 f0; . . . ;Ngg, form a basis set. As

in Section 2.2.1, on Oij the test function and the
approximate solution Uh are expressed in terms of
the basis set:

Uhðx
1; x2; tÞ ¼

XNg

‘¼0

XNg

m¼0

U ‘mðtÞh‘ðx
1
Þhmðx

2
Þ, (8)

where U ‘mðtÞ ¼ Uhðx‘; xm; tÞ, avoiding the need to
transform from physical to spectral space. As with
the modal formulation, Eq. (8) allows the left-hand
side of Eq. (4) to be re-written as

q
qt

Z
Oij

Uhfh dO

¼
Dx1

i Dx2
j

4

 !
d

dt

Z 1

�1

Z 1

�1

XNg

‘¼0

XNg

m¼0

Uij‘mðtÞh‘ðx
1
Þ

�hmðx
2
Þfhðx

1; x2Þdx2 dx1.

The discrete orthogonality displayed in Eq. (7)
extends to two dimensions as well:

Z 1

�1

Z 1

�1

h‘ðx
1
Þhmðx

2
Þhpðx

1
Þhqðx

2
Þdx1 dx2

� w‘wmd‘pdmq; p; q 2 f0; . . . ;Ngg.

Utilizing the above orthogonality relation and
Eq. (8), the weak formulation in Eq. (4) can be
simplified analogously to the modal discretization
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Nodal Basis Functions

x

degree up to Ng ¼ 4; and (b) the nodal basis (GLL–Lagrange
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in Eq. (6):

d

dt
U ‘mðtÞ ¼Mij‘m½IF þ IG þ IS�,

Mij‘m ¼
4

w‘wmDx1
i Dx2

j

, ð9Þ

where Mij‘m form the elements of the inverted
mass matrix Mij associated with the nodal discre-
tization in Oij. The integrals IF, IG and IS appearing
in Eq. (9) are similar to those defined in Eq. (6), but
the Legendre polynomials L‘ and Lm, as well as
their derivatives L0‘ and L0m are replaced by
Lagrange polynomials (h‘ and hm) and their
derivatives, respectively. This computational proce-
dure can be simplified by pre-computing the
mass matrix, and the derivatives h0‘ and h0m can
be computed using the algorithm provided in
Appendix A.2.

2.3. Spatial discretization for the spectral element

method

Unlike the DG method, the spectral element
method uses an advective form to solve Eq. (1)
and does not rely on conservation laws (Deville
et al., 2002). However, the SE discretization is
similar to that of the nodal DG method. The
difference comes from discretizing Eq. (2): for the
spectral element method, the space V h (where the
numerical solution is found) is restricted to include
only functions that are continuous across element
boundaries. Continuity is ensured by averaging the
coefficients of the Lagrange polynomials that
are non-zero on the shared boundaries, and the
flux term in the equation is zero. It should be
noted that a four-way average must be taken at
corners (points where four elements come together).
Fig. 4 illustrates the communication required for the
SE method. Further applications and implementa-
tion details of SE methods can be found in Deville
et al. (2002).
UhUh
+

UhUh
-

Fig. 4. Communication between element boundaries in the spectral

element method. C0 continuity is enforced along the boundaries of

the element.
2.4. Time integration

The semi-discretized ODEs in Eqs. (6) and (9) can
be written in the following general form:

d

dt
UðtÞ ¼LðUÞ in ð0;TÞ,

where L denotes the spatial DG discretizations on
the GLL grid. A variety of numerical inte-
gration schemes are available to solve such an
equation. For the present study, we employ an
explicit third-order Runge–Kutta scheme that be-
longs to a class of strong stability preserving (SSP)
Runge–Kutta schemes (Gottlieb et al., 2001).
Letting Un ¼ UðtÞ and Unþ1 ¼ Uðtþ DtÞ, the
three-stage time integration scheme can be written
in the following manner:

U ð1Þ ¼ Un þ DtLðUnÞ,

U ð2Þ ¼ 3
4
Un þ 1

4
U ð1Þ þ 1

4
DtLðU ð1ÞÞ,

Unþ1 ¼ 1
3
Un þ 2

3
U ð2Þ þ 2

3
DtLðU ð2ÞÞ.

2.5. Parallelization

Since local finite element methods partition the
domain into elements with minimal interactions, the
domain decomposition across parallel processes is
straightforward. Each process can be assigned an
element or group of neighboring elements—for the
DG methods the only communication needed
occurs during the flux computation stage, and the
spectral element method requires communication to
calculate averages across element boundaries.
Therefore, in the spectral element method, each
element needs to receive data from each of its eight
neighbors (rather than just the four neighbors
sharing an edge of the boundary).

In all of these methods, inter-element commu-
nication is computed along each of an elements
boundaries three times per time step (as required by
the third-order RK time integration scheme), so
elements should be evenly distributed among the
processes. Uneven distribution will cause processes
with fewer elements to be idle while processes with
more elements finish the necessary computations at
each stage.

2.6. Numerical results

The test case discussed in this section is the solid-
body rotation of a Gaussian hill centered at ðx1

c ;x
2
cÞ
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given by the initial condition

U0ðx
1; x2Þ ¼ a0 exp½�b0½ðx

1 � x1
cÞ

2
þ ðx2 � x2

cÞ
2
��,

with parameters a0 ¼ 1 and b0 ¼ 5 used in collecting
data. Additionally, the test case uses a flux function
of the form FðUÞ ¼ ðu1U ; u2UÞ, where ðu1; u2Þ is the
wind field v, and no source term (SðUÞ ¼ 0). Tests
are run on the periodic domain O ¼ ½�p;p� �
½�p; p� with v ¼ ð�px2;px1Þ. For convergence tests,
a hill centered at ð0; 0Þ is used to maintain continuity
3.14

1.57

0.00

−1.57

−3.14

−3.14

−3.

−1.

0.

1.

3.

−1.57 0.00 1.57 3.14

ig. 5. Gaussian hill centered at ð�p=2; 0Þ: (a) initially (t ¼ 0) and (b) af

e ¼ 225 and Ng ¼ 5. Contours range from 0.15 to 0.99 for the hill, an

3.14

1.57

0.00

−1.57

−3.14

3.

1.

0.

−1.

−3.
−3.14 −1.57 0.00 1.57 3.14

ig. 6. Gaussian hill centered at ð�p=2; 0Þ after one full revolution (t ¼

ethod; Ne ¼ 225 and Ng ¼ 5. Contours range from 0.15 to 0.99 for th
across the periodic boundaries, so the test function
is in C0 but not C1.

Analytically, the solution at any time t is
Uðx1;x2; tÞ ¼U0ðx

1 cosðptÞþx2 sinðptÞ;�x1 sinðptÞþ

x2 cosðptÞÞ, a counter-clockwise rotation of the
initial condition. When t ¼ 2, U0 has made one full
rotation around the origin, so Uðx1;x2; t ¼ 2Þ ¼
U0ðx

1; x2Þ.
Fig. 5 shows a hill centered at ð�p=2; 0Þ at t ¼ 0

and 2, solved using the modal DG implementation.
−3.14 −1.57 0.00 1.57 3.14

14

57

00

57

14

ter one full revolution (t ¼ 2) using the modal DG method with

d zero values are shown as well (dash-dot line).

14

57

00

57

14
−3.14 −1.57 0.00 1.57 3.14

2) using: (a) the nodal DG method; and (b) the spectral element

e hill, and zero values are shown as well (dash-dot line).
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The contour plot includes lines where U ¼ 0,
showing slight oscillations in the solution that are
not noticeable in the 3D plot. Fig. 6 shows the
contour plots of the numerical solutions using the
nodal DG expansion and the spectral element
method.
2.6.1. Monotonic limiter for discontinuous Galerkin

methods

Before studying the C0 test case, it is prudent to
discuss how the DG method treats problems with
discontinuous initial conditions. Consider the solid-
body rotation of the characteristic function over a
circle of radius r centered at ðx1

c ;x
2
cÞ. This function

can be written in a piecewise manner:

U0ðx
1;x2Þ ¼

1 ðx1 � x1
cÞ

2
þ ðx2 � x2

cÞ
2or2;

0 otherwise:

(

Fig. 7a shows the initial condition—the circle is
centered at ð�p=2; 0Þ with a radius of 1=

ffiffiffi
2
p

. Fig. 7b
shows the numerical solution at t ¼ 2 using the
nodal DG implementation; due to Gibbs phenom-
enon, there are spurious oscillations near the
discontinuity. Monotonicity, however, is an impor-
tant property for solutions to transport schemes
commonly used in atmospheric modeling because
atmospheric variables such as the relative humidity
need to be both monotonic and positivity-preserving.
In order to produce solutions without oscillations,
monotonic limiters are often employed.

The minmod slope limiters are effective for
second- and third-order DG methods (Cockburn
and Shu, 2001). A minmod limiter reduces the order
of the approximating polynomial in the elements
containing the shock or discontinuity to first-order,
but elsewhere the solution is not modified. Limiting
the spurious oscillations for the high-order DG
Fig. 7. Discontinuous profile centered at ð�p=2; 0Þ: (a) initially; and (

Ne ¼ 225 and Ng ¼ 5.
methods (Ng43), on the other hand, is a challen-
ging problem and is an active research topic.
Employing monotonic limiters designed for rela-
tively low-order DG methods is appealing, but then
the high-order accuracy of the solution is lost
(Iskandarani et al., 2005).

The basic problem with existing limiters is that
when the element order becomes higher, the ability
to control spurious oscillations decreases and
adversely affects the quality of the solution. High-
order limiters such as the WENO class of limiters
exist (Qiu and Shu, 2005); however, they are
computationally expensive and do not parallelize
efficiently.

Comparing and detailing different limiters are
beyond the scope of this paper; a review of limiters
and their properties can be found in Cockburn and
Shu (2001) and Iskandarani et al. (2005). However,
the DG advection combined with a WENO limiter
is demonstrated using the deformational flow
test-problem (idealized cyclogenesis) considered in
Cheruvu et al. (2007). Using an initial condition of
U0ðx

1;x2Þ ¼ � tanh½ðx2 � x2
cÞ=d� and velocity field

of v ¼ ð�ox2;ox1Þ, the analytic solution at time t is

Uðx1; x2; tÞ ¼ � tanh
x2 � x2

c

d
cosðotÞ

�

�
x1 � x1

c

d
sinðotÞ

�
,

where o ¼ vT=r is the angular velocity, vT ¼

3
ffiffiffi
3
p

=2 sech2ðrÞ tanhðrÞ is the normalized tangential
velocity, r is the radial length of vortex, and ðx1

c ;x
2
cÞ

is the vortex center. The parameter d ¼ 0:05
generates a non-smooth spiral-like structure as the
solution (see Fig. 8).

The numerical solution was computed with the
DG method and the modal basis functions on a
b) after one full revolution (t ¼ 2) using the nodal DG method;
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Fig. 8. (a) Analytic solution for the deformational flow problem at time t ¼ 3 units; (b) corresponding numerical solution obtained by the

DG method coupled with a WENO limiter.
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Fig. 9. (a) p-error plots for the 2D test function with Ne ¼ 25 600; (b) h-error plots for the 2D test function with Ng ¼ 6.
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40� 40 mesh of elements, each with a 4� 4 GLL
grid. A third-order WENO limiter, consisting of a
5� 5 element stencil, was used at every stage of RK
integration (Qiu and Shu, 2005). The DG solution
at time t ¼ 3 is shown in Fig. 8b, and is free of any
spurious oscillations. As compared to the exact
solution (Fig. 8a), the numerical solution captures
the vortex center but the vortex walls are smoothed.

2.6.2. Convergence

The relative L2-error between Uðx1;x2; t ¼ 2Þ and
U0ðx

1; x2Þ is used to measure the accuracy of the
numerical method. The error is given by the formula

� ¼

R
O½Uðx

1;x2; 2Þ �U0ðx
1;x2Þ�2 dOR

O½U0ðx1;x2Þ�dO

" #1=2
,

and the integrals are calculated using the GLL
quadrature on each element.
As expected, increasing the size of the grid
improves the numerical solution. The way the
domain is partitioned, the number of nodes can be
increased by either using a finer GLL grid or by
using more elements to cover the domain. The
former is the p-error, and can be seen in Fig. 9a; the
latter is the h-error, seen in Fig. 9b. From the charts
in Fig. 9 it is clear that all three methods perform
comparably on small domains—however, because
our test function is not in C1, the spectral element
method levels off at error of order Oð10�12Þ, whereas
the error in the DG methods leveled off at machine
precision, or Oð10�14Þ.
2.6.3. Timing results

The method of parallelization discussed in Sec-
tion 2.5 is ideal for distributed memory parallel
computers, since all computations are done locally.
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Therefore the MPI library is used to parallelize the
code, and two methods are used to measure the
efficiency. The first technique used is strong scaling,
where the total work done remains the same as the
number of processes increases, and the second
technique is weak scaling, where the work done on
each process remains the same as the number of
processes increases. The strong scaling experiments
were run on a 64 node cluster arranged in a 2D
torus. Each node contained two 2.4GHz Intel Xeon
processors and 2GB of RAM, but only one
processor per node was used to increase the memory
available to each process. The weak scaling experi-
ments were run on a 1024 node BlueGene/L cluster
arranged in a 3D torus. Each node contained two
dual-core 700MHz PowerPC 440 processors and
512MB of RAM—however, one processor per node
was dedicated to managing the MPI communication
between nodes.

Strong scaling, plotted in Fig. 10a, is measured by
speed-up, the ratio of runtime with one process to
runtime with p processes. Ideally, the work will be
split evenly among processes and doubling the
number of processes would halve the runtime. This
would result in a speed-up value of p, and is referred
to as linear speed-up, shown as a solid black line.
When the speed-up is less than p, such as the case
when Ne ¼ 400, it is labeled as sublinear. This
occurs when the communication phases requires a
significant amount of clock time relative to the
computation phases, so processes sit idle while data
is transferred. When the speed-up exceeds p, such as
when Ne ¼ 6400, it is superlinear. This occurs when
dividing the work among processes allows better
memory management because each process is being
given less data—so a large problem may require
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Fig. 10. Scaling plots: (a) strong scaling (20 000 timesteps with Ne ¼

(30 000 timesteps with 100 elements per process and Ng ¼ 6).
working out of a pagefile for small process counts,
but will all fit in RAM for larger counts.

Weak scaling, plotted in Fig. 10b, is measured by
looking at the number of Mflops per second each
process maintains. Since the amount of work is
being held constant, Mflops per second is inversely
proportional to runtime—while a constant Mflops
per second is desired, the communication phases
will result in some idle clock cycles. This is notice-
able in the decrease in Mflops/proc/sec going
from one process to two, compared to the fairly
constant measurements for all the runs on multiple
processes.

The two plots in Fig. 10 show how well this
algorithm scales, especially for large problems.
While there was a 16% decrease in Mflops per
process per second in moving from one process to
two, increasing the process count beyond two does
not affect the efficiency of this code. Further, large
problems require a lot of memory to store all the
necessary data, and using more compute nodes
allows access to more memory.

3. Cubed sphere geometry

Typically, position and the velocity vector are
defined on the surface of a sphere as functions of
latitude and longitude (y and l). However, the poles
are singularities and present problems for most
numerical methods. The cubed sphere avoids those
issues by inscribing the sphere with a cube and using
a central (gnomic) projection from the sphere to the
cube.

The faces of the cube are labeled from 1 to 6 as in
Fig. 11, and then the cube is oriented such that the
intersection of the equator and the prime meridian
1 4 16 64 256 1024
0
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400 and 40 000 timesteps with Ne ¼ 6400); and (b) weak scaling
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is projected to the center of face 1, and the North
Pole is projected to the center of face 5. Each face
has a local Cartesian coordinate system, (x; y), with
x; y 2 ½�a; a� where a ¼ R=

ffiffiffi
3
p

and R is the radius of
the sphere. Previous research (Rančić et al., 1996;
Nair et al., 2005a) has shown that superior results
are obtained using an equi-spaced element grid on
the ðx1;x2Þ coordinate system, where x ¼ a tan x1

and y ¼ a tanðx2Þ and x1;x2 2 ½�p=4;p=4�.
Define a1 and a2 as the covariant base vectors

qr=qx1 and qr=qx2, respectively, where dr ¼
R cos ydl êl þ Rdy êy is a small displacement on
the surface, êl is the unit vector in the east–west
direction, and êy is the unit vector in the north–south
direction. Let vðl; yÞ be the horizontal velocity on the
sphere—the covariant components are given by u1

¼ v � a1 and u2 ¼ v � a2 and the contravariant
components are expressed as v ¼ u1a1 þ u2a2.

The metric tensor of the transformation is defined
as gij ¼ ai � aj. Covariant and contravariant compo-
nents are related via gij by the relationships ui ¼

giju
j and ui ¼ gijuj, where gij ¼ ðgijÞ

�1.
On all six faces of the cube,

gij ¼
R2

r4 cos2 x1 cos2 x2

�
1þ tan2 x1 � tan x1 tan x2

� tan x1 tan x2 1þ tan2 x2

" #
, ð10Þ

where r ¼ ð1þ tan2 x1 þ tan2 x2Þ
1=2. Let g ¼ detðgijÞ,

so
ffiffiffi
g
p
¼ R2=ðr3 cos2 x1 cos2 x2Þ. The transformations

between the contravariant velocity components and
the spherical velocity components are

A
u1

u2

" #
¼

u

v

" #
and A�1

u

v

" #
¼

u1

u2

" #

where ATA ¼ gij.
A can be interpreted as the transformation matrix
between the cube and the sphere, given by

A ¼ R
cos y ðql=qx1Þ cos y ðql=qx2Þ

qy=qx1 qy=qx2

" #
.

3.1. Advection on a cubed sphere

In curvilinear coordinates, without the source
term, Eq. (1) takes the following form:

qU

qt
þ

1ffiffiffi
g
p

q
qx1
½u1 ffiffiffi

g
p

U � þ
1ffiffiffi
g
p

q
qx2
½u2 ffiffiffi

g
p

U � ¼ 0,

where U is the advecting field and v is the surface
wind. Multiplying by

ffiffiffi
g
p

, which has no time
dependence, yields

q
qt
½
ffiffiffi
g
p

U � þ
q
qx1
½u1 ffiffiffi

g
p

U � þ
q
qx2
½u2 ffiffiffi

g
p

U � ¼ 0. (11)

Note that Eq. (11) looks remarkably similar to
Eq. (1), advecting

ffiffiffi
g
p

U rather than U with
Fð

ffiffiffi
g
p

UÞ ¼ ðu1 ffiffiffi
g
p

U ; u2 ffiffiffi
g
p

UÞ and Sð
ffiffiffi
g
p

UÞ ¼ 0.
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Rectangular elements are arranged on the sphere,
as in Fig. 12. The only computational difference
between the 2D implementation and the cubed
sphere implementation is in the flux calculations/SE
averaging along the edges of the cube (the calcula-
tions are identical on each face). In the 2D
6 2

x
2

x
1

x
2

x
1

Fig. 13. Boundary between faces 2 and 6 on the sphere. x1 and x2

are not aligned on the two faces.

Fig. 14. Contour plot of U0ðl; yÞ, with contours ranging from 0

to 6000.
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Fig. 15. (a) p-error and (b) h-error fo
algorithm, all the elements used the same coordinate
system, while each face in the cubed sphere method
has its own. For example, Fig. 13 shows the
boundary shared by face 2 (an equatorial face)
and face 6 (the southern face). A velocity vector
given in terms of a1 and a2 on face 6 is not the same
vector in terms of a1 and a2 on face 2—so for the
boundary flux calculations, velocity needs to be
mapped to spherical coordinates and then mapped
back onto the neighboring face.

3.2. Convergence results

The solid-body rotation of a Gaussian hill is
again used as a test case. The initial condition on the
surface of the sphere is defined in terms of the 3D
Cartesian coordinates as

U0ðl; yÞ ¼ a0 exp½�b0½ðx� xcÞ
2
þ ðy� ycÞ

2

þ ðz� zcÞ
2
��,

where a0 ¼ 6000 is the amplitude of the hill, b0 ¼

10=R2 defines the width of the hill, and x, y, and z

are related to l and y by

ðx; y; zÞ ¼ ðR cos y cos l;R cos y sin l;R sin yÞ.

The hill is centered at l ¼ 3p=2, y ¼ 0 (xc ¼ 0,
yc ¼ �R, zc ¼ 0), as seen in Fig. 14.

Following the recommendation in Williamson
et al. (1992), the wind field is defined as

u

v

� �
¼ u0

cos y cos aþ sin y cos l sin a

� sin l sin a

� �
,

where a is the flow orientation parameter, defined as
the angle between the axis of rotation and the polar
axis and u0 is the wind velocity. As in Nair et al.
(2005a), let a ¼ p=4 so that the hill passes over two
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cube edges in making a complete rotation, and let
u0 ¼ 2pR=ð12 daysÞ, so that one full rotation takes
12 days to complete. Denoting t in units of seconds,
then, it is clear that the analytic solution is
Uðl; y; t ¼ 1 036 800Þ ¼ U0ðl; yÞ.

As in the 2D case, Fig. 15 shows the L2 norm of
both the p-error and the h-error associated with
changing the size of the grid. In this case, the
relative error was computed by integrating over the
sphere rather than integrating over each cube face.
In either dimension, both methods show high-order
convergence and produce error of the same order on
identical grid sizes.

4. Summary and conclusions

Three high-order finite element methods have
been compared using an explicit third-order total-
variation bounded Runge–Kutta time stepping
scheme and the conservative transport equation.
All three methods exhibited exponential decay in
the L2 error, but at high orders, the spectral element
method was not as accurate as the discontinuous
Galerkin methods. For small grids, all three
methods solved the equation with comparable error.

The modal and nodal discretizations of the DG
method produced roughly equivalent error for a
given Ne and Ng, but the computational cost was
two to five times greater for the modal code
(depending on the grid size) because each time step
requires three transformations from spectral space
to physical space and back. The spectral element
method ran faster than either DG method because
averaging over element boundaries is cheaper than
calculating the boundary flux.

For non-smooth initial conditions, the DG methods
generate spurious oscillations due to Gibbs phenom-
enon. The role of monotonic limiters on DG schemes
was briefly discussed, demonstrating the effectiveness
of the WENO limiter in removing such oscillations.
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Appendix A

A.1. Generating the GLL grid and weights

The ðNg+1Þ-node GLL grid (fx0; . . . ; xNg
g) is

defined on the interval ½�1; 1� and contains the points
f�1g and f1g, as well as the ðNg � 1Þ roots of the first
derivative of the Ng-degree Legendre polynomial.

The Legendre polynomials are a sub-class of the
family of Jacobi polynomials, Pa;b

n —specifically,
LNg
ðxÞ ¼ P0;0

Ng
. It follows from the properties of

Jacobi polynomials that L0Ng
ðxÞ ¼ lNg

P1;1
Ng�1

=2,

where lNg
¼ NgðNg þ 1Þ is a constant. Therefore,

the roots of L0Ng
ðxÞ can be found by computing the

roots of P1;1
Ng�1

. This can be accomplished using the

roots of the Chebyshev polynomial ½TNg�1ðxÞ ¼

P
�1=2;�1=2
Ng�1

ðxÞ� as initial estimates in the Newton–

Rhapson iteration (Karniadakis and Sherwin, 1999).
Newton–Rhapson iteration: As found in Appendix B

of Karniadakis and Sherwin (1999), this method is
used to determine the Ng � 1 roots of L0Ng

ðxÞ.
Denote these roots by xg, with x1 the smallest and
xNg�1 the largest (x0 ¼ �1 and xNg

¼ 1).
Start with rg ¼ the gth-smallest root of TNg�1ðxÞ,

so rg ¼ cosðð2g� 1Þp=ð2Ng � 2ÞÞ.
If ga1, then rg ¼ ðrg þ xg�1Þ=2.
Do the following until error (d) is within tolerance or

a maximum number of iterations have been exceeded:

s ¼
Xg�1
i¼1

1=ðrg � xiÞ,

d ¼ �L0Ng
ðrgÞ=ðL

00
Ng
ðrgÞ � sL0Ng

ðrgÞÞ,

rg ¼ rg þ d,

xg ¼ rg.

L0Ng
ðrgÞ and L00Ng

ðrgÞ are found via recursion relations
in Appendix A of Karniadakis and Sherwin (1999).

GLL quadrature weights: GLL integration, whereZ 1

�1

f ðxÞdx ¼
XNg

g¼0

f ðxgÞwg

is exact when f ðxÞ is polynomial of degree
p2Ng � 1. The weights are defined by

wg ¼
2

ðNg þ 1ÞNg½LNg
ðxgÞ�

2
.
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A.2. Calculating derivatives using a nodal expansion

In the nodal expansion of the DG algorithm, h0iðxÞ
appears only in integration terms. Using a GLL
quadrature, therefore, h0i is only evaluated at the
GLL nodes. Again, Karniadakis and Sherwin
(1999) provides the necessary algorithm:

h0jðxiÞ ¼

�ðNg þ 1ÞNg

4
; i ¼ j ¼ 0;

ðNg þ 1ÞNg

4
; i ¼ j ¼ Ng;

0; 1pi ¼ jpNg � 1;

LNg
ðxiÞ

LNg
ðxjÞðxi � xjÞ

; iaj:

8>>>>>>>>><
>>>>>>>>>:

Note that the recursion relations mentioned in
Appendix A.1 must be used to calculate LNg

ðxÞ.
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