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An explicit finite-volume solver is proposed for numerical simulation of non-hydrostatic
atmospheric dynamics with promise for efficiency on massively parallel machines via
low communication needs and large time steps. Solving the governing equations with a
single stage lowers communication, and using the method of characteristics to follow
information as it propagates enables large time steps. Using a non-oscillatory interpolant,
the method is stable without post-hoc filtering. Characteristic variables (built from inter-
face flux vectors) are integrated upstream from interfaces along their trajectories to com-
pute time-averaged fluxes over a time step. Thus we call this method a Flux-Based
Characteristic Semi-Lagrangian (FBCSL) method. Multidimensionality is achieved via a
second-order accurate Strang operator splitting. Spatial accuracy is achieved via the
third- to fifth-order accurate Weighted Essentially Non-Oscillatory (WENO) interpolant.

We implement the theory to form a 2-D non-hydrostatic compressible (Euler system)
atmospheric model in which standard test cases confirm accuracy and stability. We main-
tain stability with time steps larger than CFL = 1 (CFL number determined by the acoustic
wave speed, not advection) but note that accuracy degrades unacceptably for most cases
with CFL > 2. For the smoothest test case, we ran out to CFL = 7 to investigate the error
associated with simulation at large CFL number time steps. Analysis suggests improvement
of trajectory computations will improve error for large CFL numbers.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Inclusion of non-hydrostatic dynamics in atmospheric models has already become the norm for mesoscale and synoptic
scale models [1,2] because of the resolved atmospheric features on non-hydrostatic scales. It is also quickly becoming a
desirable feature of even global climate models to accommodate future multi-scale techniques such as adaptive grid refine-
ment. Even quasi-uniform resolution global models are approaching grid spacings in the tens of kilometers [3] which means
non-hydrostatic dynamics are an application of importance.

Efficient numerical integration of non-hydrostatic atmospheric dynamical equations is complex with large distributed
memory parallel machines in the picture. In the reign of Moore’s law (exponentially increasing single CPU compute power),
Semi-Implicit Semi-Lagrangian (SISL) methods provided excellent efficiency [4–6]. In the current era of Massively Parallel
Machines (MPMs) which distribute system memory among 10,000s of nodes, communicating data between nodes is costly.
High communication requirements of SISL methods force diminishing returns before reaching the capacity of current
. All rights reserved.
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machines. Therefore, these methods along with fully implicit methods [7,8] have difficulty scaling current machines in
Amdahl’s sense [9] with a reasonable problem size and throughput.

We take ‘‘scalable’’ to mean throughput scaling, closely related to Gustafson’s notion of weak scaling [10]. Suppose a
method can simulate on a given grid at the rate of five Simulated Years Per Day (SYPD), a number generally accepted in
the climate modeling community for future projections. If we refine the grid such that the overall problem size increases
by some factor f, that method scales perfectly if it retains five SYPD by spreading the larger problem across f times more
processors.

Explicit methods cannot scale in this manner due to the Courant–Friedrichs–Lewy (CFL) condition which requires time
step reduction with grid refinement. Please note that our references to the CFL constraint are always relative to the acoustic
wave speed and not the advection, and it has a precise meaning: CFL = cmaxDt/Dx where cmax is the maximum wave speed
(acoustic), Dt is the time step, and Dx is the grid spacing. However, because explicit methods have low communication
needs, they scale by Amdahl’s definition of taking a fixed problem size and spreading it among as many processors as pos-
sible. Low-communication explicit methods have shown good utilization of MPMs and throughput at high resolutions for
atmospheric flow [3]. Therefore, we explore here a new explicit method with a balance of time step and communication that
we believe forms a competitive middle ground in terms of efficiency among existing methods. First, we review previous ex-
plicit methods used for atmospheric dynamics.

A class of popular temporal discretization methods for the atmosphere are central semi-discrete solvers with the
split-explicit sub-cycling (SESC) treatment applied [11–15]. ‘‘Central’’ means there is no upwinding for the full dynamical
equation set. The CFL number of these methods is limited generally to one (though moderately higher for some of the
semi-discrete solvers). In particular, multi-stage solvers require communication between each stage which can increase
communication burden on MPMs. SESC linearizes off the fast waves (sound waves/external gravity waves) and solves them
on a smaller time step with cheap small-stencil methods, solving the slow (transport) waves on a larger time step. It is
typical in implementation for the fast waves to be sub-cycled within each stage of a multi-stage solver. This can be a burden
on communication constraints, but sub-cycling enables significantly larger time steps with little additional computation
which increases efficiency.

Upwind Godunov-type methods are another FV class [16–18]. For the atmosphere, they are an emerging application even
though one was applied as far back as two decades ago [16]. Of particular interest to the present paper are methods of this
class which implement fully discrete time solvers (meaning one step, one stage) because they exhibit low communication
requirements in parallel. To a large extent, the schemes developed herein were motivated by the theory and attributes of
these types of methods. These all have CFL number limitations of one, and high-order accuracy is obtained via Taylor series
expansions limited with van Leer type limiters.

Galerkin methods [19–24] belong to the Finite Element class. They generally come in two flavors: Discontinuous Galerkin
(DG) and Continuous Galerkin/Spectral Element (SE). They have differing CFL number limitations for stability, but both time
steps decrease as the order of accuracy increases as well as when grid spacing decreases. Because Galerkin methods use mul-
tiple degrees of freedom (either nodal or modal), they can perform high-order accurate reconstruction without communica-
tion leading to a very low communication burden. Non-oscillatory limiting of the spatial approximations within elements is
an active area of research [25] which tends to add to the communication burden. Even with time step limitations, because of
the low communication requirements the spectral element method has already been shown to perform very well for atmo-
spheric flows [26,3].

Constrained interpolation profile (CIP) methods [27–31] are FV methods that also evolve point values (and derivatives) at
cell boundaries to make reconstruction more local. CIP methods using characteristics [28,31] have much in common with the
method being presented here. Both compute interface fluxes by tracing characteristic variables out from the interface using
characteristic trajectories. Thus, they can simulate at large CFL numbers. Here, we use flux-based characteristic variables for
easing the maintenance of hydrostatic balance, and we do not make the approximation that the averaged flux vector is equal
to the flux computed using averaged state variables (see Section 2.4.1). Additionally, we do not make use of cell interface
point values, but we evolve only the cell means.

Here, we propose a new solver for atmospheric dynamics with the potential for competitive efficiency through low com-
munication requirements (enabling better scaling on large parallel machines) and large time steps (improving overall effi-
ciency). It is a high-order accurate, upwind, fully discrete, and non-oscillatory solver based on a flux vector splitting analog of
f-waves [32,33]. The flux vector splitting is what enables large time steps, and we extend our method to large CFL numbers in
this paper to determine and discuss the errors and complications involved with explicit large CFL number simulation. We call
this method a Flux-Based Characteristic Semi-Lagrangian (FBCSL) method.

The closest comparison of the FBCSL method as far as algorithmic similarity to an operational method is the class of cen-
tral semi-discrete methods usually coupled with the SESC treatment. Questions naturally arise regarding the comparative
communication costs and overall efficiency with regard to SESC methods. We remark that the SESC treatment is algorithmi-
cally distinct from the central, semi-discrete solvers they typically accompany. It can be adapted to other methods, and in
fact, our characteristics-based method has a natural extension since the fast waves are separated from slow waves in the
characteristic decomposition. Therefore, the more critical comparison regarding communication burden (leaving SESC exten-
sions to future research) is between our single stage FBCSL method and multi-stage solvers.

Also, we would like the reader to note that this paper is a proof of concept regarding the FBCSL method, giving rise to
at least two implications. First, this method is not intended to be presented as operational. Future adaptations and
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modifications (e.g. the SESC treatment perhaps) are necessary for adequate efficiency, and significantly more testing is re-
quired of any proposed integration method in more realistic contexts. Second, this would be most effective as a horizontal
scheme in typical synoptic and global scale models. Because of the high aspect ratios between horizontal and vertical grid
spacing, vertical fast dynamics are either handled hydrostatically (removing vertical sound waves) or implicitly in the non-
hydrostatic case.

Given the scheme’s flexibility to accommodate any spatial interpolant, we use the third- to fifth-order accurate Weighted
Essentially Non-Oscillatory (WENO) method as implemented in Capdeville [34]. The WENO philosophy of Shu and Osher [35]
and Shu [36] involves a weighted sum of polynomials where the least oscillatory polynomials are weighted the highest. One
could also use, for instance, non-polynomial interpolants as well [37,38]. There tends to be concern with the expense of
WENO interpolation. Since our scheme can handle any interpolant, this isnot of consequence to the FBCSL framework. How-
ever, in large parallel simulation, higher computation to communication ratios resulting from the added expense actually
hide some of this expense due to increased parallel efficiency. But overall, it is a design choice available to the user. For po-
sitive definite simulation, a monotonic interpolation (e.g. the Piecewise Parabolic Method) is an obvious choice.

Three standard 2-D non-hydrostatic test cases will be performed to validate the proposed method. The method is de-
scribed in Section 2, validation through numerical simulation of non-hydrostatic test cases is given in Section 3, and conclud-
ing remarks and future work are given in Section 4.

2. Numerical method

2.1. 2-D compressible non-hydrostatic equation set

In this study, we use a 2-D, compressible, non-hydrostatic model (essentially the Euler system of equations) which explic-
itly conserves mass, momentum, and potential temperature. A Cartesian rectangular grid is used for spatial discretization.
The equation set is as follows:
@U
@t
þ @FðUÞ

@x
þ @HðUÞ

@z
¼ S ð1Þ

U ¼

q
qu

qw

qh

26664
37775; FðUÞ ¼

qu

qu2 þ p

quw

quh

26664
37775; HðUÞ ¼

qw

qwu

qw2 þ p

qwh

26664
37775; SðUÞ ¼

0
0
�qg

0

26664
37775 ð2Þ
where q is the density, u is the horizontal wind, w is the vertical wind, p is the pressure, and h is the potential temperature
which is related to the actual temperature, T, by h ¼ Tðp0=pÞRd=cp . The equation set is closed by the equation of state:
p = C0(qh)c where the constant C0 is defined by: C0 ¼ Rc

dp�Rd=cp
0 . The constants are c = cp/cv � 1.4, Rd = 287 J kg�1 K�1,

cp = 1004 J kg�1 K�1, cv = 717 J kg�1 K�1, and p0 = 105 Pa.

2.2. Fully discrete FV framework

In FV models, the spatial domain is spanned by cells, and the cell-averaged state variables are evolved between them by
fluxes through cell interfaces. To approximate the equations, the entire equation set is integrated over one of these compu-
tational cells with a domain of Xi,j 2 [xi�1/2,j,xi+1/2,j] � [zi,j�1/2,zi,j+1/2] where xi±1/2,j = xi,j ± Dx/2 and zi,j±1/2 = zi,j ± Dz/2 refer to
cell interface locations and Dx and Dz are the horizontal and vertical grid spacing, respectively. Next, the Gauss divergence
theorem is applied to the flux divergence integrals, transforming them into line integrals of the normal flux over the cell
boundaries. On a rectangular, Cartesian grid, this gives:
@Ui;j

@t
þ 1

Dx
½Fiþ1=2;j Uð Þ � Fi�1=2;jðUÞ� þ

1
Dz
½Hi;jþ1=2ðUÞ �Hi;j�1=2ðUÞ� ¼ Si;j ð3Þ
The flux evaluations in time will be fully discrete, meaning the equations are integrated in time directly. Since an integral is
the product of the average and the interval of integration, this can be rewritten as:
Unþ1
i;j ¼ Un

i;j �
Dt
Dx

bFiþ1=2;jðUÞ � bFi�1=2;jðUÞ
h i

� Dt
Dz

bHi;jþ1=2ðUÞ � bHi;j�1=2ðUÞ
h i

þ DtbSi;j ð4Þ
where the hat above a variable denotes an average over the time step, a superscript n denotes the variable valid at time nDt,
and Dt is the time step.

2.3. Strang splitting: multidimensionality and source term

Finally, a second-order accurate Strang splitting is applied to integrate the fluxes in a sequence of 1-D sweeps. Consider
the following update operators on any given cell:
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FxðUnÞ ¼ Un
i;j �

Dt
Dx

bFiþ1=2;j Un
i�s�1

2 ;j; . . . ;Un
iþsþ1

2 ;j

� �
� bFi�1=2;j Un

i�sþ1
2 ;j; . . . ;Un

iþs�1
2 ;j

� �h i
ð5Þ

FzðUnÞ ¼ Un
i;j �

Dt
Dz

bH i;jþ1=2 Un
i;j�s�1

2
; . . . ;Un

i;jþsþ1
2

� �
� bH i;j�1=2 Un

i;j�sþ1
2
; . . . ;Un

i;jþs�1
2

� �� �h i
ð6Þ

FSðUnÞ ¼ Un
i;j þ DtbSi;j Un

i;j

� �
ð7Þ
where s is the size of the stencil used for spatial reconstruction (see Section 2.4.1). Our WENO approximation has a value
s = 5. We introduce the stencil size in here to show that the flux computations only depend on a local set of cells. The oper-
ator splitting procedure (splitting dimensions and the gravity source term) is implemented as follows for all cells i, j:
U�i;j ¼ Fx Un
� �

ð8Þ
U��i;j ¼ Fz U�

� �
Unþ1

i;j ¼ FS U��
� �

U�i;j ¼ FS Unþ1
� �

U��i;j ¼ Fz U�
� �

Unþ2
i;j ¼ Fx U��

� �

With the exception of the dimensional splitting and the source term, the accuracy depends entirely on the approximation of
the time-averaged interface fluxes.

2.4. Flux evaluations

2.4.1. Flux-Based Characteristic Variables (CVs)
The equation set given in 1 is classified as hyperbolic because after applying the chain rule to the fluxes, the resulting

matrix (see below), called the flux Jacobian, can be decomposed into eigenvalues and eigenvectors that are guaranteed to
have real (non-imaginary) values. Put in characteristic form, the homogeneous equation set (considering only the x-direction
for clarity) becomes:
@U
@t
þ @F
@U

@U
@x
¼ 0 ð9Þ
where @F/@U = A is the flux Jacobian matrix. From here, we must operate under the assumption of a ‘‘locally frozen’’ Jacobian
to use linear characteristic theory. At each interface, the flux Jacobian is locally held constant in time and uniform in space
during a time step, computed by state variables which are representative of the local spatiotemporal fluid environment. Once
locally froze, the flux Jacobian can be diagonalized into eigenvectors and eigenvalues: A = RKL where R is a matrix whose
columns are right eigenvectors, L is a matrix whose rows are left eigenvectors, K is a diagonal matrix whose diagonal com-
ponents are eigenvalues, and L = R�1. For the potential temperature-based Euler equation set (1), the eigenvectors are (in the
x- and z-directions):
Rx ¼

1 0 1 1
u 0 u� cs uþ cs

0 1 w w

0 0 h h

26664
37775; Rz ¼

0 1 1 1
1 0 u u

0 w w� cs wþ cs

0 0 h h

26664
37775 ð10Þ

Lx ¼

1 0 0 � 1
h

0 0 1 � w
h

u
2cs

� 1
2cs

0 1
2h

� u
2cs

1
2cs

0 1
2h

266664
377775; Lz ¼

0 1 0 � u
h

1 0 0 � 1
h

w
2cs

0 � 1
2cs

1
2h

� w
2cs

0 1
2cs

1
2h

266664
377775 ð11Þ
where cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
is the speed of sound. Also, the corresponding eigenvalues are: Kx = diag(u,u,u � cs,u + cs) and Kz = diag-

(w,w,w � cs,w + cs).
Leveque [33] shows that, for any hyperbolic equation set, the difference in the flux across an interface can be described as

a weighted sum of the right eigenvectors:
F Ui
� �

� F Ui�1
� �

� DFi�1=2 ¼
X

p

bp
i�1=2rp

i�1=2 ð12Þ
Throughout, a superscript p is not an exponent but refers to one of the four characteristic waves admitted by this equation
set. A characteristic wave is defined by a right eigenvector rp

i�1=2 (the pth column of R computed at an interface), a left eigen-
vector lp

i�1=2 (the pth row of L computed at the interface), and an eigenvalue kp (the pth diagonal element of K). The value,
bp

i�1=2, is a flux difference based CV calculated by bp
i�1=2 ¼ lp

i�1=2 � DFi�1=2. The eigenvalues, kp, define the velocities of the
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trajectories along which CVs are materially conserved. To compute the interface eigenvectors, L and R, one can use any state
variables that are representative of the local surroundings because the CVs are based on the flux vector and not state vari-
ables (see [18,32]. Also, Roe-averaging [39] has not yet been derived for the equation set we are using. Therefore, we take a
simple average of the surrounding state variables at the interface to construct L and R.

Alternatively, the flux vector itself at an interface (rather than the difference across an interface) can be described as a
weighted sum of the right eigenvectors, and this is the approach taken here. To obtain the flux through an interface at a given
time, we need the flux vector based CVs arriving at the interface at that time: wp

i�1=2ðtÞ ¼ lp
i�1=2 � FðU; tÞ. Then, the flux at a

given time is:
Fi�1=2ðtÞ ¼
X

p

wp
i�1=2ðtÞr

p
i�1=2 ð13Þ
Now, to obtain time-averaged fluxes, we need to integrate the CVs arriving at the interface over a time step, and this will be
discussed in Section 2.4.2.

Advantages of flux-based CVs: There are two main advantages to using flux-based CVs rather than the traditional type
built on state variables in this context. First, hydrostatic balance is more easily treated, and we specifically mean the
pressure term in the vertical momentum equation. Though we cannot use the highly convenient method of Ahmad
and Lindeman [18] because our method is a flux vector splitting, we simply subtract the basic state pressure from
the true pressure along the upwind trajectory to achieve a good balance using separate reconstructions. Please note that
though we have referenced Ahmad and Lindeman [18] several times regarding the use of flux-based CVs, aside from this
similarity the two schemes are dissimilar in the algorithmic implementation and mathematical formulation of flux com-
putation. They differ most fundamentally in that our scheme uses flux vector-based CVs rather than flux difference-
based CVs.

If the state variables were cast into characteristics, we could no longer do this. Second, if we computed the time-averaged
state variable passing through the interface and computed the flux from them, the flux would no longer be formally high-
order accurate. This is because the flux is a non-linear function of state variables so that the true time-averaged flux is not the
same as the flux built on time-averaged state variables: bFðUÞ– F bU� �

. In fact, to equate those two is formally only first-order
accurate. Since we compute the flux directly along the upstream trajectory, this assumption is not necessary.

Notes on conservation: In traditional flux-difference splitting schemes, using flux-based CVs enables conservation without
having to define a Roe-averaging of the left and right eigenvectors. In this case, however, because of the manner in which this
flux vector splitting is performed, conservation is always guaranteed. This is because all a flux form FV method needs to en-
sure conservation is a single-valued interface flux for each interface.

2.4.2. Temporally averaged fluxes
Time-averaged fluxes may be obtained using the time-averaged CVs along their upstream characteristic trajectories, a re-

sult of simply integrating (13) with respect to time: bFi�1=2 ¼
P

p
bwp

i�1=2rp
i�1=2. Therefore, the crux of this computation is the

time integral of the CVs:
ŵp
i�1=2 ¼

1
Dt

Z Dt

0
wp

i�1=2ðtÞdt ð14Þ
Because the CVs are conserved along characteristic trajectories (again, a consequence of linear characteristics arising from a
locally frozen Jacobian) whose velocities are given by the eigenvalues, kp, we can trace the CVs upstream from the interface
using the negated velocity (eigenvalues) and the amount of time they have traveled. A CV arriving a cell interface has the
upstream (backwards) trajectory: x(t) = xi�1/2 � kpt which locates the departure points of CVs arriving at the interface at
an arbitrary time. Again, because CVs are conserved along their trajectories, the CV value at its departure location is the same
as its value at the arrival location (the interface). Assuming a high-order reconstruction of state variables within each cell, eU,
the CV value at its departure point is:
wp
i�1=2ðtÞ ¼ lp

i�1=2 � F eUðxi�1=2 � kptÞ
� �

ð15Þ
2.4.3. Integration procedure
To find the CV values at departure locations, we first reconstruct the state variables, Ui, themselves over a stencil to pro-

vide a functional approximation, eUiðxÞ, inside each cell on the domain. Next, we integrate wp ¼ lp � FðeUÞ in time along the
upwind trajectory via Gauss–Legendre (GL) quadrature up to a desired accuracy. Assuming GL weights, xm, corresponding
to GL point locations, xm,p = xi�1/2 � kpDtjm, the pth time-averaged CV passing through interface xi�1/2 is:
ŵp
i�1=2 ¼ lp

i�1=2 �
XnG

m¼1

xmF eUiþap ðxm;pÞ
� �" #
where ap 2 {�1,0} is used to locate the upwind cell, nG is the number of GL points, and jm are the standard GL weights trans-
formed to the domain [�1,1] ? [0,Dt]. After computing the time-averaged CVs, we multiply them by the interface right
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eigenvectors and sum to recover the time-averaged interface flux to complete the flux computation. This process has been
described in the x-direction neglecting the j subscript for simplicity of notation. The process is the same in the z direction.

In this study, we use a fifth-order accurate WENO reconstruction [35,34,36]. The WENO philosophy involves computing
polynomials over multiple stencils and weighting the least oscillatory ones the most. This weighted sum produces a smooth
and non-oscillatory interpolant. Because of up to fifth-order accuracy of the spatial interpolant, we use a 3-point (sixth-order
accurate) GL quadrature rule for present simulations. This method can use any single-moment spatial interpolant and works
on any hyperbolic equation set. Even if the interpolation is non-conservative, the simulation will still locally and globally
conserve state variables. This is because a single-valued interface flux is sufficient for conservation in a flux vector based
FV method, and we obtain this regardless of the interpolant.

For cases in which there is a hyperbolic and non-hyperbolic portion to the governing equation set, a typical splitting tech-
nique can be employed as it is here. Particularly, in convectively dominated flows, viscous fluxes can usually be split off even
in a first-order accurate manner. In fact, in the Straka density current test cases employed here, we use this simple approach
for the viscous updates to avoid any additional communication in the model as a whole and still obtain the expected solu-
tions. However, splitting due to multidimensional simulation and due certain important source terms (like gravity treated
here or Coriolis effect in global models) needs more careful consideration. As mentioned, here we use a second-order accu-
rate alternating Strang splitting for more tightly coupled components.

2.4.4. Extension to large CFL numbers
In order to extend the method to a larger CFL number (here we go up to 7 for the smoothest test case), we simply perform

the integration procedure from Section 2.4.3 over more than one cell along the upstream trajectory. To respect the discon-
tinuities across cell boundaries due to the WENO reconstruction, we perform a separate quadrature within each cell. A path-
length-weighted sum of the individual cell averages along the upwind trajectory renders the averaged characteristic variable
which can then be cast into flux components and summed to obtain the time-averaged flux over more than one cell. Note
that we are assuming a constant wind speed from the locally frozen Jacobian for the present, and therefore we will experi-
ence some accuracy degradation. We leave it to future research to improve the trajectories and characteristics computations.
A schematic of the process for computing time-averaged characteristic variables is given in Fig. 1.

2.5. Hydrostatic balance and material boundaries

For density stratified fluids, hydrostatic balance (defined by @p/@z � �qg, a balance between the vertical pressure gradi-
ent and gravity source term) dominates the vertical momentum equation. Solid wall (material surface) boundary conditions
in the vertical direction can be difficult to maintain in the presence of hydrostatic balance. A traditional (and the simplest)
technique for implementing solid wall boundaries in the vertical direction while maintaining high-order accuracy down to
the surface is to enter ‘‘ghost cell’’ values past the boundary which mirror the interior dynamics. This enforces a gradient of
zero for density, transverse momentum, potential temperature, and pressure, and it enforces zero normal velocity. In the
case of hydrostatic balance, the pressure gradient is clearly non-zero at the material surfaces, making this technique invalid.

Typically for non-hydrostatic models, hydrostatic balance is subtracted from the vertical momentum equation (see e.g.
[40], leaving only perturbations from hydrostatic balance for the vertical pressure gradient and for density in the gravity
source term. This is done for many reasons, the dominant reason being that in the presence of terrain, large cancellation er-
rors can occur otherwise which would lead to poor representation of the pressure gradient forcing (because the vertical gra-
dient dominates). When the dominant balance is removed, we again have similar gradient magnitudes in the horizontal and
vertical direction. Also, with perturbations from hydrostatic state, we can then assume that the vertical gradient of the pres-
sure perturbation is zero (at least for this flat geometry, not sloping terrain necessarily), enabling a simplistic ghost cell treat-
ment of the boundaries. We adopt this technique, giving the following equations:
Fig. 1. Schematic of the process for computing time-averaged characteristic variables with CFL = 1.5 for the interface with a red dashed line. The blue arrow
is the upwind trajectory, and the violet dashed line is the departure location. Dark green circles denote quadrature points at which the flux is calculated
from reconstructions to compute characteristic variables at locations xm,p. Note separate quadrature within each cell. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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@

@t

q
qu

qw

qh

26664
37775þ @

@x

qu

qu2 þ p

quw

quh

26664
37775þ @

@z

qw

qwu

qw2 þ ðp� pHÞ
qwh

26664
37775 ¼

0
0

�ðq� qHÞg
0

26664
37775 ð16Þ
Handling the source term is trivial because we only need the cell mean perturbation by subtracting off the cell-mean hydro-
static state. However, handling the pressure term in the vertical flux vector is not as simple. We need a high-order accurate
approximation to the perturbation along arbitrary characteristic trajectories. We found it sufficient to perform an initial
reconstruction of the hydrostatic basic state of potential temperature gðqhÞH ðzÞ (where an H subscript is a hydrostatic basic
state and a 	 superscript is a reconstruction) and compute a hydrostatic pressure from this pHðzÞ ¼ pð gðqhÞH ðzÞÞ. Then, the
difference can be computed along the trajectory at quadrature points as p� pH ¼ pðfqhðzÞÞ � pðgqhH ðzÞÞ at each quadrature
point along the upstream trajectory. The perturbation flux is then used to compute CVs. If the present method is insufficient
for curvilinear geometry or other factors in another application, then the perturbations will need to be computed cell-wise
and then reconstructed (rather than separately reconstructed and sampled), increasing computational requirements.

As for the characteristics and their interaction with material boundaries, the normal slow waves should never reach the
material boundary. This is because the normal velocity is identically zero at the boundary, meaning the wave asymptotically
may not reach it. There are ways of handling this, standard in the semi-Lagrangian model literature (see, e.g. [41]. We do not
currently need to employ this because our Mach numbers are sufficiently small that for the CFL numbers we are using, the
slow waves will not reach the material boundaries anyway. As for the acoustic waves, algorithmically we reflect them back
into the physical domain, (to emulate mirrored ghost cell reconstructions), and we negate the normal velocity to ensure it is
zero at the boundary.
2.6. Temporal accuracy

In this fully discrete method, the temporal integral is computed directly (essentially forward Euler in nature). We cast the
time integral over one time step into a spatial integral over the upwind trajectory path for each CV. If the wave speed re-
mains constant over the time step, the two integrals are identical. If the spatial reconstruction is accurate to O(Dxn), then
the accuracy in time is also O(Dxn) if wind is constant. Also, because of the CFL restriction, Dt / Dx which means that the
temporal accuracy is also O(Dtn). However, the wave speeds are not in general constant in time, so this assumption obviously
incurs error temporally, and we will address relaxing this assumption in future research. Temporal accuracy is still formally
restricted to second-order regardless of the 1-D truncation error in individual sweeps because of the dimensional splitting
we use. Still, for CFL restricted problems (i.e. explicit time integration), spatial error dominates the total truncation error. This
argument is similar to the many Lagrangian single-step, single-stage transport methods used in atmospheric models.
2.7. Flux computation summary

Here, we summarize the algorithm for computing an interface flux. In the vertical direction, assume a reconstruction of a
hydrostatic basic state potential temperature, fqhH , is subtracted from the cell mean potential temperature fqh in step 2. ?
(a) ? ii.

1. Form left and right eigenvectors and eigenvalues (wave speeds) by averaging left and right limits from eU at the interface
2. For each of the four waves

(a) For each quadrature point in time
i. Trace quadrature point upstream in time using eigenvalues

ii. Compute the flux vector at this location from eU
iii. Compute the CV for this wave via a dot product of the left eigenvector and the flux vector
(b) Compute the time-averaged CV from quadrature points
(c) Compute the flux update: a product of the right eigenvector and the time-averaged CV

3. Sum the four flux updates to compute the time-averaged interface flux

2.8. Comparison of communication burden

An exhaustive comparison of overall performance on large parallel platforms is certainly beyond the scope of this paper.
However, we do wish to provide a quantitative discussion of the communication needs of our method compared to a multi-
stage method. There are design constraints when considering a parallel algorithm via domain decomposition such as how
many communications are performed and how much duplication of work there is. Regarding the former, we will consider
the communication burden as proportional to the total amount of communication required per amount of time in
simulation.
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For the latter, we will consider multiple scenarios for each algorithm. For the FBCSL algorithm, we take two scenarios: (1)
no duplicated work and (2) duplicated reconstructions. We choose only duplicated reconstructions for scenario 2 because
the flux stage is much more expensive than the reconstruction stage. For the multi-stage algorithm, we will take again
two scenarios: (1) no duplicated work and (2) duplicated reconstruction and fluxes. This is not overly optimistic for the mul-
ti-stage communication patterns because the reconstructions and fluxes are both relatively cheap in a communication dom-
inated context. Quantitative details of the scenarios are given in the following itemization.

Consider n to be the number of variables per cell, c to be the CFL number, and s to be the number of stages for the multi-
stage solvers. The variable c arises to account for the fact that the FBCSL methods can perform at large CFL numbers and thus
need to communicate more than just one cell of information. For instance, suppose our reconstruction requires five cells in
total: the cell in question plus two on either side. The halo region would be two cells. A method limited to CFL < 1 will only
need to reconstruct the cell adjacent to a domain decomposition boundary (DDB). Therefore, in all, three cells are commu-
nicated to reconstruct that adjacent cell. If the CFL is raised to CFL < 3, now we need to reconstruct three cells past the DDB.
Thus, in all, five cells are communicated for the purpose of reconstruction. So generalizing this, c + 2 (where 2 is the halo
region) cells must be communicated for reconstruction. Here, I will use the term ‘‘float’’ to refer to a 4-byte floating point
variable and ‘‘double’’ to refer to an 8-byte floating point variable.


 FBCSL Scenario 1 We need to communicate 2n floats (two cells of state vectors) across a domain decomposition boundary
to form the reconstructions, and then 5nc floats to communicate c reconstructions (5 coefficients per state variable per
cell) to form fluxes at large CFL numbers, and then n floats (one flux vector) to communicate interface fluxes for updating.
Doing this in two directions gives a total of 2nc + 3) floats of communication.

 FBCSL Scenario 2 We need to communicate (2 + c)n floats (enough state vectors to reconstruct c cells) for reconstructions,

and n floats (one flux vector) to communicate interface fluxes. Doing this in two directions gives a total of 2n(c + 3) floats
of communication.

 Multi-stage Scenario 1 Each stage will need to communicate 2n floats (two cells of state vectors) for reconstruction, n floats

for the interpolated interface state vector, and n floats for the flux vector. With s stages and two directions, this would be:
2c(4ns).

 Multi-stage Scenario 2 Each stage will need to communicate 2n floats for reconstruction, and the interpolation and flux

computation will be duplicated. In s stages, this is 2ncs communications. In two directions, this is: 4ncs.

We will assume a 3-stage method (typically 3rd-order accurate), and for fair comparison, we will compare like scenarios.
Computing the ratio of communications for Scenario 1, we get a ratio (FBCSL/multi-stage) of about 0.417 + 0.25/c. The ratio
for scenario 2 is 0.167 + 0.5/c. One can see that simulating at higher CFL number (larger c) is relatively more effective for
scenario 2 than it is for scenario 1. Regardless, however, the FBCSL method requires at most 2/3 the amount of communica-
tion required by the 3-stage solver. For CFL number values of 2–3, the FBCSL methods requires only 1/3 to 1/2 as much com-
munication. The question of overall efficiency regarding the tradeoffs of duplication and communication and the overall cost
of the two algorithms will be highly machine and implementation dependent and is, again, beyond the scope of this paper.
We are simply demonstrating that the FBCSL method can operate with less overall communication requirements.

3. Numerical results

Some standard benchmark test cases are performed to evaluate the ability of the proposed solver to effectively simulate
non-hydrostatic atmospheric dynamics: a rising convective thermal, a density current, and internal gravity waves in the
non-hydrostatic regime. These are the same test cases as in Ahmad and Lindeman [18], Straka et al. [42] and references
therein. The convective bubble test case embodies a phenomenon of great interest to mesoscale type flows. The Straka den-
sity current mimics cold outflow from a convective system and tests a methods ability to control oscillations when run with-
out numerical viscosity. Finally, the internal gravity waves test case tests a model’s resolution of a smooth phenomenon on
non-hydrostatic scales which transfers sizable amounts of energy on both mesoscales and global scales.

Because these test cases have no analytical solution, they must be evaluated qualitatively. Full conservation was achieved
in all state variables in each test case except the density current because the diffusion prescribed for the test case was not in
conservation form.

Hydrostatic initialization.
Constant potential temperature. To initialize hydrostatic balance, it is easiest to obtain a vertical profile for Exner pressure,

p, rather than pressure directly. Exner pressure is a function of pressure only, given by:
p ¼ p
p0

� �Rd=cp

ð17Þ
And its hydrostatic balance equation is given in terms of only potential temperature:
dp
dz
¼ � g

cph
ð18Þ
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The first two test cases assume a constant potential temperature basic state. Therefore, the hydrostatically balanced Exner
pressure profile is trivial:
Fig. 2.
perturb
�pðzÞ ¼ �psfc �
gz

cph0
ð19Þ
where we assume �psfc ¼ 1 meaning p = p0 at the surface.

Constant Brunt–Vaisala frequency. In the gravity wave test case, a constant Brunt–Vaisala frequency, N0, is specified. The
Brunt–Vaisala frequency is given in terms of fractional vertical gradient of potential temperature:
ffiffiffiffiffiffiffiffiffiffi

g
h

dh
dz

r
¼ N0
Therefore,
hðzÞ ¼ hsfce
N2

0
g z
Plugging this into (18), we eventually obtain the following vertical profile:
�pðzÞ ¼ �psfc �
g2

cpN2
0

hðzÞ � hsfc

hðzÞhsfc

� �
ð20Þ
We set the constants as follows: �psfc ¼ 1; hsfc ¼ 300 K, and N0 = 10�2 s�1.
(a) Potential temperature perturbations (b) Horizontal wind

(c) Vertical wind

Plots for the convective thermal test case with a 125 m grid spacing after 1,000 s of simulation. x- and y-axes are in km, potential temperature
ations are in K, and winds are in ms�1.
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Pressure can be obtained from (19) or (20) by the Exner pressure equation, (17). Then, density may be extracted
from the pressure by the equation of state. Many studies simply use the cell mid-point value for initialization (at most
second-order accurate) in a FV context. In this study, however, a five-point (ninth-order accurate) Gauss–Legendre
quadrature is used to initialize the cell means. Perturbations for the various test cases are included in the quadrature
for a high-order accurate initialization. Also, hydrostatic balance is not restored after addition of the perturbations
in this case, so the initial thermal should be interpreted as an instantaneous shock to the hydrostatically balanced
system.
3.1. Convective thermal

The convective thermal uses a hydrostatic balance based on a uniform potential temperature, h0 = 300,K, and then adds
the following perturbation in potential temperature: h ¼ h0 þ Dh maxð0;1 � D=RÞ where R is the radius of the bubble, and

D is the distance from the center of the bubble given by: D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q
. For this test case, we define Dh = 2 K,

R = 2 km, x0 = 10 km, and z0 = 2 km. The model domain is [0,20] � [0,10] km. The horizontal and vertical wind are both ini-
tialized to zero, and the thermal is simulated at a maximum Courant number of 0.98.

The potential temperature perturbations, horizontal wind, and vertical wind with a grid spacing of 125 m are contoured
in Fig. 2. Time traces (sampled every 10 s) of the domain maximum potential temperature perturbation and vertical wind are
also given in Fig. 3. The maximum wave speed at all four resolutions was j~V j þ cs � 349 ms�1.

Qualitatively, the simulation matches well with other studies, and because we initialize cell averages and not cell mid-
points, the results will not be exactly alike. The flow at this time and on these scales exhibits no large-scale turbulence, lead-
ing to a sense of convergence as the grid is refined. We run at multiple resolutions to show how the standard resolution
(125 m) for this test case compares to a higher resolution solution (31.25 m). We start with a time step of 0.35 s at
Dx = 125 m and decrease it linearly with the grid spacing from there.

Time traces in Fig. 3 seem to show oscillations, but they occur because the maximum in a variable may be split between
two cells at one time and in a single cell at another time. This is further supported by the observation that they decrease
substantially as the grid spacing decreases. With 31.25 m grid spacing, the domain maximum potential temperature exceeds
the initial value towards the end of the simulation, potentially a numerical overshoot. There is considerable agreement at all
resolutions for the domain maximum vertical wind until about 650 s. At this point, the higher resolutions are resolving smal-
ler-scale flows which concentrate the potential temperature near the top of the ‘‘mushroom’’.

Fig. 4 gives a plot of the potential temperature perturbations for a convective thermal test case run with a maximum CFL
number of 1.96 with 125 m grid spacing and differences from the previous run. The largest magnitude difference from the
previous run is 0.27 which represents about a 13% departure at that location. Given the likelihood that the 0.98 CFL number
run is more accurate, we can take from this that there probably needs to be some adjustments to the trajectory accuracy in
(a) Domain maximum potential temperature perturbation (b) Domain maximum vertical wind

Fig. 3. Domain maximum potential temperature and vertical wind traces for the convective thermal test case over a range of grid spacings. x-axis is time in
seconds and y-axis is K for potential temperature trace and ms�1 for vertical wind trace.



(a) Potential temperature perturbations (b) Potential temperature perturbation differences from the CFL=0.98
run.

Fig. 4. Plots for the convective thermal test case with a 125 m grid spacing after 1,000 s of simulation with a CFL number of 1.96. x- and y-axes are in km,
potential temperature perturbations are in K.
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order to increase the accuracy of the overall simulation. Stability is achieved with the larger CFL number despite any accu-
racy concerns.
3.2. Straka density current

This test case uses a hydrostatic balance, again based on a uniform potential temperature, h0 = 300 K, and then adds the
following perturbation in potential temperature:
h ¼
h0 if L > 1

OR

h0 þ Dh½cosðpLÞ þ 1�=2 otherwise L 6 1

8><>:
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0

xR

� �2

þ z� z0

zR

� �2
s

We define Dh =�15 K, xR = 4 km, zR = 2 km, xc = 0 km, and zc = 3 km. The model domain is [�26.5,26.5] � [0,6.4] km with a
grid spacing varying from 25 m to 400 m. The simulation is run for 900 s with a maximum Courant number of 0.97 and a
maximum wave speed of j~V j þ cs � 385 ms�1. This is a good test case for examining the oscillatory properties of a scheme
because of the many strong gradients in both the wind and potential temperature.

For proper grid convergence, the test case prescribes a dynamic viscosity. To accommodate this, we include simple cen-
tered second-order accurate finite difference approximations to diffusion terms for the momentum equations and potential
temperature equation. The horizontal momentum, vertical momentum, and potential temperature diffusion terms are given,
respectively, by qK(uxx + uzz), qK(wxx + wzz), and qK(hxx + hzz) where K = 75 m2 s�1 is the coefficient of diffusion. Even though
viscosity is present, we use free slip boundary conditions at the domain bottom (meaning the wind is not forced to zero there).

Fig. 5 shows potential temperature perturbation contours for resolutions at 400 m, 200 m, 100 m, 50 m, and 25 m. Table 1
gives the maximum and minimum potential temperature perturbation at 900 s of simulation. The lack of a 0 K perturbation
contour is solely for the sake of plot clarity. We start with a time step of 1 s at Dx = 400 m and decrease it linearly with the
grid spacing from there.

The plots are in line with other studies. One thing to keep in mind which makes this simulation slightly different than
others is that we initialize the model with cell averages computed via quadrature and not cell midpoint values. Therefore,
our minimum potential temperature perturbation will be slightly smaller in magnitude than other studies.

We also ran this test without explicit viscosity to demonstrate the stabilizing properties of the WENO interpolant at
Courant numbers near 1 and near 2. Fig. 6 shows a plot of the density current test case with only implicit numerical viscosity
run at a maximum CFL number of 0.98 and 1.95. We ran the near-unity CFL number test case with a time step of 0.126 s, and
both runs had a grid spacing of 50 m. The strong gradients create difficulty for a numerical method to remain stable, but the
WENO interpolants provide sufficient implicit diffusion for stability. For the simulation without explicit diffusion at
CFLmax = 0.98, the minimum h0 was �12.1 K and the maximum h0 was 0.383 K. There are noticeable differences between



(a) 400m

(b) 200m

(c) 100m

(d) 50m

(e) 25m

Fig. 5. Plots for the Straka density current test case after 900 s with diffusion for grid spacings ranging from 25 m to 400 m. x- and y-axes are in km and
potential temperature perturbations are in K.
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the two runs at near unity CFL number and larger CFL number which demonstrate the potential advantages of improving
trajectory calculations. Still, for a turbulent flow they are similar, and stability was maintained at the higher CFL number
without explicit diffusion.



Table 1
Maximum and minimum potential temperature perturbation at 900 s for the Straka density test case with diffusion.

Grid spacing

400 m 200 m 100 m 50 m 25 m

Time step (s) 1 0.5 0.25 0.125 0.0625
Max h0 (K) 1.52e�1 5.20e�2 9.59e�3 6.52e�3 1.22e-07
Min h0 (K) �6.09 �7.45 �8.48 �8.70 �8.74

(a) CFLmax=0.98

(b) CFLmax=1.95

Fig. 6. Contours of potential temperature perturbation for the Straka density current test case without explicit numerical viscosity after 900 s with a grid
spacing of 50 m. x- and y-axes are in km and potential temperature perturbations are in K. For visual clarity, they are plotted with half the number of
contours as Fig. 5.

M.R. Norman et al. / Journal of Computational Physics 230 (2011) 1567–1584 1579
3.3. Non-hydrostatic internal gravity waves

Here, we test the proposed scheme in its handling of Internal Gravity Waves (IGWs) on a non-hydrostatic scale. The do-
main is initialized hydrostatically with a constant Brunt–Vaisala frequency of N = 10�2 s�1 to admit IGWs. A potential tem-
perature perturbation is added to the potential temperature field as follows:
h ¼ h0ðzÞ þ Dh
sinðpz=HÞ

1þ ðx� x0Þ2=a2
where H = 10 km, Dh = 10�2 K, a = 5 km, and x0 = 100 km. The simulation is run for 3,000 s on a domain of [0,300] � [0,10] km
with a maximum Courant number of about 0.99. The initial vertical wind is set to 0 ms�1, and the initial horizontal wind is set
to 20 ms�1 to advect the entire IGW train in the positive x-direction. We ran this simulation at three vertical grid spacings
ranging from 50 m to 200 m. The horizontal grid spacing is always ten times greater than the vertical in this test case. We
ran with a time step of 0.54 s for Dz = 200 m and decreased it linearly with grid spacing from there.

Fig. 7 gives contour plots of the potential temperature perturbation, and Fig. 8 gives the potential temperature perturba-
tions along the line z = 5 km after 3,000 s. These results agree well with previous studies, and it is the only test case which
really converges to a solution as the grid is refined without requiring diffusion. Therefore, we use this test case to get some
notion of the numerical convergence of the scheme as both grid and time step are refined using the 25 m grid spacing as the
‘‘exact’’ solution. If we consider the error as a function of grid spacing, E(Dx) = C(Dxn) with C being a constant with respect to
Dx, then the order of convergence is given by n ¼ lnðEðDxÞ=EðDx=f ÞÞ= ln f . We estimate error norms by regridding the 50 m
potential temperature perturbations to the coarser grid. Table 2 summarizes the error norms, and Fig. 9 shows a log–log plot
with the slope showing the convergence. The L1 error norms seem to be asymptoting to near fourth-order convergence, and



(a) Δ z= 200m

(b) Δ z=100m

(c) Δz=50m

Fig. 7. Plots for the internal gravity waves test case after 3,000 s with a range of grid spacings with CFLmax = 0.99. Dx = 10Dz for all simulations. The x- and
y-axes are in km and potential temperature perturbations are in K.

Fig. 8. Plot of potential temperature perturbations along the line z = 5 km for the internal gravity waves test case after 3,000 s with a range of grid spacings.
Dx = 10Dz for all simulations. The x-axis is in km and the y-axis is in K.

Table 2
Error norms in the potential temperature field compared to 25 m results.

Dz 400 m 200 m 100 m 50 m

L1 0.422339 0.156702 0.0236569 0.00172828
L2 0.449548 0.187334 0.0356143 0.00300876
L1 0.480062 0.234141 0.0703918 0.00899815
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Fig. 9. Log–log plot of potential temperature errors (increasing upward) as a function of grid spacing (decreasing to the right). We used the 25 m run to
represent the exact answer and add lines whose slopes show visually the order of convergence.
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the L1 norms converge more slowly which is typical. We note that this test case is very smooth, and this sort of convergence
is very unlikely in realistic flows.

We also ran the 100 m (vertical) grid spacing run with CFLmax=1.99, and the potential temperature shaded contours are
given in Fig. 10 along with the differences from the previous 100 m run. The maximum deviation from the previous run was
only 1.5 � 10�5 K which represents 0.5%. Because this is such a smooth flow with such small changes in characteristic veloc-
ities, we also ran the test case at a CFL number of 2.99 and 3.99 with plots shown in Figs. 11 and 12. For CFLmax = 2.99 and
CFLmax = 3.99, the maximum deviations from the standard run were 1.1% and 2.0%, respectively. The maximum difference in
potential temperature from CFL = 0.99 as CFL number increases (running with CFL numbers up to 7) fits a quadratic function
(a) Δz=100m, CFLmax =1.99

(b) Differences between CFL=1.99 and CFL=0.99

Fig. 10. Plots for the internal gravity waves test case after 3,000 s with a maximum CFL number of 1.99. Dx = 10D z = 1,000 m. The x- and y-axes are in km
and potential temperature perturbations are in K.



(a) Δz=100m, CFLmax=2.99

(b) Differences between CFL=2.99 and CFL=0.99

Fig. 11. Plots for the internal gravity waves test case after 3,000 s with a maximum CFL number of 2.99. Dx = 10D z = 1,000 m. The x- and y-axes are in km
and potential temperature perturbations are in K.

Table 3
Maximum absolute difference of potential temperature from the CFL = 0.99 run with increasing CFL number.

CFL number 1.99 2.99 3.99 4.99 5.99 6.99
Max. abs. diff. 1.505e�5 3.259e�5 5.295e�5 8.370e�5 1.383e�4 1.709e�4
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with a squared residual of 0.997 (see Table 3). Future work is necessary to find what leads to this quadratic relationship. The
fact that we obtained better results for smoother flows in which characteristic trajectory gradients are small coincides with
the findings in Toda et al. [28], Ii and Xiao [31] that large CFL characteristic schemes of this type can perform stably and accu-
rately provided the characteristic speeds do not change much in a given time step.

With the runs of CFL > 1, there are vertically-oriented oscillations of wavelength 2CFLmaxDz in the difference plots. We
hypothesize by the wavelength scale and vertical orientation that the errors must be related to something unique about
the vertical direction. We see several things unique about the vertical direction: (1) there is a gradient in the acoustic wave
speed, and (2) the gravity source term applies only in the vertical, and (3) potential temperature has a vertical gradient due
to the stable stratification. The error from the first situation could arise from assumed constant trajectories (from freezing
the Jacobian). As the CFL increases, this effect will also increase linearly. The second situation with the gravity source term
could mean the error is arising from time step to time step imbalances as the source term and pressure forcing are split fur-
ther apart with large CFL. We note also that dimensional splitting is the other major assumption in this discretization and
likely plays a role in determining this error as well, or at least amplifies the error arising from the aforementioned issues.
4. Conclusions and future work

We have presented a new FV solver for numerical simulation of atmospheric dynamics offering competitive efficiency in
terms of low communication requirements and large time steps. It is fully discrete (one-step, one-stage), upwind, spatially
local, stable at large CFL numbers, and it accommodates any single-moment spatial interpolant. We have described the the-
ory and implementation of the method and performed standard non-hydrostatic atmospheric test cases for validation. The
method performed accurately and stably in each of the test cases without the need for post-hoc diffusion to stabilize even at



(a) Δz=100m, CFLmax=3.99

(b) Differences between CFL=3.99 and CFL=0.99

Fig. 12. Plots for the internal gravity waves test case after 3,000 s with a maximum CFL number of 3.99. Dx = 10D z = 1,000 m. The x- and y-axes are in km
and potential temperature perturbations are in K.
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large Courant numbers. In the non-hydrostatic internal gravity waves test case, we estimated a numerical convergence of
roughly third- to fourth-order (depending on the error norm) for that test case.

We would like to reemphasize that on modern computing architectures (which are distributed memory machines that
are getting larger by the year), communication is quickly becoming the dominant limitation for many schemes. There is a
great need to investigate new methods which may offer promise in this regard. In comparison to finite element type methods
such as spectral element and discontinuous Galerkin, the present method allows larger time steps while keeping lower com-
munication requirements than traditional FV methods.

Results at large CFL numbers showed degraded accuracy compared to simulation at CFL numbers near unity. Though we
still had stability at CFL numbers greater than two, the accuracy degradation beyond CFL = 2 was too large for two of the test
cases. Running the smoothest test case up to CFL = 7 revealed some characteristics of the errors associated with large CFL
number simulation. It suggests that improving trajectories may alleviate much of the error and that properly resolving large
gradients in characteristic speeds will require the most attention.

One limitation to this method in the current theory and implementation is that it is fixed to a dimensionally split frame-
work. We will be investigating the potential for a genuinely multi-dimensional extension for use in curvilinear geometries
that do not perform as well when dimensionally split.

All simulations in this study were performed on Graphics Processing Units (GPUs). Code run on an Nvidia GTX 280 GPU in
double precision with relatively simple memory optimizations (making use of fast local shared memory) performed roughly
9–10� faster than an Intel Core2 Duo T7500 CPU. The CPU code being compared against was optimized with OpenMP (with
linear speed-up) and SSE, and all data transfer times on the GPU are included as is file I/O with end-to-end wall timers on
each for a fair comparison. In single precision, the GPU code ran 16–17� faster than the CPU code.
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