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ABSTRACT: Various new polynomial and non-polynomial approximations to a subgrid distribution have been adapted for
use in the conservative cascade scheme (CCS) and applied to conservative grid-to-grid interpolation on a latitude–longitude
grid. These approximations include the following: piecewise parabolic method (PPM), piecewise hyperbolic method
(PHM), piecewise double hyperbolic method (PDHM), power-limited piecewise parabolic method (P-PPM), piecewise
rational method (PRM), third-order weighted essentially non-oscillatory (WENO23), fifth-order weighted essentially non-
oscillatory (WENO35), and a modified piecewise parabolic method (M-PPM). A series of test cases are performed in which
initial gridded data are interpolated between T 42 and 2◦ grids and compared against analytical values. Four initial data
profiles are used: smooth harmonic, high-frequency harmonic, quasi-polar vortex data and slotted cylinder data. In general,
PDHM (WENO35) had the lowest error norms of the three-(five-)cell stencil methods. Quite often, M-PPM gave accuracy
comparable to WENO35 at significantly lower cost. Monotonicity violations generally only occurred when interpolating
to a finer grid with a maximum violation of 1.8% of the data range. Copyright c© 2009 Royal Meteorological Society
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1. Introduction

Conservative remapping involves accurately transferring
data from one grid to another while conserving the global
and local integrals. Methods currently existing in the lit-
erature for meteorological application include those of
Jones (1999), Lauritzen and Nair (2008) and Ulrich et al.
(2009). The basic conservative interpolation steps of Nair
et al. (2002) and Zerroukat et al. (2004) can also be
used for geophysical interpolation. The method of Jones
(1999) is very flexible and is applicable to many spherical
grids. However, it is at most second-order accurate. Nair
et al. (2002) and Zerroukat et al. (2004) employ a conser-
vative cascade interpolation to calculate mass in depar-
ture cells for semi-Lagrangian advection on the sphere.
Lauritzen and Nair (2008) apply the conservative cascade
methodology for interpolation between regular latitude–
longitude (RLL) grids and cubed-sphere grids. Ulrich
et al. (2009) developed a novel fully two-dimensional
approach to remapping between cubed-sphere and RLL
grids, which exactly integrates polynomial reconstruc-
tions via quadrature on cell boundaries. The primary
focus of this study is on the relative performance of
various one-dimensional non-oscillatory reconstructions,
many of which have had little exposure to meteorologi-
cal application. To this end, we choose the conservative
cascade scheme (CCS) of Nair et al. (2002) and Norman
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and Nair (2008) as a framework testbed for this inter-
comparison.

Nair et al. (2002) and Norman and Nair (2008) applied
the CCS to semi-Lagrangian (SL) transport on a RLL
grid. Cascade interpolation is more efficient than a
straightforward Cartesian splitting and involves fewer
operations, especially for multiple species, since the
intermediate grid needs to be generated only once (Purser
and Leslie, 1991; Nair et al., 1999). The CCS also applies
unchanged to the more general realm of geophysical grid-
to-grid interpolation, which has different computational
challenges from SL transport. In the transport case, the
scheme must be robust enough to handle a wide range
of target grids as the wind flow varies in time. This is
a notable difference from conservative interpolation, in
which the source and target grids are typically static.
Also, for SL transport there must exist an equal number
of source and target grid cells. This means that the size
of source and target grid cells on average are similar.
In conservative interpolation there is no such restriction.
There may be multiple target cells within every source
cell and vice versa. In this study, the CCS is being
applied to one step of conservative interpolation between
two regular latitude–longitude grids. As in the transport
case, non-oscillatory reconstructions during each one-
dimensional (1-D) CCS sweep ensure that the violation
of monotonicity during the remapping is well controlled.
Other techniques of conservative cascade remapping do
exist, such as in Zerroukat et al. (2004).
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There are many applications of grid-to-grid interpola-
tion in geophysical numerical simulation. For instance,
the initial conditions and boundary conditions are always
interpolated from data sets onto the model grid. Also,
most components of an Earth system model are simu-
lated on different grids, and when coupled interpolation
between those grids is necessary. In adaptive mesh refine-
ment (AMR), the grids are locally refined and coarsened,
requiring interpolation between grids. Nothing precludes
application to the restriction and prolongation opera-
tions in multigrid either, for that matter. Also, as men-
tioned earlier, SL transport utilizes an interpolation step
in remapping mass from the static grid to the departure
grid.

One general rule applies to all of these applications: the
properties of the interpolation will propagate through the
simulation. For example, a numerical weather prediction
(NWP) forecast is forced mostly by initial conditions.
Thus, if the initial conditions are inaccurately interpolated
to the model grid, even high-order dynamical solvers will
render inaccurate forecasts. The same can be said about
climate simulations, which are almost entirely boundary-
value problems owing to their very long simulation times.
With such high sensitivity to boundary specifications, a
low-order accurate interpolation should not be coupled
with high-order accurate dynamics. If the interpolation
used when coupling two components is not conservative,
the overall simulation will not be conservative. If the
interpolation used in AMR grid refinement is oscillatory,
the simulation will exhibit oscillations. Therefore, if
certain properties are desirable in a dynamical simulation,
those same properties must be true of the interpolations
used to transfer data from grid to grid.

The purpose of the present study is to perform
an intercomparison of various functional approxima-
tions in the CCS applied to conservative interpolation
between two latitude–longitude grids. These approxi-
mations include the piecewise parabolic method (PPM)
and non-polynomial approximations from Norman and
Nair (2008) as well as four new polynomial functions.
The new reconstructions are the power-limited piece-
wise parabolic method (P-PPM), third-order weighted
essentially non-oscillatory (WENO23) method, fifth-
order weighted essentially non-oscillatory (WENO35)
method, and a modified PPM (M-PPM). The M-PPM,
developed in this study, uses a convex combination of the
original full-order reconstruction and the classical limited
reconstruction with the weighting defined by a mathemat-
ical indicator of jump discontinuity severity in the stencil.

There exist other polynomial interpolants in literature
not included in this article. For instance, Zerroukat
et al. (2004) and Zerroukat et al. (2006) used piecewise
cubic polynomials and quadratic splines, respectively,
and both are limited by the filter provided in Zerroukat
et al. (2005). These reconstructions are accurate, but
cubics along with their filter require a wide stencil,
and the splines require a global stencil. Small-stencil
methods give an advantage in regard to scalability in
that communication demand in parallel architectures is
reduced compared with wide-stencil and global-stencil

methods. Additionally, smaller stencil methods can be
used closer to a material boundary (e.g. the Earth’s
surface) than wider stencil methods. For this reason, we
wish to restrict our attention to small-stencil methods,
meaning the reconstruction of a cell requires a stencil
of 5 cells or less (including the cell in question). Also,
Blossey and Durran (2008) introduced a PPM variant
wherein the classical limiter is only employed when
a WENO-like parameter exceeds a certain threshold,
indicating a sufficiently large discontinuity. In fact, the
M-PPM method developed in section 2.3 carries a similar
approach: only limit the reconstruction to the degree to
which it has the potential to cause oscillations.

The article is organized as follows. Section 2 describes
the subgrid reconstructions, section 3 describes the test
cases for the study, section 4 presents the numerical
results, and conclusions are drawn in section 5.

2. Subgrid reconstructions

2.1. Non-polynomial reconstructions

For sake of brevity, the details of the non-polynomial
reconstructions will not be reviewed in the present article
because they are implemented as described in Norman
and Nair (2008), which describes them in detail. These
reconstructions include the piecewise hyperbolic method
(PHM) of Marquina (1994) and Serna (2006), the piece-
wise double hyperbolic method (PDHM) of Artebrant and
Schroll (2006) and the piecewise rational method (PRM)
of Xiao et al. (2002). For the reader’s convenience, all
functional approximations and their acronyms are defined
in Table I along with the stencil required for each method.
PHM and PDHM are implemented exactly as given in
Serna (2006) and Artebrant and Schroll (2006), respec-
tively. Additionally, PRM is implemented in this context

Table I. Functional approximations of this study, their respec-
tive acronyms and the stencil size required. Here, the stencil
is defined as the total number of cells of information required
for reconstruction of one cell (including the cell being recon-

structed).

Acronym Functional approximation Stencil

PPM Classical piecewise parabolic
method

5

P-PPM Power-limited piecewise
parabolic method

3

WENO23 Third-order weighted
essentially non-oscillatory

3

WENO35 Fifth-order weighted essentially
non-oscillatory

5

PHM Piecewise hyperbolic
method

3

PDHM Piecewise double hyperbolic
method

3

PRM Piecewise rational method 5
M-PPM Modified piecewise parabolic

method
5
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with the same functional form as given in Xiao et al.
(2002) with fourth-order accurate interface values follow-
ing the PPM of Colella and Woodward (1984).

2.2. Power-limited piecewise parabolic method
(P-PPM)

The idea behind P-PPM is given in Amat et al. (2003),
hereafter ABC03. The classical PPM of Colella and
Woodward (1984), which serves as a basis of comparison
for the other reconstructions of this study, uses the cell
mean and fourth-order approximation to the left and right
cell boundary values. The ABC03 parabolic formulation
uses the cell mean and second-order estimates of the left
and right derivatives in a manner very similar to the PHM
of Marquina (1994). Consider an arbitrary cell, Ii , defined
on the interval

[
xi−1/2, xi+1/2

]
with geometric centre xi

and a grid spacing of �xi = xi+1/2 − xi−1/2 with a cell
mean of ūi ; that is

ūi�xi =
∫ xi+1/2

xi−1/2

u (x) dx.

The following three relations constrain a unique
parabola, ri (x), defined on cell Ii :∫ xi+1/2

xi−1/2

ri (x) dx = ūi�xi,

r
′
i (xi) = dC,




r
′
i

(
xi−1/2

) = dL if |dL| ≤ |dR|
or

r
′
i

(
xi+1/2

) = dR otherwise.

The parameters dL, dR, and dC represent second-order
approximations to the left, right, and centred derivatives,
respectively.

ABC03 chose a polynomial of the global form ri (x) =
a0,i + a1,ix + a2,ix

2, but here a local formulation is used
instead:

ri (x) = a0,i + a1,i (x − xi) + a2,i (x − xi)
2 .

The coefficients are thus defined as


a2,i�xi = dC − dL if |dL| ≤ |dR|
or

a2,i�xi = dR − dC otherwise,

a1,i = dC,

a0,i = ūi − a2,i

�x2
i

12
.

Note that the lateral derivatives, dL and dR must be
second-order to achieve third-order reconstruction for suf-
ficiently smooth fields. For unequal grid spacing, the most
straightforward approach to second-order derivative esti-
mates is to reconstruct a third-order accurate parabola,

P3 (x), across the three-cell stencil, Ii−1 ∪ Ii ∪ Ii+1 (the
primitive of which matches the cell means), and differ-
entiate it at the left and right cell boundary locations:
dL = P

′
3

(
xi−1/2

)
and dR = P

′
3

(
xi+1/2

)
. This polynomial

P3 (x) is identical to PEXACT (x) in Appendix A. Addi-
tionally, for any method that uses second-order lateral
derivative approximations for reconstruction (e.g. PHM
and PDHM), this is how those derivatives are computed
in the meridional direction.

Now, the centred derivative estimate, dC, is all that is
left to calculate. This estimate is what acts to limit the
local total variation (LTV) of the parabola to achieve an
essentially non-oscillatory reconstruction. A naive choice
would be the simple arithmetic mean, dC = (dL + dR) /2,
but this does not bound the LTV. ABC03 used instead the
harmonic mean of Marquina (1994):

dC = mins (dL, dR)
2 |dL| |dR|

|dL| + |dR| + ε
,

where ε is a machine-precision number used to avoid a
floating point divide-by-zero and




mins (dL, dR) = sign (dL) if |dL| ≤ |dR|
or

mins (dL, dR) = sign (dR) otherwise.

This provided a satisfactorily limited parabola. More
recently, however, a generalized mean, Powerenop,
(Serna and Marquina, 2004; Serna, 2006) has been devel-
oped defining the centred derivative as a power-limited
mean of the lateral derivatives given by

dC = mins (dL, dR)
|dL| + |dR|

2
×(

1 −
∣∣∣∣ |dL| − |dR|
|dL| + |dR| + ε

∣∣∣∣
p)

, (1)

where p is a parameter controlling the local variation of
the reconstruction. It was shown in Serna and Marquina
(2004) that increasing p acts to increase the LTV of
hyperbolae asymptotically to that of using an arithmetic
mean as p → ∞, and the same is true for parabolae.
Therefore, we adopt the power limiter instead of the
ABC03 harmonic limiter in this study, with p = 4
to allow more local variation while still keeping the
parabolae limited.

2.3. Modified piecewise parabolic method (M-PPM)

It is well known that the original PPM limiter of Colella
and Woodward (1984) degrades the reconstruction to
first-order accuracy at all extrema in order to preserve
monotonicity. Recently, a modified limiter for PPM was
developed in Colella and Sekora (2008) for uniform grid
spacing. This limiter gives improved accuracy at extrema
via a non-oscillatory (not strictly monotonic) limiting
based on second derivative information. However, the
extension of this limiter to a non-uniform grid spacing
is not trivial.
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Therefore, here we present a new and different
approach to improved PPM accuracy at extrema, wherein
smooth extrema are reconstructed at full accuracy and
non-smooth extrema are limited to avoid spurious oscil-
lations. To indicate mathematically the presence of a jump
discontinuity at either the left or the right cell boundary,
we define a ‘jump severity indicator’, S, identical to the
exponentiated term in Equation (1):

S =
∣∣∣∣ |dL| − |dR|
|dL| + |dR| + ε

∣∣∣∣ . (2)

Taking a geometric approach, if the magnitude of the
first derivative changes very abruptly across a cell, that
is a solid indicator of a jump discontinuity at which
reconstructions tend to oscillate most. This indicator
in essence gives an estimate of the second derivative
magnitude confined to the normalized domain: S ∈ [0, 1].
S = 1 indicates a strong jump discontinuity, and S = 0
indicates a very smooth function.

We want to reconstruct at full accuracy for smooth
extrema and at first-order accuracy for non-smooth
extrema. Consider the classically limited left and right
interface values, u−

lim and u+
lim, respectively. Also consider

the left and right original interpolated interface values,
u−

orig and u+
orig, respectively. We thus, define the left and

right interface values used in the final interpolation, u−∗
and u+

∗ , respectively as follows:

u±
∗ = CSu±

lim + (1 − CS) u±
orig, (3)

where CS is any functional mapping of S to the same
domain: CS ∈ [0, 1], with CS = 0 indicating a strong
jump discontinuity and CS = 1 indicating smooth data
(the reverse of S itself). The purpose of CS is to control
the variation of the reconstruction by specifying the
sensitivity of the limiting to the value of the severity
indicator, S. For example, the Serna (2006) hyperbolae
use the mapping CS (S) = 1 − S3 (i.e. the Powereno3
limiter), proving that it allows more variation than
the Marquina (1994) hyperbolae, which use the formal
equivalent of the mapping CS (S) = 1 − S2. We found
that much higher values of p can be used for this
reconstruction for most cases. However, in the most
severe of jumps (S ≈ 1) we found the need for a more
conservative mapping. Therefore, we used the following
mapping for our study to obtain accuracy when possible
and limit oscillations in the severe cases:

CS (S) =



1 − S6 if S ≤ 0.9,

1 − S3 if S > 0.9.

There are two cases in which the parabolae of Colella
and Woodward (1984) are limited. The first case (which
has already been discussed above) is in the presence
of extrema (i.e. (u+

orig − ū)(ū − u−
orig) < 0). The second

case is when the data itself are monotonic but the recon-
structed parabola is not monotonic within the cell domain.
Colella and Sekora (2008) note that the requirement of

fully monotonic parabolae within each cell domain in
Colella and Woodward (1984) is sufficient but not nec-
essary in order to obtain a monotonic reconstruction. In
other words, the original limiting is more restrictive than
formally necessary for monotonicity. The convex combi-
nation in Equation (3) need not be restricted to extrema
alone but can be used (and is used in this study) for all
cases in which the original parabola is being limited to
provide less restrictive non-oscillatory parabolae.

The last modification of the classical PPM is to
change the original calculation of interface values. Colella
and Woodward (1984) calculated fourth-order accurate
monotonic estimates of the interface values over the
grid first and then used those for cell reconstruction in
a second loop. Colella and Sekora (2008) revised the
interface values to be sixth-order accurate, of course,
using a six-cell stencil for each interface. These schemes
calculate continuous interface values in one loop and
then reconstruct the cells in another loop using those
values. Our scheme, on the other hand, calculates both the
interface values and the reconstruction in the same loop,
rendering two discontinuous values for each interface
even without limiting. A comparison in terms of CPU
times will later show that this is only a slight overhead
in terms of compute time.

We utilize the full five-cell stencil to reconstruct a poly-
nomial and then sample it at the cell interfaces. We cannot
always use a fifth-order accurate reconstruction, however,
because if there exists a discontinuity in the left-most or
rightmost cell, the polynomial will oscillate. Given that
the limiting based on Equation (2) only takes into account
a three-cell stencil, this could lead to uncontrolled oscil-
lations. Therefore, we calculate jump severity indicators
from Equation (2) for the cells to the left and right of the
centre cell (SL and SR, respectively). If SL or SR exceed
a threshold, S∗, there may be a discontinuity outside the
centred three-cell stencil. Therefore, we adapt the stencil
of the polynomial to remove any discontinuity that may
lie in the leftmost or rightmost cell. This is described in
more detail in Appendix B. A threshold value of S∗ = 0.8
was experimentally determined and used. The interface
values are not limited to be monotonic. Rather, they are
subjected to the same constraint given in Equation (3),
where, in this case, u±

orig and u±
lim represent the the sam-

pled polynomial values and the monotonically limited
values respectively.

The only modifications to the original PPM of Colella
and Woodward (1984) are in the calculation and limiting
of interface values. The following steps summarize the
process that is performed for each cell to complete the
reconstruction.

(1) Calculate the severity indicator defined by Equa-
tion (2).

(2) Construct a polynomial across a five-cell stencil
using the method described in Appendix B.

(3) Sample the polynomial at the left and right cell
boundaries to obtain fifth-order accurate interface
values.
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(4) Calculate monotonically limited estimates of these
interface values that are restricted to the range of
the neighbouring cell means.

(5) Calculate a convex combination of the interface
values from step 3, u±

orig, and the monotonic values

from step 4, u±
lim, using Equation (3).

(6) Following Colella and Woodward (1984), deter-
mine whether this cell contains a local extremum
or whether the parabola constructed from the left
and right interface values and cell mean is non-
monotonic. If so, calculate the limited value.

(7) Calculate a convex combination of the interface
values from step 5, u±

orig, and the monotonically

limited values from step 6, u±
lim, again using Equa-

tion (3).
(8) Using the interface values from step 7 and the cell

mean, construct a parabola following Colella and
Woodward (1984).

This modification of PPM (which we will denote M-
PPM) is not strictly monotonic like PPM but is non-
oscillatory like the other methods in this article. The
M-PPM approach here is similar to that of Blossey and
Durran (2008) in the sense that the original PPM limiter
is only used for parabolae deemed oscillatory by a given
formulaic indicator of non-smoothness. There is one main
difference, however. The present work uses a functional
mapping of the severity indicator to give a convex
combination of the limited and unlimited solutions, and
Blossey and Durran (2008) used a thresholding technique
to determine if parabolae should be limited. This
difference is similar in nature to the difference between
ENO and WENO schemes (Harten et al., 1987; Liu et al.,
1994).

To show a visual perspective of the effects of the
M-PPM modifications in practice, Figure 1 shows a
zoomed plot of a 1-D irregular signal profile (the same
as in Norman and Nair, 2008) along with the PPM
reconstruction, M-PPM reconstruction and the analytical
profile. In the plot, we have an unresolved gradient
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Figure 1. A prescribed irregular signal profile comparing the PPM and
the M-PPM reconstructions. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

and a local maximum in the data to show the relative
advantages.

2.4. Weighted essentially non-oscillatory methods
(WENO23 and WENO35)

This form of non-oscillatory approximation originates
from articles such as Harten et al. (1987), Shu and Osher
(1988), and Liu et al. (1994). The basic idea is as follows.
First, create multiple polynomial approximations within
different stencils, all of which must include the domain of
the target reconstruction cell. Next, estimate the smooth-
ness of each of the polynomials with a formula similar to
total variation but for both first and second derivatives.
Finally, compute weights based on the smoothness indi-
cators such that the smoother polynomials are weighted
more than the non-smooth polynomials. A detailed dis-
cussion of the WENO reconstruction philosophy is given
in Shu (1999).

First, we will discuss WENO23, which is second-
order accurate in the worst case and third-order accurate
in the best case. The particular implementation used
in this study is very similar to that of Kurganov and
Levy (2000). The only difference is that here the grid
spacing is not uniform in the meridional direction on the
(λ, µ) grid (Nair and Machenhauer, 2002). Therefore, the
polynomials themselves and the smoothness indicators
must be re-derived with this in mind, as given in
Appendix A. The parameter, p, in Kurganov and Levy
(2000) is set to p = 1/2 and is found to bound the total
variation satisfactorily. A lower value of p essentially
allows more variation in the WENO23 reconstruction and
converges more quickly to the optimal accuracy as data
smoothness increases.

The WENO35 method, which is third-order accurate
in the worst case and fifth-order accurate in the best
case, is derived using similar principles to the WENO23
method. Four polynomials are defined: one fourth-order
polynomial defined across a five-cell stencil centred about
the target reconstruction cell, one second-order polyno-
mial defined on the leftmost three cells, one second-
order polynomial defined on the centred three cells, and
one second-order polynomial defined on the rightmost
three cells. Then the smoothness of each polynomial
is evaluated with a total variation estimate applied to
all existing derivatives in the approximations. Next, the
weights are formed based on the smoothness indica-
tors, with the smoothest functions weighted the most.
Finally, the weights yield a convex combination of the
four polynomials to yield a final reconstruction that is
non-oscillatory near discontinuities yet fifth-order accu-
rate in the presence of smooth data. This implementation
is fully described in detail in the reconstruction section
of Capdeville (2008). The only way the present imple-
mentation differs is in the calculation of the weights.
After calculating the smoothness indicators, ISj , Capdev-

ille (2008) creates weights defined by wj = (
ε + ISj

)−2
.

We use a similar approach to Kurganov and Levy (2000)
and define them as wj = (

ε + ISj

)−p
using p = 1/2.
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It is worth noting that the accuracy of WENO23 and
WENO35 is strongly dependent upon the value of p,
which controls how quickly the reconstruction converges
to full-order accuracy as the smoothness indicators con-
verge to equal values. The value of p = 1/2 is used here
instead of the standard p = 2 because it seems to render
much better accuracy while still controlling the violation
of monotonicity to a sufficiently small magnitude (1–2%
in the worst cases).

We found through experimentation that if a particularly
strong jump discontinuity exists in the centre cell, all four
WENO35 polynomial interpolants will oscillate strongly.
This can cause relative overshoot magnitudes of 10–20%
in the CCS context, which is highly unacceptable in a
non-oscillatory scheme. This is much less severe in the
WENO23 scheme as the polynomial orders are lower.
To mitigate this effect we experimentally determined the
jump severity indicators at which WENO35 oscillates
unacceptably and use WENO23 instead in a hybrid
fashion. We found that if we use WENO23 instead of
WENO35 for S > 0.98, the oscillations are much better
controlled without greatly affecting the accuracy of the
overall WENO35 method. The calculation of S is very
cheap, so there is no measurable computational overhead
associated with this modification.

3. Test cases

Four types of global spherical data are used for test cases
in this study, three of them adopted from Lauritzen and
Nair (2008). The first two test data sets are originally from
Jones (1999), giving one smooth and one high frequency
harmonic function. The smooth function denoted Y 2

2 and
the high-frequency function denoted Y 16

32 are defined as

Y 2
2 = 2 + cos2 θ

′
cos

(
2λ

′)

Y 16
32 = 2 + sin16

(
2θ

′)
cos

(
16λ

′)
,

where (λ
′
, θ

′
) are the coordinates on a sphere that is

rotated relative to the true sphere. This rotation is a
feature provided to avoid symmetry on the grid and place
the data in locations (typically the poles) that reveal errors
on the grid. Both the Y 2

2 data and the Y 16
32 data have

the rotated sphere’s pole located at 0◦ longitude and 45◦
latitude on the true sphere. These are shown in Figure
2(a) and (b). Note that the 45◦ latitude rotation places the
Y 16

32 high frequency belt passing through the poles. The
third test case data set produces a vortex at both poles of
a rotated sphere. It is defined exactly as in Lauritzen and
Nair (2008), with the poles of the rotated sphere located at
0◦ longitude and 81◦ latitude. The vortex data are shown
in Figure 2(c).

The fourth test case implements a slotted cylinder on
the sphere located at the equator. The slotted cylinder
originates from Zalesak (1979) and was implemented
on the sphere by Nair et al. (2003). It is intended
to test a scheme’s behaviour in the presence of a

multidimensional data jump discontinuity. First, a radius
is specified in terms of the rotated latitude and longitude:

R =
√(

λ
′)2 + (

θ
′)2

. Then the analytical profile is as
follows:

Y =




0 if R > 10π
64 ,

0 if R ≤ 10π
64 and

∣∣∣λ′∣∣∣ < 10π
192 and θ

′
> − 10π

192 ,

1 otherwise.

Quadrature is not used for this test case because
we want the profile to be as sharp as possible. Thus,
cell centroid values are used to make sure there is a
discontinuous jump from zero to unity. For this reason,
the only error norms that are valid are the Lmin and Lmax
norms (which manifest oscillations) because we know the
data range is always between zero and unity.

Each of the seven subgrid approximations is tested for
intercomparison with the following standard global error
norms: L1, L2, L∞, Lmin and Lmax. The formulae are
given in Lauritzen and Nair (2008). To briefly discuss the
properties of the different error measures, L1 expresses
the most straightforward error measure giving the mean
absolute error normalized by the average magnitude of
the exact data. L∞ expresses the largest magnitude of
error on the grid normalized by the largest magnitude
of the exact data. Most notably for Lmin, a negative
value indicates violation of positivity. Both Lmin and
Lmax are normalized by the range of the exact data. L2,
closely related to the root-mean-square error, is the 2-
norm of the absolute error normalized by the 2-norm of
the exact data, rendering a larger weighting for larger
errors.

For all four data profiles and all eight approximations,
two conservative interpolations will be performed for
intercomparison. First, the data will be interpolated from
a 2◦ grid to a T 42 grid (≈2.8◦ grid spacing) to test
the accuracy and oscillatory properties in a coarsening
interpolation. Then, the reverse will be performed to
test the same properties in a sharpening interpolation.
To avoid the need to integrate these complex functions
analytically in even more complex rotated coordinates,
a five-point Gaussian quadrature is used to obtain cell
mean estimates of an order much higher than the order of
interpolation, thus retaining a meaningful error measure
for intercomparison.

4. Numerical results

PPM will serve as a baseline for comparison, due to its
general acceptance and use in the atmospheric modelling
community. No positive definite filter is used in this study
for the purpose of observing the natural potential of each
function to violate positivity.

For the reader’s convenience, a comparative bar chart
of L1 error is given in Figure 3 to get a quick overall
perspective of accuracy.
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Considering the very smooth harmonic data, Y 2
2

(Table II) in a coarsening interpolation, the only methods
performing worse than PPM are PRM and WENO23 by
a slight margin. It appears from the Lmin and Lmax norms
that PPM is experiencing undershoots and overshoots.
However, this is not because PPM is not monotonic but
because the 2◦ exact cell means have a larger range than
the T 42 exact cell means due to the higher resolution of
the analytical function. In particular, the L∞ norm for
M-PPM shows that it is resolving the smooth extrema

much better than the other methods. In the sharpening
interpolation for these same data, as expected, the error
norms are larger. The most notable result is that PDHM
easily stands out as the most accurate interpolant by an
order of magnitude. The advantages of M-PPM are much
less pronounced in the sharpening interpolation.

Moving on to the less smooth harmonic data, Y 16
32

(Table III), in the coarsening interpolation, we see viola-
tions of positivity of the order of 0.1% many of which,
again, are due to the higher resolution of extrema in

(a) Y2
2 (b) Y32

16

(c) Vortex (d) Slotted Cylinder

Figure 2. Analytical plots of the three data profiles used in this study. (a) Y2
2, (b) Y16

32 , (c) vortex, (d) slotted cylinder. This figure is available in
colour online at www.interscience.wiley.com/journal/qj
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Figure 3. Percentage deviation of L1 error from PPM for the Y2
2, Y16

32
and vortex test cases. (a) Coarsening interpolations, (b) sharpening
interpolations. ‘Coarser’ denotes an interpolation from a 2◦ grid to

a T42 grid and ‘Finer’ denotes the reverse.

the exact 2◦ data profile. Here, M-PPM and WENO35
separate themselves as the most accurate reconstructions
for a non-smooth function with a large number of spu-
rious extrema. Most notable is the improvement in the
L∞ norm for M-PPM, evidencing better resolution of
the sharp extrema. For the sharpening interpolation, we
have violations of positivity of the order of 1% (1.6%
max), and only PHM and P-PPM violated monotonicity
in this case. Once again, WENO35 and M-PPM separate
themselves as the most accurate reconstructions.

The vortex data test case (Table IV) for the coarsening
interpolation shows little in the way of monotonicity
violation. WENO35 and M-PPM have the lowest error
norms. As typically seems to be the case, PRM is similar

to PPM but slightly less accurate. This is likely because
they use the same interface values. In the sharpening case,
there are no violations of monotonicity manifested by the
error norms. Like the coarsening interpolation, WENO35
and M-PPM perform the best with M-PPM slightly less
accurate overall.

As mentioned in section 3, the slotted cylinder test case
is intended to challenge the ability of a reconstruction
to control oscillations with strong jump discontinuities.
The magnitudes of these oscillations are manifested in
the Lmin and Lmax norms. For both the coarsening and
sharpening interpolations, the oscillation magnitudes for
all of the methods were of order 1% or less. The worst
violation occurred with M-PPM, which had an undershoot
of 1.8% in the sharpening interpolation. To give a frame
of reference for this test case, when using only the optimal
polynomial of WENO35 an overshoot of 32% occurred.

Accuracy alone does not determine efficiency but also
run time and scalability, the most straightforward of
which is run time. To consider this, Table V lists the
run times of each of the methods for the vortex test
case interpolating from a 1/3◦ grid (1080 × 540) to a
1/2.5◦ grid (900 × 450). The codes have been optimized,
avoiding exponentiation whenever possible and replacing
repeated operations with precomputed variables. Clearly,
PRM and P-PPM separate themselves as the cheapest
reconstructions in terms of speed. WENO35 is clearly
more expensive than any of the other methods, yet it
also tends to give the best accuracy. It is possible that
the run time may be improved via vectorization for both
WENO35 and WENO23, as they make use of several
matrix–vector products during the reconstruction. M-
PPM actually requires about 7% more computation than
PPM while typically giving much greater accuracy using
the same stencil.

Now, regarding scalability the three-cell methods have
the potential to scale more efficiently to a larger number
of processors than do the five-cell methods, due to a
reduced communication burden per remapping. As shown
in Table I, PHM, PDHM, P-PPM and WENO23 are the
three-cell stencil methods (requiring a one-cell halo when
parallelized), and PPM, M-PPM, PRM and WENO35 are
the five-cell stencil methods (requiring a two-cell halo
when parallelized).

Table II. Error norms for the Y 2
2 test case.

2◦ interpolated to T 42 T 42 interpolated to 2◦

L1 L2 L∞ Lmin Lmax L1 L2 L∞ Lmin Lmax

PPM 2.46E−06 6.14E−06 6.25E−05 −3.09E−05 4.69E−05 3.87E−05 1.01E−04 4.75E−04 5.95E−04 −2.98E−04
PHM 1.25E−06 2.14E−06 8.47E−06 9.61E−06 −2.39E−07 3.35E−05 8.70E−05 3.97E−04 5.95E−04 −2.98E−04
PDHM 3.08E−07 3.93E−07 7.55E−07 4.78E−07 0.00E+00 1.98E−06 1.25E−05 3.92E−04 3.22E−06 −2.75E−04
PRM 2.51E−06 5.97E−06 5.81E−05 −2.96E−05 4.37E−05 3.89E−05 9.99E−05 4.72E−04 5.95E−04 −2.98E−04
P−PPM 6.25E−07 9.73E−07 3.70E−06 5.55E−06 0.00E+00 3.29E−05 8.80E−05 3.97E−04 5.95E−04 −2.98E−04
WENO23 2.60E−06 4.71E−06 2.08E−05 3.12E−05 0.00E+00 3.02E−05 7.34E−05 3.79E−04 5.43E−04 −2.74E−04
WENO35 2.27E−07 3.54E−06 7.88E−05 0.00E+00 5.92E−05 2.86E−05 8.27E−05 3.79E−04 5.43E−04 −2.74E−04
M−PPM 4.75E−08 6.74E−08 1.19E−07 0.00E+00 0.00E+00 3.20E−05 8.96E−05 3.97E−04 5.95E−04 2.46E−06
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Table III. Error norms for the Y 16
32 test case.

2◦ interpolated to T 42 T 42 interpolated to 2◦

L1 L2 L∞ Lmin Lmax L1 L2 L∞ Lmin Lmax

PPM 7.80E−04 2.06E−03 1.27E−02 1.19E−02 1.56E−03 3.78E−03 9.37E−03 4.99E−02 2.59E−02 −9.47E−03
PHM 1.39E−03 3.45E−03 1.50E−02 1.38E−02 1.89E−05 5.74E−03 1.37E−02 5.49E−02 6.39E−03 1.56E−02
PDHM 7.86E−04 2.02E−03 1.38E−02 1.37E−02 1.44E−05 3.28E−03 8.24E−03 5.42E−02 2.24E−02 −9.42E−03
PRM 8.26E−04 2.15E−03 1.30E−02 1.08E−02 1.40E−03 4.03E−03 9.84E−03 5.04E−02 9.84E−03 −6.37E−03
P−PPM 1.38E−03 3.45E−03 1.50E−02 1.33E−02 1.41E−05 5.69E−03 1.37E−02 5.50E−02 5.72E−03 1.64E−02
WENO23 9.15E−04 2.27E−03 1.28E−02 1.42E−02 −1.09E−05 3.58E−03 8.73E−03 4.89E−02 2.78E−02 −9.40E−03
WENO35 1.17E−04 4.84E−04 1.01E−02 7.00E−05 1.99E−03 1.04E−03 3.92E−03 4.59E−02 1.55E−03 −8.21E−03
M−PPM 1.89E−04 6.65E−04 7.31E−03 1.74E−03 3.37E−06 1.37E−03 4.52E−03 4.56E−02 3.45E−03 −9.45E−03

Table IV. Error norms for the vortex test case.

2◦ interpolated to T42 T42 interpolated to 2◦

L1 L2 L∞ Lmin Lmax L1 L2 L∞ Lmin Lmax

PPM 2.17E−04 9.48E−04 1.00E−02 −3.28E−06 3.33E−06 9.73E−04 3.75E−03 3.24E−02 1.85E−04 −1.85E−04
PHM 3.96E−04 1.58E−03 1.18E−02 −1.92E−05 1.92E−05 1.58E−03 5.69E−03 4.01E−02 2.59E−04 −2.59E−04
PDHM 2.65E−04 1.01E−03 1.05E−02 −2.78E−08 1.11E−07 9.43E−04 3.47E−03 3.40E−02 0.00E+00 0.00E+00
PRM 2.38E−04 1.02E−03 1.02E−02 −9.36E−06 9.44E−06 1.08E−03 4.15E−03 3.16E−02 2.06E−04 −1.68E−04
P−PPM 3.95E−04 1.57E−03 1.17E−02 −1.88E−05 1.88E−05 1.57E−03 5.67E−03 4.00E−02 2.56E−04 −2.56E−04
WENO23 2.96E−04 1.11E−03 1.02E−02 8.55E−06 −8.55E−06 1.04E−03 3.86E−03 3.21E−02 1.01E−04 −1.01E−04
WENO35 6.81E−05 3.08E−04 4.46E−03 0.00E+00 0.00E+00 4.17E−04 1.85E−03 2.93E−02 0.00E+00 0.00E+00
M−PPM 9.12E−05 4.17E−04 7.36E−03 0.00E+00 0.00E+00 5.25E−04 2.19E−03 2.70E−02 1.02E−04 −1.02E−04

Table V. Run times in seconds and percent deviation from PPM run time for the vortex test case interpolating from a 1/3◦ grid
to a 1/2.5◦ grid.

Method PPM PHM PDHM PRM P-PPM M-PPM WENO23 WENO35

Runtime (sec) 2.528 2.446 2.691 2.169 1.961 2.713 2.401 3.504
% deviation from PPM – −3.2% +6.4% −14.2% −22.4% +7.3% −5.0% +38.6%

5. Conclusions

An intercomparison of various subgrid-scale functional
approximations has been performed in the context of con-
servative cascade interpolation on a latitude–longitude
grid. Eight sets of test cases have been performed,
interpolating four data profiles both from a T 42 grid to a
2◦ grid and from a 2◦ grid to a T 42 grid to measure the
accuracy and oscillation properties of the functions. For
all test cases, PDHM generally gives the best accuracy of
the three-cell stencil methods. It seems unlikely that the
economy of P-PPM would outweigh its comparative lack
of accuracy compared with PDHM. WENO35 gives the
best accuracy of the five-cell stencil methods, but requires
the most computation. M-PPM seems to be a good alter-
native to WNEO35 with a large decrease in computational
burden and a small relative decrease in accuracy.

Caution should be taken when using a non-oscillatory
method, which is not strictly monotonic, to ensure that the
orders of magnitude of monotonicity and positivity viola-
tion reported herein (of order 1%) are within acceptable
bounds. A post-processing positive-definite filter may be
employed to ensure that no negative values are pro-
duced in the interpolation for positive species. Note also
that tunable parameters of the the non-oscillatory recon-
structions M-PPM, WENO23, WENO35, PDHM, PHM
and P-PPM may be tweaked for a particularly sensitive
application until the oscillations are satisfactorily con-
trolled for representative data. All subgrid reconstructions

in this study could be implemented in any conserva-
tive remapping algorithm employing 1-D sweeps, such as
the conservative cascading implemented in cubed sphere
geometry (Lauritzen and Nair, 2008).
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Appendix A

Here, the WENO23 method will be updated from the one
defined in Kurganov and Levy (2000) for a non-uniform
grid spacing. We define cell Ii to have grid spacing
�xi defined within

[
xi−1/2, xi+1/2

]
with geometric cen-

tre xi , cell mean ūi . Following the notation of Kurganov
and Levy (2000), we here define the three polynomials
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Pi,L (x), Pi,R (x) and Pi,EXACT (x) for an arbitrary cell of
index i. Recall that Pi,C (x) is defined purely as a function
of Pi,L, Pi,R and Pi,EXACT. In a point-wise framework,
polynomial reconstruction must match point values, but
in the finite-volume framework, cell means must be repli-
cated, requiring use of the polynomial’s primitive. The
primitive reconstruction principle of Harten et al. (1987),
which is consistent with the finite volume formulation,
gives the following three relations to constrain the coef-
ficients of
Pi,EXACT (x) = si,0 + si,1 (x − xi) + si,2 (x − xi)

2:

xi−�xi/2∫
xi−�xi/2−�xi−1

Pi,EXACT (x) dx = ūi−1�xi−1,

xi+�xi/2∫
xi−�xi/2

Pi,EXACT (x) dx = ūi�xi,

xi+�xi/2+�xi+1∫
xi+�xi/2

Pi,EXACT (x) dx = ūi+1�xi+1

Integration yields a system of equations of the form A s =
u, where s = [

si,0, si,1, si,2
]�

and u = [
ūi−1, ūi , ūi+1

]�
.

Therefore, the coefficient vector, c, is given by s = A−1u.
The matrix A is given by

A = 1

2
 2 −�xi − �xi−1

1
2�x2

i + �xi�xi−1 + 2
3�x2

i−1
2 0 1

6�x2
i

2 �xi + �xi+1
1
2�x2

i + �xi�xi+1 + 2
3�x2

i+1


 .

In practice, this matrix inverse is precomputed and
a matrix–vector multiply renders the coefficients dur-
ing run time. The linear polynomials Pi,L (x) = li,0 +
li,1 (x − xi) and Pi,R (x) = ri,0 + ri,1 (x − xi) are defined
similarly but are simple enough to solve without a
linear system. The coefficients are as follows: li,0 =
ri,0 = ūi , li,1 = 2 (ūi − ūi−1) / (�xi + �xi−1) and ri,1 =
2 (ūi+1 − ūi) / (�xi + �xi+1).

The smoothness indicators must also be re-derived
to account for non-uniform grid spacing, though the
functional form is quite similar to that given in Kurganov
and Levy (2000). They are as follows (using the same
notation):

ISi,L = l2
i,1�x2

i ,

ISi,R = r2
i,1�x2

i ,

ISi,C = c2
i,1�x2

i + 13

3
c2
i,2�x4

i ,

where ci,0, ci,1 and ci,2 are coefficients of Pi,C (x).

Appendix B

Here, we describe the process of creating the polynomial
used to obtain interface values for M-PPM in step 2 of

the summary. We have a five-cell stencil, Ii−2, . . . , Ii+2,
centred on cell i. First, we calculate jump severity
indicators, SL and SR, centred on cells Ii−1 and Ii+1
(respectively), using Equation (2). These will detect
discontinuities on either cell boundary of cells Ii−1 and
Ii+1. If SL ≥ S∗, this indicates that there is a sufficiently
severe discontinuity on either the left boundary (arising
from cell Ii−2) or the right boundary (arising from cell
Ii). If the discontinuity is on the left boundary, equation
(3) does not take cell Ii−2 into account, and thus the
oscillation is not controlled. The same arguments apply
for SR.

If both SL < S∗ and SR < S∗, then we compute a
centred, fifth-order accurate, five-cell stencil polynomial
on cells Ii−2 . . . Ii+2, which is identical to ũopt (x) of
Capdeville (2008). If SL ≥ S∗, then we neglect cell Ii−2
to get rid of the potential discontinuity, computing a right-
biased, fourth-order accurate, four-cell stencil polyno-
mial, Pi,R4 (x), from cells Ii−1 . . . Ii+2. Likewise, if SR ≥
S∗, we neglect cell Ii+2, computing a left-biased, fourth-
order accurate, four-cell stencil polynomial, Pi,L4 (x),
from cells Ii−2 . . . Ii+1. If both SL ≥ S∗ and SR ≥ S∗, a
centred, third-order accurate, three-cell stencil polynomial
(identical to Pi,EXACT (x) from Appendix A) is computed
using cell Ii−1 . . . Ii+1. We use the primitive reconstruc-
tion principle of Harten et al. (1987) to constrain the
polynomial coefficients on the fourth-order accurate poly-
nomials as follows.

xi−�xi/2−�xi−1∫
xi−�xi/2−�xi−1−�xi−2

Pi,L4 (x) dx = ūi−2�xi−2,

xi−�xi/2∫
xi−�xi/2−�xi−1

Pi,L4 (x) dx = ūi−1�xi−1,

xi+�xi/2∫
xi−�xi/2

Pi,L4 (x) dx = ūi�xi,

xi+�xi/2+�xi+1∫
xi+�xi/2

Pi,L4 (x) dx = ūi+1�xi+1,

xi−�xi/2∫
xi−�xi/2−�xi−1

Pi,R4 (x) dx = ūi−1�xi−1,

xi+�xi/2∫
xi−�xi/2

Pi,R4 (x) dx = ūi�xi,

xi+�xi/2+�xi+1∫
xi+�xi/2

Pi,R4 (x) dx = ūi+1�xi+1,

xi+�xi/2+�xi+1+�xi+2∫
xi+�xi/2+�xi+1

Pi,R4 (x) dx = ūi+2�xi+2.
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These constraints form a linear system just as in
Appendix A. However, the matrix is too large to give
explicitly here. In practice, this matrix is inverted analyt-
ically for accuracy purposes using a program capable of
symbolic algebraic manipulation, and it is precomputed
so that a matrix–vector multiply renders the polynomial.
As can be seen, the polynomial that renders the interface
values for M-PPM will be from third-order to fifth-order
accurate. Because classical PPM is formally fourth-order
accurate when integrated and applied to smooth data
and a uniform mesh, it makes sense to try to keep the
interface values to fourth-order accuracy or more. We
note that the case where the interface values are lim-
ited to third-order accuracy, which is necessary to ensure
bounded oscillations, does not occur often in any of our
test cases.
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