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trajectories and undergoes severe deformation during the simulation; however, the flow
reverses its course at half-time and the scalar field returns to its initial position and shape.
This process makes the exact solution available at the end of the simulation, and facilitates
assessment of the accuracy of the underlying transport scheme. A procedure to eliminate
possible cancellations of errors when the flow reverses is proposed.

The test suite consists of four cases. Three are based on non-divergent flow fields and one
on a divergent flow. The initial conditions are prescribed in terms of regular latitude-lon-
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Divergent flow gitude spherical coordinates and are easy to implement. The divergent flow is specifically
Deformational flow aimed for conservative global transport schemes to test for conservation, consistency and
Discontinuous Galerkin monotonicity (or positivity) of limiters/filters in a challenging flow environment. In the
Semi-Lagrangian context of semi-Lagrangian schemes, the time-varying flow fields can be used to test tra-

jectory algorithms where the exact trajectories do not follow great-circle arcs. The charac-
teristics of the test cases are demonstrated with two different transport schemes.
© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Transport' processes are of paramount importance in atmospheric numerical modeling. Transport schemes are considered
to be the basic building block of complex models. In recent years, there have been numerous efforts to develop global models
based on non-conventional spherical geometry (e.g., icosahedral [1,2], cubed-sphere [3], Yin-Yang grid [4]) and advanced
numerical methods (e.g., high-order finite-volume methods [5-7], continuous [8] and discontinuous Galerkin methods
[9,10], radial basis functions [11,12]). Adaptive mesh refinement techniques are also gaining prominence in global modeling
[13-15]. To validate and verify the numerical algorithms necessitates further development of challenging benchmark test cases.
For example, recently Lauritzen et al. [16] extended the 3D idealized test case proposed by Jablonowski and Williamson [17] and
found it to be useful for validating a wide range of hydrostatic atmospheric global models.

Two standard testing methods for transport schemes are the solid-body rotation and deformational flow tests. William-
son et al. [18] standardized a suite of tests for global shallow water models, including an transport problem on the sphere.
They proposed the solid-body rotation of a cosine bell along a great-circle trajectory, which is perhaps the most widely used
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benchmark transport test on the sphere. Recently, Nair and Jablonowski [19] extended the static deformational flow (vortex)
problem proposed by Nair and Machenhauer [20] to the “moving vortex” problem, where the vortex evolves as its center
traverses along a predetermined trajectory. In both cases the evolution of the transported fields are governed by great-circle
trajectories (analogous to straight lines on a Cartesian plane), facilitating easy determination of analytic solutions. While the
choice of great-circle trajectories is helpful for creating idealized test cases with known analytic solutions, this may lead to
test cases which are less challenging.

Two popular deformational tests in Cartesian geometry with known analytic solutions are the “Smolarkiewicz’s test” [21]
and idealized cyclogenesis (also referred to as the “Doswell vortex” [22]). Staniforth et al. [23] provided the exact solution for
Smolarkiewicz’s test in terms of elliptic integrals. In both cases the non-divergent deforming field (with time-independent
winds) is centered at the domain’s center and symmetric with respect to an axis. For the Leveque deformational test [24]
flow trajectories are much more complex. Generally, closed-form analytic solutions for the flow problems with complex tra-
jectories are unavailable. Even if the solutions exist, they may be computationally intractable. The test [24] falls under this
category. The analytic solution is only available at the end of the simulation and not at intermediate times.

Here we propose a class of deformational flow tests on the sphere following the ideas developed by Leveque [24] for a
deformational test in Cartesian geometry. The initial distributions undergo severe deformation for a prescribed time, how-
ever, the flow reverses its course after the half-time and the deformed fields return to their initial states (“boomerang
effect”). The trajectories of the flows are non-trivial (not along circles or straight lines) and the deformations are severe,
thereby making the tests very challenging. The potential cancellation of errors due to the flow-reversal is eliminated by add-
ing a non-divergent background flow. Contrary to the moving vortex flow fields, which has a point singularity at the center of
the vortex, the wind fields in the proposed test cases are smooth and hence suitable for convergence studies. As far as we are
aware there are no stand-alone divergent test cases on the sphere, and one of the proposed test cases precisely addresses
that issue.

The remainder of the paper is organized as follows. Section 2 outlines deformational problem, with a brief review of the
Cartesian version of the problem. Section 3 provides the details of the deformational problem on the sphere including the
initial conditions. Numerical experiments and results are discussed in Section 4, followed by the conclusions.

2. Deformational flow problem
2.1. Transport equations

In the absence of sources and/or sinks, the Eulerian form of the mass continuity equation and tracer conservation equa-
tion can be written as follows:

op _
S+ V- (pv) =0, (1)
%09 19 (pgv) =0, )

respectively, where p is the fluid density and V is the flow velocity vector, ¢ is the tracer concentration (or mixing ratio) per
unit mass so that p¢ may be interpreted as the tracer density [25]. We are particularly interested in the transport problem on
the surface of a sphere &, thus, V is the 2D horizontal wind vector and ‘V -’ is the divergence operator defined on . The
formulations (1) and (2) are rigorously based on conservation laws (where the quantities that are conserved are p and
p¢), and are often referred to as the flux or divergence form of the transport equation.

Eliminating p from (1) and (2) results in the following equation:

0

0—?+V~(V¢):¢V~V. 3)
We will refer to (3) as the forced transport equation for ¢. Eq. (3) can also be written in advective form,

9¢ _Dg¢ _

E+V-V¢:Dt_0, (4)
where D/Dt corresponds to the Lagrangian (total) derivative given by

D o

Di= o +V-V. (5)

Eq. (4) states that ¢ is preserved along Lagrangian parcel trajectories (characteristics of the flow). In the case of a non-diver-
gent flow field, V - V=0, (3) reduces to the flux-form transport equation for ¢,

0P _
E#’V-((ﬁ")—& (6)

(same functional form as (1) and (2)).
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Note that if the flow is non-divergent and the initial condition for density is a constant p(t = 0) = po, then the analytical
solution to (1) is trivial because the initial condition is preserved at all times, p(t) = po. In such cases, the coupled system (1)
and (2) reduces to (6) which has the same functional form (flux-form) as (2). Hence, for non-divergent flows and assuming
p(t) = po, the transport scheme developer does not need to distinguish between tracer density p¢ and mixing ratio ¢ as they
are interchangeable (at least in the continuous case). This is the configuration implicitly assumed in most (if not all) idealized
transport test cases on the sphere that have been proposed in the meteorological literature.

We also note that if the mass continuity Eq. (1) and tracer Eq. (2) are solved in flux-form, then (2) trivially reduces to (1)
when ¢ = 1. This should ideally also be the case in the numerical implementation of transport schemes and is referred to as
the mass-wind consistency in meteorological literature (e.g., [26,27]).

Conservative Eulerian transport schemes rely on the flux-form formulation, while non-conservative transport schemes
usually employ the advective form (4). However, for conservative semi-Lagrangian transport the integral form of the conser-
vation laws are used [28,27].

2.2. Deformational problem in Cartesian geometry

In this study the main focus is the deformational flow on the sphere, nevertheless, we briefly review the original Cartesian
formulation of the problem discussed in [24]. For the deformational flow field the time dependent velocity vector is defined
as follows:

V(X7y7 t) = V(x73/)§0(t)7

where ¢(t) is the time-dependent function and its magnitude monotonically decreases and reaches zero at half-time and
then increases with a sign change, resulting in a reversal of the flow field V. Leveque [24] diligently choose ¢(t) = cos(mnt/
T), where T is the final time of the evolution (integration) such that 0 < t < T. As discussed in [23], there is a limiting time
beyond which it is no longer possible to represent all the spatial scales because the length scale of the exact solution dimin-
ishes as a function of time. Thus, the choice of T for deformational flow should be meaningful in such a way that length scales
should be adequately resolvable.

In Cartesian geometry, the components of velocity (u, ») may be specified as follows:

u(x,y, t) = sin’*(mx) sin(2my) cos(mt/T), (7)
v(x,y,t) = —sin®(y) sin(27x) cos(mt/T), (8)
where 0 < x,y < 1, and the final time T = 5 units [29]. At the initial time let u(x,y,t = 0) = ug(x,y) and ¢(x,y,t = 0) = 1p(x,y), then
the stream function is
1 . 2 .2
V= o sin”(7tx) sin” (7y), 9)

such that 9y/0x = vo(x,y) and o[y = —ug(x,y). Clearly the flow fields defined by (7) and (8) are non-divergent (V - v = du/
0x + 9v[dy = 0). The trajectories which follow the fluid motion are given by a coupled system of ordinary differential equa-
tions (kinematic equations):

&y, (10)
dy
Y vy, (11)

The initial values for the transported scalar field ¢ in (4) or (6) may be a quasi-smooth function in a unit square domain.
Durran [29] employs a cosine bell as the initial distribution for ¢ and is defined as follows:

$(x,y) = %[1 +cos(nR)], R =min{1,4[x—1/4) + (y—1/4°]"*}.

The extreme deformation for ¢ during the evolution occurs at t = T/2, and ¢ recovers its initial values at t = T. When t = T/2
the initial circular pattern of the cosine bell deforms to a narrow stretched band as shown in [29].

Discrete numerical schemes representing transport Eqs. (4) and (6) can be validated by using the above initial conditions.
Also, this provides a challenging test case for experimenting with monotonic and positivity preserving limiters/filters in
transport schemes [30]. Note that the Eulerian transport schemes rely on time-dependent wind fields (7) and (8), while
semi-Lagrangian (SL) schemes based on the discretization of D¢/Dt =0 in (4) require explicit knowledge of the trajectories
(10) and (11). A detailed discussion of conservative SL methods can be found in [31,27]. As noted in [32], a potential weak-
ness of this test is that the phase errors for each Fourier mode could partially cancel when the flow reverses. Nevertheless,
the cancellation of errors can be avoided by choosing a different flow path (trajectory) when the flow returns after the half-
time. We provide a simple procedure to address this issue in the next section.
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The unavailability of an exact solution is not a serious drawback because by design the final solution ¢(t = T) is known and
is identical to the initial condition ¢(t = 0). The accuracy of the underlying transport schemes can be validated by computing
standard error norms and mass errors at the final step of the integration (t=T).

3. Specification of the problem in spherical geometry

We provide four sets of velocity fields V(/,0,t) on the sphere with longitude / and latitude 0 such that 0 < A1 < 2w and -7/
2 < 0 < m/2. For simplicity, we assume that the radius R of the sphere is one. The velocity fields are prescribed for both diver-
gent and non-divergent flows, mimicking different flow situations found in practical applications. For the proposed tests, the
duration of integration is T=5 units and we assume a constant initial density field p(t = 0) = 1. The spatial distributions for
the tracer mixing ratio (or concentration) ¢ at t= 0 are given below.

3.1. Initial scalar fields ¢

We use three different initial conditions. First of all one based on the quasi-smooth cosine-bell pattern (a C! function) that
is widely used for the solid-body rotation test [18]. Second, one based on smooth Gaussian profiles (C*°) which may be used
for convergence studies (in particular when using high-order schemes?) under challenging flow environments. The quasi-
smooth profiles may be used for checking monotonicity (non-oscillatory property), however, we also use a more challenging
pattern based on a slotted-cylinder distribution (a discontinuous function). In order to take advantage of the symmetry of the
flow on the spherical domain ¢, two identical scalar distributions (patterns) are created at selected points. This could help
debugging (or testing for errors) numerical schemes and/or spherical grid-systems by checking for symmetry in the flow fields
and the distributions. The deforming profiles are expected to keep the symmetry during the entire evolution cycle.

3.1.1. Quasi-smooth scalar field
Two symmetrically located cosine bells are defined as follows,

hi(2,0) = hr;ax [1 4 cos(mri/r)] if ri <, (12)

where h.x =1, r=1/2 is the base radius of the bells, r; = r,(4,0) is the great-circle distance between (4,6) and a specified cen-
ter (4; 0;) of the cosine bell, which is given by

1i(4,0) = arccos[sin 0; sin 0 + cos 0; cos 0 cos(A — 2;)].

The initial condition ¢ consists of a background value b and two cosine bells with centers (14,01) and (2, 0,), respectively,
generated using (12)

b+chi(2,0) ifr<r,
¢(4,0) = b+chy(2,0) ifry<r, (13)
b otherwise,

where the parameters are b = 0.1 and ¢ = 0.9 such that the values of ¢ € [0.1,1.0]. This choice allows the background value b
of ¢ to be non-zero. In general, a non-zero background field is more challenging for the transport scheme. However, for the
positivity test zero background values are more suitable and it can be easily set by choosing b =0 and c=1 in (13) such that
¢ €10,1]. Also, for the non-divergent test cases using a non-zero constant distribution (e.g., b = 1, ¢ = 0) is a non-trivial test to
assess a transport scheme’s ability to preserve a constant ¢-field throughout the simulation. The scheme’s ability to preserve
a constant density field p could be tested the same way.

3.1.2. Smooth scalar field
Smooth 2D Gaussian surfaces can be defined on & using the following relation:

hi(7,0) = Rmax €XP {—bo[(x X (Y -Y)P (2 z,-)z]}, (14)

where hy,ax = 1 is the height of the Gaussian hill and bg = 5 defines the width [34]. (X,Y,Z) are the 3D absolute Cartesian coor-
dinates corresponding to the spherical (4,0) coordinates and are related through

(X,Y,Z) = (RcosOcos 1, Rcos 0sin 4, Rsin0), (15)
where radius R =1 (unit sphere). The center of the Gaussian distribution (X;,Y;,Z;) can be specified in terms of (4;,0;) using
(15). This field is infinitely smooth (C>).

2 As an example, [33] found sub-optimal numerical convergence rates for the solid-body transport problem when using the C! cosine bell initial condition;
with their C3-version of the cosine bell higher-order numerical convergence rates were indeed observed.
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As in the case of the cosine bells, we create two Gaussian hills for the initial scalar distribution ¢ as the sum of two fields
h; and h; using (14),

$(2,0) = hy(1,0) + hy (2, 0). (16)

3.1.3. Non-smooth scalar field

To test for monotonicity (or non-oscillatoriness), a non-smooth initial scalar distribution may be used. The slotted-cylinder
transport problem on the Cartesian plane [35] provides an excellent test case for monotonicity preservation and can easily be
adopted for spherical geometry applications [36]. For the non-smooth case, the double cosine-bells (13) are replaced by slot-
ted-cylinders defined as follows:
ifri<rand |1—/) >r/6fori=1,2,
if y<rand|2-/i|<r/6and 0—0; < -3,
if r<rand|2—/z|<r/6and 0—0, >3,
otherwise,

o(4,0) = (17)

ot 0o 0

where ¢ =1 and b = 0.1. Note that the slots are oriented in opposite directions for the two cylinders so that they are symmet-
ric with respect to the flow.

3.2. Initial wind fields

The test cases are controlled by the parameters k, the amplitude of the flow fields, and the centers of the initial distribu-
tions (/;0;), where i =1, 2. The values for k and (4; 6;) are particularly chosen to make the test cases challenging. The com-
ponents of the velocity vector V(/,0,t) (and stream functions for the non-divergent cases) and the initial positions of the

distributions, (2;,0;) with i=1, 2, are defined below.

3.2.1. Non-divergent flows

e Case-1:
u(;,0,t) = ksin®(2/2) sin(20) cos(nt/T), (18)
v(1,0,t) :g sin(4) cos(0) cos(mt/T), (19)
W(2,0,t) = ksin®(1/2) cos?(0) cos(mt/T), (20)

where / is the stream function

o

U=-—2; (21)
1 oy
~cos0 95" (22)

The flow parameter k is set to 2.4. Initially, the centers of the distributions (cosine bells, slotted cylinders or Gaussian hills)
are kept at (11,601) = (7, /3) and (4, 02) = (7, —7/3), respectively. Initial wind fields and Cosine bell distributions are shown in
Fig. 1a and b, respectively.

e Case-2:
u(s,0,t) = ksin?(2) sin(26) cos(mt/T), (23)
v(4,0,t) = ksin(24) cos(0) cos(mt/T), (24)
W(2,0,t) = ksin®() cos?(0) cos(mt/T), (25)

where the parameter k = 2. Initial positions of the centers of the distributions are at (11,0;) =(57/6,0) and (2,,0,) = (77/6,0),
respectively. For Case-2, Fig. 2a and b show the wind fields as well as the initial distribution (in this case cosine-bell)
positions.

The above flow fields defined by Eq.(18) and (19) and (23) and (24) are non-divergent because
1 {8u d(vcos 0)} _0

v'V:cose

04 00

3.2.2. Divergent flow
This wind field is proposed, in particular, for conservative transport schemes which are supposed to preserve total mass
even in divergent flows on a closed domain such as the sphere. It also provides a challenging flow-environment to test
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Deformational Flow (DG3): Case-1, CB
(a) Initial Non-Divergent Wind (b) Initial Fields (t=0)

n/2 .........f.........f.........! /2

/4 Fy-f-A

/4 3 VAN

T
o m/2 ” 3m/2 on 0 m/2 ” 3m/2 on

d) Final Fields (t=T)

01 02 03 04 05 06 07 08 09 1

Fig. 1. The non-divergent deformational flow test case 1 at an approximate resolution of 1.5° along the equator. (a) Initial wind field and (b) initial scalar
fields ¢(t = 0) (cosine-bells with centers at (7, /3) and (7, — 7/3), respectively). (c) Numerical solution for p¢ at time t = T/2 units computed with a third-
order DG transport scheme. (d) Numerical solution for p¢ at t = T when the cosine-bell patterns return back to their initial positions.

limiters/filters under divergent flow conditions. Most global idealized transport test cases in the literature ‘only’ consider
non-divergent flows.

e Case-3:
u(7,0,t) = —ksin?(i/2) sin(20) cos?(6) cos(nt/T), (26)
v(2,0,t) = k sin(%) cos?(6) cos(mt/T), (27)

2

where k = 1, and the centers of the distributions are at (41,01) = (37/4,0) and (/3,0,) = (57/4,0), respectively. The initial diver-
gent wind and initial positions of the distributions (cosine bells) are shown in Fig. 3a and b, respectively.

All the flow fields defined above do not have cross-polar flow. For transport schemes developed on the regular latitude-
longitude sphere, the cross-polar transport is a major challenge. However, the above-defined wind fields can be prescribed in
rotated spherical coordinates (//,0’) with respect to regular (4,0)-system, so that the flow can be oriented in any desired
direction [19] and the transport scheme in question can be tested.

3.2.3. Zonal background flow

As mentioned earlier, there is a possibility of cancellations of errors due to reversal of the flow along the same trajectories
(flow path) after the half-time T/2. This can be avoided by introducing different trajectories after time T/2. A zonal non-diver-
gent background flow (as used for the solid-body rotation case [18]) will precisely address this issue without affecting the
structure of the deformations [19]. The zonal wind will translate the deforming fields as a whole along the zonal direction
which effectively introduces new trajectories after the flow reversal at time T/2. In practice, this can be done by prescribing
the deformational velocity fields V(/,0,t) in rotated coordinates (/,0') with respect to the regular (4,0) coordinates. Rotation
is time dependent and may be synchronized with the new zonal solid-body velocity component u’(6) which should be added
to V.

The rotated system is defined as

d’

A/O/Zﬂ_ 't 0): "
(#,0) = (- w't,0); o =,

(28)
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Deformational Flow (DG3): Case-2, CB

(a) Initial Non-Divergent Wind (b) Initial Fields (t=0)
L s S S A S S R A : : ;

/4 447 Yy

S PR

0 /2 L 3n/2 om

(d) Final Fields (t=T)

01 02 03 04 05 06 07 08 09 1

Fig. 2. Same as in Fig. 1 but for a different non-divergent deformational flow field (Case-2).

where @' is the angular velocity associated with the rotation along the zonal direction (i.e., with respect to the north-south
axis of the (4,0) system). The value of ' may be chosen as w' = 27/T, so that a complete revolution is made at time t = T. This
is also the total time used for the deformational flow itself. The zonal solid-body velocity is chosen to be u/(0) = w'cos 0. In
brief, the resultant (effective) velocity fields (u, 2.) due to the solid-body zonal velocity and deformational velocity can be
written as follows:

Ue(2,0,8) = (X, 0,t) + u'(0), (29)
ve(2,0,t) = (7, 0,1). (30)

The effective velocity fields (u,, 7.) corresponding to the deformational flows (Case 1-3) can be easily derived using (29) and
(30).

For example, we combine the solid-body velocity with the deformational velocity used in Case-2 to form an effective
velocity. The initial positions of the distributions (cosine-bells, Gaussian hills or slotted cylinders) and other parameters
are exactly as given in Case-2. This case is referred to as “Case-4".

e Case-4:
Ue (7, 0,t) = ksin?(%) sin(20) cos(nt/T) + 27 cos(0)/T, (31)
ve(4,0,t) = ksin(24') cos(0) cos(mt/T), (32)
W(2,0,t) = ksin®(2') cos?(0) cos(mt /T) — 2msin(0)/T, (33)

where /' =/ — 27t/T (see Fig. 4(a-b)).

Note that for the Cases 1-4, the wind field and initial scalar distributions are defined in non-dimensional units. This
choice is for broader application of the test cases across different disciplines where the transport problem on a sphere is
important. However, it is possible to adapt the problem for a particular application by choosing meaningful scaling factors
(dimensional units). In atmospheric modeling, for example, the radius of the sphere R would be the mean radius of the earth.
Based on that a suitable length scale can be introduced. The time scale may be changed to T =12 days for a complete revo-
lution around the earth [18]. The parameter k may be redefined to have dimensional units as used in [19]. For an example of
an ‘atmospheric’ scaling of test case 2 see [33].
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Deformational Flow (DG3): Case-3, CB
(a) Initial Divergent Wind (b) Initial Fields (t=0)
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(d) Final Fields (t=T)
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Fig. 3. Same as Fig. 1 but for the divergent deformational flow field (Case-3).

3.3. Approximate trajectories for semi-Lagrangian transport

Semi-Lagrangian transport schemes require upstream trajectory information (or the departure point positions) at every
time step, which can be obtained by solving the ordinary differential equations (10) and (11). In practical applications such
as global atmospheric models usually second-order accurate (¢[(At)?]) numerical trajectories are computed using an itera-
tive algorithm as the one given in [37]. Standard Runga-Kutta methods can, of course, also be used (e.g., [38]). Since the ana-
lytical velocity fields are known for the test cases considered herein, an alternative high-order option based on Taylor series
expansions is available [36], that is, the upstream position of X, at the departure time t — At is given by,

2 2
X4 = X(t — At) = Xx(t) — At %x(t) + (Azt!) %x(t) - (34)
where the wind vector is V = dx(t)/dt.

As an example we consider the Case-1 non-divergent wind (i.e., Eqs. (18) and (19)), for which the upstream position
(44, 04) can be easily determined. From (18) and (19),

a._ u . ;
G~ cosi 2k sin”(4/2) sin(0) cos(wt),
ao

k .
ai- v=>5 sin(4) cos(0) cos(wt),
where o = n/T. By using (34) and the above relations, an @[(At)*] accurate approximation can be derived for i(t — At) and
ot — At):

Jg = At — At) ~ 7 — Atii — (At)® ksin <%) {sin (%) sin (0) sin(wt)w — u sin(6) cos(wt) cos G)
— vsin @) cos(6) cos(a)t)}, (35)
0g=0(t—At)~0— Atv — % k{sin(1) cos(0) sin(w t)w — u cos(4) cos(h) cos(wt) + vsin(2) sin(h) cos(wt)},  (36)

where
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Fig. 4. Same as in Fig. 2 but with a zonal background flow.

A2 u(z,0.t)
dt — cos(0)

and the velocity components u and v are given in (18) and (19), respectively. All terms on the right-hand side of (35) and (36)
are evaluated at the arrival point (A(t),0(t)) at time t.

For all the remaining Cases (2-4), the third-order accurate upstream trajectory origins (departure points) (/4,04) can be
derived similarly:

u = 2ksin*(2/2) sin(0) cos(nt/T) (37)

e For Case-2:

Jg = Mt — At) ~ 2 — Atil — (At)* k sin(2){sin(%) sin(w t)w sin(0) — 2t cos(wt) cos(4) sin(0) — v'sin(2) cos(wt) cos(0)}
(38)

04 = 0(t — At) ~ 0 — At v — (At)? k{cos(()) sin(wt)o sin(4) cos(2) — 211 cos(0) cos(wt)(cos(4))?

+ U1 cos(0) cos(wt) + vsin(0) cos(wt) sin(4) cos(4)}. (39)

e For Case-3:

Jqg = At — At) ~ 1 — Atil + (At)? sin (%) k cos(0) {sin <§) sin(wt)w cos(0) sin(0) — u cos(wt) cos(0) cos (%) sin(0)

—3wsin (%) cos (wt)(cos())* + 2 vsin (%) cos(w t)} (40)
04 = 0(t — At)
~0—Atv— (A k(cos(6))*{sin(2) cos(#) sin(wt)mw — ii cos(%) cos(f) cos(wt) + 3 vsin(4) cos(wt) sin(6)}. (41)

4
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e For Case-4:

Ja = At — At)
~ A= Atil' — (A’ k sin(X){sin(X') sin(wt)w sin(0) — 2 cos(wt) cos(X') sin(0) — v/ sin() cos(wt) cos(0)},  (42)

04 = 0(t — At) ~ 0 — At ¥/ — (At)? k{cos(@) sin(@t)w sin(A') cos(X') — 21" cos(0) cos(wt)(cos(4'))?

+ U’ cos(0) cos(wt) + ¢/ sin(0) cos(ewt) sin(1') cos(4')}, (43)
where
~,_ue(i,0,t)7 D e ,
= cos(®) 2ksin” (/') sin(0) cos(mt/T) + w (44)
and
v = ksin(2%') cos(6) cos(mt/T). (45)

Note that there are no singular points for u or »vin any of the Taylor series expansions for any of the test cases. As a result,
the departure point position is “well behaved” near the poles. The Taylor series approach outlined above assumes upstream
trajectories. However, it may easily be modified for downstream trajectories.

3.4. Accurate trajectory computation

Higher-order trajectories can be computed by including more terms in the Taylor series expansions at the cost that the
expressions for the departure points get longer and more cumbersome to code as the order is increased. Alternatively, more
accurate trajectories can be obtained by splitting the trajectory into segments where each segment is computed using the
Taylor series expansion method. This can be easier to code than introducing more terms in the Taylor series expansion.
In this case, the trajectory is split into m segments, and each segment corresponds to a displacement during the fractional
time step At = At/m. The m trajectory segments are given by:

Xo = X(t),
_ AT) — A @ (A1)? d°
X; =X(t - T)—xo—(f)aXO'l' a0 Fxo—”',
d AT)? d?
X; =X(t —2A7) =%y —(Ar)axl +( 2') e — ...
_ B d (AT)? d°
Xm = X(t — At) = Xm_1 — (AT) &xm,l + 3 ?an — (46)

where X(t) = (A(t),0(t)). The last segment (46) leads to the departure point X4 = X, = X(t — At).

For example, the trajectories for Case-1 are computed as follows. The algorithm is initialized with the arrival point
Xo = X(t) = (A(t),0(t)). Then, the first segment is computed exactly as explained in the previous Section using the Taylor series
method, i.e. by evaluating (35) and (36) at xq but replacing At with the fractional time-step Az. This yields the intermediate
departure point X;. The next segment is computed, again, with the Taylor series approach (Eq. (35) and (36)) but the terms in
the Taylor series are evaluated at the intermediate departure point X, at time t — At (again replacing At with At in the Tay-
lor series expansions). This leads to the second intermediate departure point x,. The third segment is computed by evaluat-
ing the terms in the Taylor series expansion at the previous intermediate departure point X, at t — 2Az. This leads to the
second intermediate departure point X,. This process is repeated m times. Fig. 5 schematically depicts the trajectory seg-
ments for m = 3, connecting the departure point x(t — At) and the arrival point x(t).

4. Numerical experiments

We demonstrate numerical simulations with the four deformational tests (Cases 1-4) that were defined in the previous
section. The two transport schemes employed are based on a discontinuous Galerkin (DG) method and a conservative SL
method, respectively. Both schemes use the cubed-sphere spherical domain [39,3]. The choice for the spherical grid system
(domain) and transport schemes is quite arbitrary, and any spherical transport scheme could be used for the demonstration.
The reason for using two transport schemes is to illustrate the test cases for both ‘Lagrangian-type’ schemes, that require the
approximation of parcel trajectories, and ‘Eulerian-type’ transport schemes. It is not the scope of this paper to compare the
specific DG and SL transport schemes. Before discussing the simulations we briefly describe the DG and SL transport schemes
used herein.
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Fig. 5. A schematic showing the trajectory computation where the trajectory over At is split into m = 3 sub-trajectories that each cover a fractional time
step of At = At/m (solid arrows). Each trajectory-segment is computed with the Taylor series expansion approach. The arrival point is x(t) (filled circle), the
departure point is X(t — At) (unfilled circle) and the intermediate trajectory points are X(t — At) and x(t — 2At) (small filled circles). The exact trajectory
and departure point are shown with dashed arrow and circle, respectively.

4.1. The DG transport scheme

Specific details of the third-order DG scheme (DG3) considered here are discussed in Appendix A. The time integration is
based on a third-order Runge-Kutta Method, and the DG scheme does not use any limiters or filters. The DG scheme is based
on the transport Eq. (2). In addition, we also show solutions to the divergent test case 3 using the forced transport Eq. (3).
When using the latter configuration we refer to the simulation as ‘Case-3 (Div-free)’. Using (2) for the DG scheme without
solving for fluid density implicitly assumes p is everywhere unity at the end of the simulation p(t=0)=p(t=T)=1.

There are 6N? elements on the cubed-sphere which span the entire spherical surface, where N, is the number of elements
in each coordinate direction on a cube face. The equivalent resolution of the cubed-sphere with respect to the regular lati-
tude-longitude sphere at the equator may be approximated as 90°/(N.x(Ng — 1)), where N, is the number of Gauss-Lob-
atto-Legendre (GLL) quadrature points used in any coordinate direction of the element. For the DG3 scheme, N, =4 and
the approximate equivalent resolution is 30°/N, (see Appendix A). In all simulations shown here with the DG transport
scheme, 2400 cubed-sphere elements (N, = 20) are used and each element consists of 4 x 4 GLL quadrature points resulting
in approximately 1.5° resolution at the equator. The time step used is At =5/2400, or equivalently, 2400 iterations are re-
quired for the full simulation until T =5 units. The time steps used for the DG simulations are sub-optimal, lower than that
needed for the Courant-Friedrichs-Lewy (CFL) stability requirement [40].

4.2. Conservative semi-Lagrangian scheme (CSLAM)

A new conservative SL transport scheme “CSLAM (conservative semi-Lagrangian multi-tracer transport scheme)” [41] on
the cubed-sphere is also used for demonstrating the deformational tests using a scheme based on characteristics. The CSLAM
scheme belongs to the family of inherently conservative cell-integrated semi-Lagrangian methods [31], which combine finite-
volume and SL methods. CSLAM requires the knowledge of backward trajectories for the cell vertices. On the surface of the
sphere, the upstream cells (quadrilaterals) are approximated with great-circle arcs. The CSLAM scheme is based on a geomet-
rically flexible and fully two-dimensional method, and has options for enforcing monotonicity. In order to apply CSLAM on
the cubed-sphere, each of its six faces is partitioned into Nf cells (control volumes). There are 6Nf cells on the cubed-sphere,
and the equivalent resolution with respect to the regular latitude-longitude sphere at the equator is approximately 90°/N..

The CSLAM scheme implementation used here is based on the coupled system of equations for p (1) and p¢ (2). The sep-
arate numerical solution to the equation for p and p¢ using the CSLAM scheme is described in detail in [41]. However, the
coupling between the two equations is not discussed in [41]. To obtain monotonicity for ¢, mass-conservation, and consis-
tency between tracer and air mass simultaneously, care must be taken on how the Egs. (1) and (2) are coupled. A suggestion
for a simple coupling satisfying these requirements is given in Appendix B. CSLAM solves the coupled system of Egs. (1) and
(2) even for the non-divergent test cases.

For the CSLAM simulations, we use a spatial resolution with N. =60 along each side of the cubed-sphere panel corre-
sponding to approximately 1.5° resolution (unless stated explicitly otherwise). Since CSLAM allows for long time-steps
we use two At’s, one that results in ‘large’ CFL numbers throughout the simulation (At =T/120) and one that restricts CFL
to approximately unity or less (At =T/600). As justified below, the trajectories are computed with m = 10 where each seg-
ment is computed using Taylor series that are ¢[(At)*] (the Taylor series formulas for each segment are given in Section 3.3).

4.3. Results and discussion

We do not show figures for the same simulations using both schemes as the purpose of the numerical simulations is to
illustrate the test cases rather than comparing transport schemes. In general, we use the DG scheme to illustrate solutions
and use CSLAM to illustrate monotonicity preservation with the deformational non-divergent and divergent flows. Note that
the two schemes are discretized using different forms of the transport equations.
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Table 1

Normalized errors for ¢ for different deformational test cases using quasi-smooth initial conditions (with b=0.1 and c=1) when using the DG transport
scheme. The third-order DG scheme uses 2400 time steps for simulation with total simulation time T = 5 units. The equivalent resolution at the equator (with
N, = 20) is 1.5° approximately. ‘(Div-free)’ refers to the DG scheme based on the forced transport Eq. (3) whereas the other simulations are for the DG scheme
based on (2) and assuming p(t=T)=1.

Experiment 0 l loo Pmax Pmin

Case-1 (non-div) 0.0071 0.0124 0.0216 —0.0004 -0.0175
Case-2 (non-div) 0.0080 0.0139 0.0220 —0.0005 —-0.0208
Case-3 (div) 0.0031 0.0048 0.0173 —0.0005 —-0.0105
Case-3 (div-free) 0.0024 0.0045 0.0163 —0.0005 —-0.0109
Case-4 (Case-2 + SB) 0.0330 0.0562 0.1047 —-0.0678 —0.0846

4.3.1. Non-divergent cases

Figs. 1-4 show the initial conditions and DG numerical solutions for Cases 1-4, respectively. The upper panels in Figs. 1-4
show the initial wind fields and the quasi-smooth initial ¢ distributions. The lower panels show numerical solutions at half-
time (t = T/2) and the final time t = T, respectively. The extreme deformation of the initial fields occurs at t = T/2. The standard
error norms (defined in Appendix C) for the DG scheme are given in Table 1. The DG3 scheme is not a non-oscillatory scheme
(no filter or limiter is used) and the numerical simulation with DG3 results in oscillatory solutions as seen in Figs. 1-4. For
many practical applications monotonic solutions are required, and usually a monotonic limiter/filter is used to control or
eliminate spurious oscillations [42].

For the non-divergent tests (Case-1 and 2), the cosine-bells (13) move away from the initial positions and deform into
thin crescent (Case-1) or spiral (Case-2) shapes at time t = T/2. The trajectories are non-trivial (i.e., not the great-circle tra-

Table 2

Same as Table 1 but for the CSLAM scheme using 120 and 600 time-steps for the simulation, respectively. Also, the approximate maximum CFL number of the
two coordinate directions (locally on each panel) is shown. The trajectories were approximated using three segments (m = 3) where each segment was
computed using third-order Taylor series expansions. The CSLAM solution for ¢ is based on the coupled system of equations, (1) and (2), as outlined in
Appendix A.

Experiment Max CFL Time steps 0 b loo Pmax Pmin

Case-1 (non-div) 3.9 120 0.0062 0.0136 0.0257 —-0.0018 -0.0172
Case-1 (non-div) 0.8 600 0.0097 0.0206 0.0348 —-0.0024 —-0.0208
Case-2 (non-div) 3.7 120 0.0115 0.0246 0.0347 —-0.0067 -0.0213
Case-2 (non-div) 0.7 600 0.0134 0.0278 0.0358 -0.0119 —-0.0250
Case-3 (div) 1.1 120 0.0045 0.0102 0.0239 —0.0046 —0.0018
Case-3 (div) 0.2 600 0.0046 0.0101 0.0212 —-0.0037 -0.0114
Case-4 (non-div) 55 120 0.0158 0.0328 0.0473 —0.0068 -0.0214
Case-4 (non-div) 1.1 600 0.0533 0.1088 0.1421 -0.1328 —0.0488

Table 3

Normalized errors for ¢ for test case 4 (using quasi-smooth scalar field; b = 0.1 and ¢ = 0.9) with the CSLAM transport scheme. The parcel trajectories are divided
into m segments (second column) where each segment is computed using the Taylor series method with formal order of accuracy given in column 1. Time-step
(At =T/120) and resolution (N, = 60 corresponding to approximately 1.5°) are chosen such that the maximum CFL number in each coordinate direction (locally
on each panel) is approximately 5.

Trajectory order m A l lo

2 1 0.4522 0.9901 09111
2 10 0.0627 0.1509 0.1692
2 100 0.0184 0.0365 0.0438
2 1000 0.0159 0.0329 0.0466
2 10000 0.0158 0.0328 0.0469
3 1 0.0185 0.0390 0.0657
3 10 0.0158 0.0328 0.0473
3 100 0.0158 0.0328 0.0470
3 1000 0.0158 0.0328 0.0470
4 1 0.0196 0.0343 0.0567
4 10 0.0159 0.0328 0.0472
4 100 0.0158 0.0328 0.0470
4 1000 0.0158 0.0328 0.0470
5 1 0.0165 0.0341 0.0526
5 10 0.0158 0.0328 0.0472
5 100 0.0158 0.0328 0.0470
5 1000 0.0158 0.0328 0.0470
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jectories as used in benchmark transport tests [18,19]) and the cosine-bells pass along the edges and corners covering the six
faces of the cubed-sphere. Since the DG scheme does not apply any monotone limiting/filtering non-physical oscillations are
present in the numerical solutions.

The proposed test case can, of course, be used on any global spherical grid. For example, on a regular latitude-longitude
grid the polar cap is usually of special interest and the flow could be rotated to direct flow over the polar regions using a
rotated coordinate system [19]. On an icosahedral grid, flow over the 12 pentagons may be of special interest.

Fig. 4 shows the result with Case-2 combined with zonal background flow defined by (29) and (30), that is, Case-4. The
zonal background flow challenges the problem further and prevents possible error cancellations when the flow reverses. As
can be seen in Table 1, the standard error norms for Case-4 are significantly higher than those for Case-2. This test case con-
figuration is particularly challenging since the distributions at half time (t = T/2) are stretched into thin filaments and these
are being translated with the zonal wind at the same time. In Table 2, the corresponding error norms for the CSLAM scheme
are given using a ‘long’ and shorter time-step. In general, the error norms worsen with a shorter time-step for the CSLAM
scheme which is likely to be a result of the increased number of remappings needed for the shorter time-step simulation
as well as the fact that dispersion and damping properties vary as a function of CFL number [43].

Since the trajectories are not known analytically, we assess the accuracy of the Taylor series method using test Case-4 that
probably has the most challenging trajectories of the four test case configurations considered here. Also, we use a resolution
and time-step that results in a (‘extreme’) maximum CFL number of approximately 5 in each coordinate direction (locally on
each cube panel). Table 3 shows standard error measures using m trajectory segments based on 2nd, 3rd, 4th, or 5th order
Taylor series. Error norms [y, I; and I, converge to the same value when using a high enough value of m except for the [,
error norm when using second-order trajectories for which there seem be some cancellation of errors for m =100 and
m = 1000. For third and higher-order trajectory segments all error norms have converged to at least 3 digits when using a
value of m = 10 or higher. We therefore conclude that using 10 segments where each segment is 3rd-order provides practi-
cally analytical trajectories in terms of convergence of the standard error norms. As mentioned earlier, this configuration
(m =10 with third-order segments) is used for trajectory computations in this paper.

Since high-order accurate numerical trajectories can be generated using the Taylor series expansion method outlined
above, the test cases considered here can also be used for testing the accuracy of trajectory algorithms used for global SL
schemes. Even for a relatively smaller CFL number, the upstream Lagrangian mesh, that ends up at the regular Eulerian grid
after one At, is considerably deformed as shown in Fig. 6 for test Case-1. Thus, the deformational flow tests presented here
provide a challenging test suite for SL schemes.

To test schemes for monotonicity preservation, it is convenient to use a non-smooth initial condition such as the slotted-
cylinder initial condition defined in Section 3.1.3 (see Fig. 7). Perhaps the most challenging flow in which to place the dis-
continuous initial condition (in terms of the diffusive properties usually associated with filter/limiters) is Case-4 since at the
point of extreme deformation the slotted-cylinders have deformed into thin filaments that are transported with the zonal
background flow.
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Fig. 6. The static Eulerian grid (thin lines aligned with coordinate lines) and departure grid (deformed thin lines) at the first time-step shown on the
gnomonic projection on each cubed-sphere panel for test case 1 with a time-step of T/40 and spatial resolution N, = 4 (maximum CFL locally on each panel is
approximately 0.8). The departure grid has been constructed by computing trajectories for the cell vertices and then the vertices are connected with straight
lines.
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4.3.2. Divergent cases

Numerical simulations in a divergent flow environment is more complex than the non-divergent case and requires special
attention. In a non-divergent case and assuming p(t = 0) = 1, the continuous transport Egs. (1) and (2) reduce to a single Eq.
(6) as the analytic solution to (1) is trivial p(t =0) = p(t) = 1. Consequently, one only needs to solve one continuity equation
for the evolution of ¢ if one assumes that the numerical scheme will preserve a constant initial condition for density p
(which is not necessarily the case). We also note that under divergent flow conditions p¢ can take values that are not in
the interval [min(p(t=0)¢(t=0)), max(p(t=0)¢(t=0))] whereas ¢ should remain in the interval [min(¢(t=0)), max(¢
(t=0))] throughout the simulation. Moreover, if ¢(t=0)= ¢¢ it should remain constant throughout the simulation (even
when the flow is divergent) and if solving the coupled system of Eqs. (1) and (2) the numerical solution to (2) should reduce
to the numerical solution to (1). The latter is regarded an important consistency requirement in atmospheric modeling. The
domain conserved quantities are fluid density p and tracer density p¢$ but not ¢. The mixing ratio or concentration ¢ is only
preserved along parcel trajectories (4).

The divergent flow test (Case-3) provide flow situations where the symmetrically distributed tracer density field p¢ at
t = 0 rapidly varies as the flow deforms. We provide numerical simulations for this case using the CSLAM and DG3 schemes.
As mentioned before our implementation of CSLAM solves the coupled system of equations for air density and tracer density.
Att=0we set p(t=0)=1 as for all other test cases. The value of ¢ can be extracted from the numerical solution for p and p¢
at any time during the simulation as in the case of a practical application (see Appendix B).

Since, (3) is directly derived from the system (1) and (2), the mixing ratio ¢ can be solved from the forced transport Eq. (3).
However, recall that p¢ is not necessarily a conservative quantity when using this option. We employ the DG3 scheme to
solve the forced transport Eq. (3) with cosine-bells as the initial scalar field. The results with this test are given in Table 1
and denoted “Div-free”.

Another option for the divergent flow test (Case-3) is to solve only the conservation law (2) rather than solving the cou-
pled system (1) and (2). However, in this case the initial and final value of p is assumed to be 1, and the conserved quantity
evolving in time is tracer density p¢. We use DG3 scheme to solve (2) with the scalar fields (13) and (16). In Case-3 (Fig. 3),
the initial peak value of the tracer density (p¢) field is 1. However, at time t = T/2 this increases up to 3.245 in a narrow band

Deformational Flow + SB (CSLAM): Case-4, SC
(a) Initial Fields (t=0) (b) Deformed Fields at t=T/2, Non-Monotone

/2 n/2

0 n/2 m 3m/2 on

(c) Deformed Fields at t=T/2, Monotone
1 A /2

0 n/2 7' 3m/2 om 0 n/2 L 3n/2 om

01 02 03 04 05 06 07 08 09 1

Fig. 7. Contour plots of the mixing ratio fields ¢ for the non-divergent deformational flow field Case-2 with background zonal wind (Case-4) with slotted-
cylinder initial conditions for ¢ at an approximate resolution of 1.5° along the equator at time t = 0 (a), t = T/2 (b and c) and t = T (d), respectively, computed
with CSLAM without any filters (b) and with a monotone reconstruction function filter (2nd row). The simulation was completed in 120 time-steps,
resulting in a maximum CFL number of 5.5 in each coordinate direction locally on each panel.
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Fig. 8. Maximum value of tracer density p¢ as a function time in the divergent flow (Case-3). The left panel shows the case for which two cosine-bells (13)
are used as initial condition. The right panel shows the solution for the smooth case where a Gaussian function (14) is used as the initial condition. The
equivalent resolution at the equator (with N, = 20) for these tests is 1.5° approximately.

as shown in Fig. 3(c). The maximum value of the tracer density field as a function of time is shown in Fig. 8 for the quasi-
smooth cosine-bells (13) and a smooth Gaussian function (14) in the left and right panels, respectively. The maximum value
for the Gaussian function (Fig. 8, right panel) at a resolution 1.5° is approximately 3.5445. We have repeated the experiment
at a higher resolution (0.75°), however, the change in the peak value of p¢ is not significant, and is approximately 0.0009.

Fig. 9 shows the smooth solution with double Gaussian-hills (14) at time t = T, where the left and central panels, respec-
tively, show the numerical solution and difference field at a resolution 1.5°. The right panel in Fig. 9 shows the convergence
of /4, £, and ¢, errors for DG3 at various resolutions. The time steps used for the convergence test were chosen such that the
time truncation error is negligible. The DG3 scheme exhibits third-order convergence as expected.

Fig. 10 shows the solution to the Case-3 using CSLAM with and without a monotone reconstruction function filter when
using slotted-cylinder initial conditions. The divergent flow field provides a challenging environment to test monotonicity
constraints under divergent flow conditions. The error norms for Case-3 when using Cosine bell initial conditions with
CSLAM are given in Table 3.

4.4, Suggested test case suite

In order to validate new global transport schemes one can perform tests with various combinations of the flow fields and
initial scalar distributions. We suggest transport scheme developers to run the following test suite:

Deformational Flow (DG3): Case-3, GS

Divergent Flow: Num. Soln (t=T) (Exact - Num. Soln) x 1000 DG3 Convergence: Case—3 (GS)
7 ! 1.0000F w w I
w 0.1000F i
£ E
=] E
~ [
~ L
= L
o
g 0.0100 -
] §
E L
B [
=}
Z 0.0010F _
: 0.0001 | | | |
] e 6° 3° 1.5° 0.75°
0 2 4 6 8 1 3 2 4 0 1 2 3 EQ. Resolution (deg)

Fig. 9. Orthographic projection of the numerical solution and the difference field (exact minus numerical) multiplied by 1000 at a resolution 1.5° are shown
in the left and central panels, respectively. The initial condition for this test is same as in Case-3 but scalar field used is the smooth double Gaussian hills
(16). The right panel shows the convergence of the normalized errors for the DG3 scheme at various equivalent resolutions.
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Deformational Flow (CSLAM): Case-3, SC

(a) Deformed Fields at t=T/2, Non-Monotone (b) Deformed Fields at t=T, Non-Monotone

/2 /2

/2 -n/2

0 /2 n 3m/2 om 0 /2 m 3m/2 om

(c) Deformed Fields at t=T/2, Monotone (d) Deformed Fields at t=T, Monotone

/2 /2

0 n/2 W 3m/2 on 0 n/2 " 3m/2 on

01 02 03 04 05 06 07 08 09 1

Fig. 10. Same as Fig. 7 but for Case-3.

1. Assess the schemes ability to preserve a non-zero constant density field, p(t = 0) = po, for non-divergent flows with any of
the non-divergent wind fields (for example, Case-4). Test if the scheme is capable of maintaining a non-zero constant con-
centration, ¢(t = 0) = ¢y, in both non-divergent (e.g., Case-4) as well as divergent flows (Case-3).

2. If the coupled system of Egs. (1) and (2) is used, check for consistency. That is, the numerical solution to (2) should reduce
to the numerical solution to (1) when ¢(t=0)=1.

3. Run all test cases with the cosine-bell (13) initial condition with b=0.1 and c=1 (Section 3.1.1).

4. To assess monotonicity properties under non-divergent and divergent flow conditions, run Case-3 and Case-4 with the
slotted cylinders initial condition (Section 3.1.3).

5. To assess a schemes numerical convergence rate under complex flow conditions run Case-3 (divergent) and Case-4 (non-
divergent) using the smooth initial condition (Section 3.1.2) at successively higher resolutions.

5. Conclusions

A class of new benchmark deformational flow test cases for horizontal linear transport problems on the sphere have been
proposed. The test suite consists of three different initial conditions (smooth, quasi-smooth and non-smooth) placed in
either divergent or non-divergent flows. The initial conditions are prescribed in terms regular latitude-longitude coordi-
nates, employing simple trigonometric expressions on a unit sphere. These tests are easy to implement on any type of spher-
ical grid. The transported scalar field follows complex trajectories and undergoes severe deformation during the simulation,
reverses its course halfway through the simulation and returns to the initial position by the end of the simulation. This pro-
cess makes the exact solution available at the end of the simulation and facilitates validation of the underlying transport
scheme.

In the context of semi-Lagrangian schemes, these time-varying flow fields can be used to test trajectory algorithms. A
scheme for deriving high-order trajectories is provided as well. The divergent flow is specifically aimed to test for conserva-
tion and monotonicity (positivity) preservation by limiters/filters in a challenging flow field. The test cases are demonstrated
with two different transport schemes on the cubed-sphere, which are based on the discontinuous Galerkin (DG) method and
an inherently conservative semi-Lagrangian method (CSLAM). These transport schemes are used to illustrate the character-
istics of the test cases. The proposed class of test cases can be used on any type of spherical grid system and with any global
transport scheme. The flow field can be oriented in any desired direction on the sphere so that it covers spherical regions of
special interest. This is possible by specifying the problem (Cases: 1-4) in a rotated coordinate system.
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We anticipate that the proposed class of test cases would complement the existing transport tests and would be a
useful tool for testing new transport schemes on a variety of spherical grid systems, new sophisticated numerical meth-
ods such as adaptive mesh refinement on the sphere, and testing the accuracy of trajectory algorithms in non-trivial
flow fields. We have made several specific recommendations on how this test suite could be used for validating global
transport schemes.
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Appendix A. The DG transport scheme on the cubed-sphere

The discontinuous Galerkin (DG) method may be considered as a hybrid conservative approach combining the nice
features of the finite-element and finite-volume methods [40]; and is becoming increasingly popular in atmospheric
modeling applications [42]. Here, we briefly outline the DG transport scheme on the cubed-sphere, which is used for
the deformational flow simulations. A detailed account of the DG scheme implementation on the cubed-sphere can
be found in [44,34,45].

The cubed-sphere geometry consists of partitioning the sphere % into six identical regions (faces) based on an equiangular
gnomonic projection [39,3] of aninscribed cube. The computational domainis the cube % withsidesx',x? € [ — m/4,m/4],and the
transport equation can be solved on % by the virtue of gnomonic mapping. The Jacobian of the mapping /G has an explicit ana-
lytic form and is identical on each face of the cube [44]. For the DG scheme implementation, each face of the cubed-sphere is
further partitionedinto N, x N, non-overlapping rectangular elements such that 6N2 elements span the entire spherical surface.
For the deformational tests using the DG scheme we employed the transport Egs. (3) and (6). This can be generalized to the fol-
lowing form on .

aa—qtl—&-VT(W) =S(¥), in % x(0,T]
where ¥ = /G, ¢ is a scalar field, S is the source term and flux vector F = (¥u', ¥u?) involves contravariant components
(u',u?) corresponding to the wind vector V = (u, ). The gradient operator V = (8/dx', 8/0x?) is defined on %.

Since the DG discretization process is identical for each element, we consider only a generic element €2.. The approximate

solution ¥}, is assumed to be in a vector space ¥, of polynomials of degree up to N such that

(47)

Vn={@ € (%) : Qlg, € Pn(Qe),Y Qe € €},
where
2y =span {(x")"(x*)" : 0 < m,n < N}.

The weak formulation of the problem can be obtained by multiplying (47) by a test function ¢, in ¥*, and integrating by
parts over Q.. To find the approximate solution ¥, € ¥*, we consider the following semi-discretized weak formulation on
each element Q, € ¥ such that,

i/ q/h(phdgz—/ F('Ph)-V(pth+/ Fmp,,dr:/ S(P) 0, A2, (48)
dt Jo, @ re Q

where F is the numerical flux, n is the outward-facing unit normal vector on the element boundary I, and dQ = dx'dx2. For
the present study, we employ the local Lax-Friedrichs flux formula:

B =3 [(F(7y) + (#) - (% — 73],
where « is the maximum of the absolute value of the velocity components normal to the element boundary I'.; ¥, and ¥}
are, respectively, the left and right limits of ¥} along the boundary I..

In order to evaluate (efficiently and accurately) the integrals in the weak formulation, as represented in (48), an orthog-
onal polynomial based basis set is usually employed. The integrals are approximated with a high-order accurate Gauss quad-
rature rule; this requires a local mapping from €, to the reference element [1,1]* done by introducing new independent
variables & = &i(x%), i € {1,2} such that ¢ € [ — 1,1]. The nodal basis set which spans 77, is chosen to be a tensor-product of
polynomials hy(E)h,(&%), where h(&) is the Lagrange-Legendre (orthogonal) polynomial. Now the approximate solution
¥, and test function ¢, in 7", can be expanded in terms of a tensor-product of the Lagrange basis functions, and in the case
of ¥,
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NN
=) Un(&, &) hi(¢Hhe(&),

k=0 (=0

where {g’”ﬁ}}fzo are Ny = N + 1 Gauss-Lobatto-Legendre (GLL) quadrature points. There are Ny x Ny GLL points on the reference
element [ — 1,1]% Substitution of the expansions for ¥} and ¢}, in the weak formulations and further simplification leads to
the following ordinary differential equation in time corresponding to the continuous problem (47),

d¥i
dt

where ¥, are the time dependent nodal (or grid point) values corresponding to ¥;. We use a third-order accurate explicit
strong-stability preserving Runge-Kutta time integration procedure [46] for solving (49).

Note that the choice of the GLL quadrature rule is purely based on easy implementation and efficiency considerations.
However, the approximation of the integrals in (48) with GLL quadrature results in inexact integration and may degrade
the overall accuracy of the DG scheme. We consistently employ 4 x 4 GLL points (Ng = 4) on each element so that the result-
ing “DG3” scheme is formally at least third-order accurate.

= L(¥,)in(0,T], (49)

Appendix B. A brief description of CSLAM

The CSLAM forecast for the cell-averaged fluid density and tracer concentration in cell k, p(t) and ¢ (t) respectively, is
derived by integrating (1) and (2) over a Lagrangian area A(t) and discretizing in time and space

_ 1

PO =25 /A g Pyt ADaA (50)
_ 1 _

Belt) = {_AAk(t) / PR AD Gy £ 8 dA}/pkm, (51)

where Ai(t — At) is the upstream deformed Lagrangian area that ends up at the regular grid cell A,(t) = A after being trans-
ported by the flow one time-step At (see Fig. 1 in [41]). The area of the upstream deformed cell and regular Eulerian cell are
denoted AA\(t — At) and AA,, respectively. The sub-grid-cell reconstruction function of fluid density in cell k at time t — At is
based on a fully two-dimensional biquadratic polynomial function

ap ap 1(6%p ., [ &p
_ _ 4P _ _ _ _
prx,y,t = At) = a/” + (8x>k(x Xo) + <8y> Y =Yo) +5 (8}(2 k(X Xo)® + axay k(X Xo)(y — ¥o)

1({&p 2
T3 (8_yz> k(y -Yo)", (52)
where the centroids are given by
1 1
X xdA, dA, 53
0=1a, / Yo=g, s y (33)

and the derivatives [0™/p/(0x'd y¥)], are approximated from cell average values of p at time t — At. To ensure mass-conser-

vation, the constant term a,(j’) is chosen so that the integral of py(x, y,t — At) over Ay equals the mass in cell k at time ¢t — At

pult = A0M, = [ pylxy.t - atydA (54)
Ay

(see Eq. A40 in [47]). Since the reconstruction polynomials are not necessarily continuous across cell borders, the integrals on
the right-hand side of (50) and (51) are broken up into integrals over overlapping areas between the regular Eulerian cells A
and the deformed areas A,(t — At). These upstream surface integrals are computed as line integrals. The details on how the
reconstruction coefficients and integrals over overlap areas are computed on the cubed-sphere are given in [41,47]. The sub-
grid-cell polynomial pi(x,y,t — At) can be rendered monotone simply by scaling the subgrid reconstructions in each cell so
that their extreme values are no greater than the maximum and minimum of the surrounding cells’ average values [48,33].

The sub-grid-cell reconstruction for ¢i(x,y,t — At) is computed exactly as for pi(x,y,t — At) using the above procedure
based on cell average values of ¢ at time t — A t. To ensure tracer mass conservation, consistency between tracer mass
and air mass, and monotonity of ¢, the integrand in (51) must be carefully approximated. For example, simply integrating
the product of the two polynomial reconstruction functions may violate tracer mass conservation and result in a fully two-
dimensional fourth-degree polynomial (with 16 terms), which may be computationally expensive to integrate. Fitting a
biquadratic polynomial directly to the product of the cell average values of p and ¢ instead makes it difficult to enforce strict
monotonicity for ¢.

A simple and efficient way to achieve tracer conservation, consistency and monotonicity within the CSLAM framework, is
to replace p(x,y,t — At)p(x,y,t — At) in (51) with
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Pr(t = A) dy(X,y. t — AL) + ie(t — AL)[p, (X, y. t — AL) — pie(t — AL)]. (55)

This formulation avoids problems with coupling the density and concentration reconstructions when performing monoto-
nicity filtering, and avoids evaluating a fourth-order polynomial. If monotonicity is required, the monotone filter is applied
to the reconstruction coefficients of ¢(x,y,t). If the tracer concentration is equal to one, ¢(t =0) = 1, then the reconstruction
function in (55) reduces to pi(x,y,t — At) and therefore satisfies the consistency requirement. We note that CSLAM may also
be cast in flux-form (FF-CSLAM) which may be advantageous, for example, for enforcing monotonicity [33,27].

Appendix C. Error measures

If ¢ = ¢(4,0,t) is the transported concentration field, then global normalized standard errors are defined by [18]:

P (A7)
I(¢r)
1/2
o {Iw - qm} .
1[(¢r)’]
max ¢ — ¢r]
T maxer
o max(¢) — max(¢r)
max — A—(f)o’
. min(¢) - min(¢r)
min Ad)o 7

where ¢, ¢ are, respectively, the true solution and its initial value, A¢q is the difference between maximum and minimum
value of the initial condition, and the global integral I is defined as follows,

1 21 /2
I(¢) = in /0 o ¢(2,0,t) cos 6dAdo.

¥

Note that for the CSLAM scheme ¢ is the average density or concentration over grid cell and for the DG scheme ¢ is the point
value defined on the GLL grids on each element. The global integral I(¢) is approximated by a numerical method consistent
with the horizontal discretization of the sphere.
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