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Abstract. The High-Order Method Modeling Environment (HOMME) is a framework
to investigate using high-order element-based methods to build conservative and accurate
atmospheric general circulation models. Currently, HOMME employs the discontinuous
Galerkin and spectral element methods on a cubed-sphere tiled with quadrilateral elements to
solve the primitive equations, and has been shown to scale to O(10K) processors of a Cray XT
3/4 and O(32K) processors of an IBM Blue Gene/L. Here we briefly describe the development of
a baroclinic model using the discontinuous Galerkin option in the HOMME framework, present
idealized test case results, and provide preliminary performance data.

1. Introduction

The future evolution of the Community Climate System Model (CCSM) into an Earth system
model will require a highly scalable and accurate flux-form formulation of the dynamics of the
atmosphere: flux form is required in order to conserve long-lived trace species in the stratosphere;
accurate numerical schemes are essential to ensure high-fidelity simulations capable of capturing
the convective dynamics in the atmosphere and their contribution to the global hydrological
cycle; scalable performance is necessary to efficiently exploit the massively-parallel petascale
systems that will dominate high-performance computing for the foreseeable future.

The High-Order Method Modeling Environment (HOMME) [5], developed by the
Computational and Information Systems Laboratory at the National Center for Atmospheric
Research (NCAR) in partnership with the Computational Science Center at the University
of Colorado at Boulder (CU), is a framework to investigate using high-order element-based
methods to build scalable, accurate, and conservative atmospheric general circulation models
(AGCMs). The primary objective of the HOMME project is to provide the atmospheric
science community a framework for building the next generation of AGCMs based on high-
order numerical methods that efficiently scale to hundreds-of-thousands of processors, achieve
scientifically useful integration rates, provide monotonic and mass conserving transport of
multiple species, and can easily be coupled to community physics packages.

Currently, HOMME employs the discontinuous Galerkin (DG) and spectral element (SE)
methods on a cubed-sphere tiled with quadrilateral elements to solve the primitive equations,
and has been shown to scale to O(10K) processors of a Cray XT 3/4 and O(32K) processors
of an IBM Blue Gene/L (BG/L) [12, 4]. The DG option in HOMME guarantees conservation
while maintaining all the attractive computational features of the SE option. Here we briefly
describe the development of a baroclinic model using the DG option in the HOMME framework
[1], present idealized test case results, and provide preliminary performance data.
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2. DG Baroclinic Model

2.1. Computational Domain

The globe (sphere) is decomposed into six identical regions by an equiangular central projection
of the faces of an inscribed cube (see Fig. 1). This results in a nonorthogonal curvilinear
(x1, x2) coordinate system [11, 10] free of singularities for each face of the cubed-sphere with
x1, x2 ∈ [−π/4, π/4]. Each face of the cubed-sphere is partitioned into Ne × Ne rectangular
non-overlapping elements such that the total number of elements is 6×N2

e . The transformation
laws between cubed-sphere and regular sphere, and the associated metric tensors are in [10].

2.2. Hydrostatic Primitive Equations on the Cubed-Sphere

The hydrostatic primitive equations, consisting of the momentum, mass continuity,
thermodynamic, and moisture transport equations, can be expressed as a conservative system
in curvilinear coordinates. The prognostic variables are pressure thickness δp, covariant wind
vectors (u1, u2), potential temperature Θ, and moisture variable q.
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G is the metric term, E is the energy term, ζ is the relative vorticity, Φ = gh is the geopotential

height, and f is the Coriolis parameter (see [10] for details). Note that, because of the vertical
Lagrangian coordinates, the vertical advection terms are absent from the above system.

2.3. Vertical Discretization

The vertical discretization is based on the 1-D vertical Lagrangian coordinates of [13, 8]. A
terrain following Lagrangian vertical coordinate (see Fig. 2) can be constructed by treating
any reference Eulerian coordinate as a material surface. Over time, the Lagrangian vertical
surfaces deform and thus must be periodically remapped onto a reference coordinate. The
hydrostatic atmosphere is vertically sub-divided into a finite number of pressure intervals or
pressure thicknesses. The entire 3-D system can be viewed as a vertically stacked set of 2-D
shallow water DG models coupled through the discretized hydrostatic relation.

At every time step δp is predicted at model levels and used to determine pressure at
Lagrangian surfaces by summing the pressure thickness from top (ptop) to bottom (ps) such that

pℓ = ptop +
∑ℓ

k=1 δpk. The geopotential height at interfaces is obtained by using the hydrostatic
relation, i.e., ∆Φ = −CpΘ∆Π where Π = (p/p0)

κ, and summing the geopotential height from

bottom (Φs) to top, Φℓ = Φs +
∑ℓ

k=1 ∆Φk. For the baroclinic model, the velocity fields (u1, u2),
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Figure 1. The cubed-sphere is tiled with
non-overlapping elements (Ωk) spanning the
entire surface of the globe. Each element is
further mapped onto a reference GLL grid for
high-order integration.
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Figure 2. Schematic of the vertical 1-
D Lagrangian coordinates. The Lagrangian
coordinates are conservatively remapped onto
a reference Eulerian coordinates at regular
intervals of time.

the moisture q, and total energy (ΓE) are remapped onto the reference Eulerian coordinates
using the 1-D conservative cell integrated semi-Lagrangian (CISL) method developed in [9].
The temperature field Θ is retrieved from the remapped total energy ΓE.

2.4. Spatial DG Discretization

The flux form of Eq.(1-5) can be generalized such that

∂

∂t
U + ∇c · ~F (U) = S (U) , (7)

where U = [u1, u2,∆p,∆p Θ,∆p q]T denotes prognostic variables, ~F (U) is flux function, and
S (U) is the source term. For each element Ωk of the computational domain (globe), the weak
Galerkin formulation [2] of the DG baroclinic system (7) can be written as
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where Uh is an approximate solution and ~ϕh is the test function, and both belong to the
finite dimensional space Vh (Ω) of orthogonal polynomials. The discontinuities at the element
boundaries (∂Ωk) are resolved by solving an approximate Riemann problem with the Lax-
Friedrichs numerical flux formula as described in [10]. Uh is expanded in terms of a tensor-
product of Lagrange basis functions (hi) of order Nv defined at the Gauss-Lobatto-Legendre

(GLL) points such that Uh =
∑Nv

i=1

∑Nv

j=1 Uijhihj . The weak formulation (8) is further simplified
by evaluating the integrals with a high-order accurate GLL quadrature formula. The resulting
DG discretization leads to following system of ordinary differential equations,

dUh

dt
= L (Uh) , Uh ∈ (0, T ) × Ωk, (9)

and is solved by a third-order Runge-Kutta method as described in [3, 10].

3. Numerical Experiments with Idealized Tests

To validate the DG baroclinic model, we have performed idealized tests such as the Jablonowski-
Williamson baroclinic instability test [7] and Held-Suarez tests [6]. The baroclinic instability
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test is used to assess the evolution of baroclinic waves in the northern hemisphere using quasi-
realistic initial conditions. Figures (3) and (4) show simulated fields after 8 and 11 days, and
provide a comparison to reference results obtained from the global spectral and finite-volume
models available in the CCSM framework [7]. DG HOMME performance is shown in Fig. (5).

Figure 3. The left panel shows the temperature field at 850 hPa for the baroclinic instability
test after 8 days with DG HOMME. The central panel shows the corresponding surface pressure.
The right panel shows the reference surface pressure from the NCAR global spectral model (T85).
Both use 26 vertical levels and an approximate horizontal resolution of 1.4◦.

Figure 4. Surface pressure evolution after 11 days for the baroclinic instability test. The left
panel shows results from DG HOMME (Ne = 26, Nv = 6). The central panel is a reference
simulation from the NCAR global spectral model (T170). Both use 26 vertical levels and an
approximate horizontal resolution of 0.7◦. The right panel shows a 16-day time trace of minimum
surface pressure for the DG, T170, and finite-volume (0.5◦ × 0.625◦) models (see [7] for details).

4. Summary

A high-order DG conservative baroclinic model has been developed in the HOMME framework.
Idealized tests show that the new model is accurate, free from ‘spectral ringing’ (see Fig. 3), and
has parallel performance comparable to that of the SE baroclinic model in HOMME. However,
the DG baroclinic model employs explicit Runge-Kutta time integration with moderate time
step size resulting in a lower integration rate. Improved time integration schemes, monotonic
limiters, and integration with CAM physics are ongoing research projects.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012078 doi:10.1088/1742-6596/78/1/012078

4



32 64 128 256 512 1024 2048
0

50

100

150

200

250

300

Processor

M
F

LO
P

Sustaind FLOP Per Processor

 

 

1944 elements: 1 task/node (CO)
1944 elements: 2 task/node (VN)
7776 elements: 1 tasks/node (CO)
7776 elements: 2 tasks/node (VN)

Figure 5. Performance on a 2048 processor IBM BG/L system. The left panel shows results
from the baroclinic instability test and the right panel shows results from the Held-Suarez test
[6].
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