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DGM Introduction

3D Atmospheric Modeling

Traditionally, atmospheric model treats the horizontal (2D) and vertical (1D) dimensions
separately.

Large aspect ratio between horizontal
vertical grid spacing (≈ 1 : O(100))

‘Special treatment’ for the vertical dynamics

Facilitate implementation of efficient
“HEVI-type” time integration schemes.

In general, splitting method based on
temporal or spatial, can introduce ‘split
errors’
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Nair, Bao & Toy (AIAA, 2016)

New generation non-hydrostatic models based on high-order Galerkin methods such as the
spectral element (SE) and discontinuous Galerkin (DG), gaining popularity

Full-3D: NUMA, Giraldo et al. (2013); Blaise et al. (2015) use 3D hexahedral elements.

Split (2D+1D): HOMME, CAM-SE, KIAPS. SE/DG horizontal + 1D FD/H-O vertical

What errors are introduced by dimension-splitting in a 3D DG model?
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DGM Introduction

DG Formulation: Atmospheric Conservation Laws

Atmospheric equations of motion in 3D Cartesian (x,y,z) coordinates can be written in the general
flux-from:

∂U
∂ t

+∇ ·F(U)≡ ∂U
∂ t

+
∂

∂x
F1(U)+

∂

∂y
F2(U)+

∂

∂ z
F3(U) = S(U)

U is the conservative variable, F = (F1,F2,F3) is the flux function and S(U) is the source term.

E.g: For a transport equation U = ρ, a scalar; for the Euler system U = [ρ,ρu,ρv,ρw,ρθ ]T

Split 2D + 1D: The 3D Eqn. is split into the horizontal (x,y) and vertical z directions.

∂U
∂ t

+∇2d ·F(U)≡ ∂U
∂ t

+
∂

∂x
F1(U)+

∂

∂y
F2(U) =− ∂

∂ z
F3(U)+S(U)

Discontinuous Galerkin Formulation – Common Steps:

Ω

Ω

Ω Ω

Ω

i,j i+1,ji-1,j

i,j+1

i,j-1

∪Domain D = Ω i,j

Element

The domain D is partitioned into non-overlapping
elements Ωe. Element edges are discontinuous

Approximate solution Uh belongs to a vector space
Vh of polynomials PN(Ωe).

Galerkin formulation is obtained by multiplying the
basic equation by a test function ϕh ∈ Vh and
integration over an element Ωe∫

Ωe

[
∂Uh

∂ t
+∇ ·F(Uh)−S(Uh)

]
ϕhdΩ = 0

Discontinuity at the element edges is resolved by
Lax-Friedrichs numerical flux.

Ram Nair (rnair@ucar.edu) Dimensional Splitting in a 3D DG Model AGU-2016, 12/14/2016 3 / 18



DGM Introduction

DG Discretization

For full 3D elements, the weak Galerkin formulation is obtained from:∫ ∫ ∫
Ωe

[
∂Uh

∂ t
+∇ ·F(Uh)−S(Uh)

]
ϕhdΩ = 0

For the split 2D+1D case,∫ ∫
Ωe

[
∂Uh

∂ t
+∇2d ·F(Uh)− S̃(Uh)

]
ϕhdΩ = 0, S̃(U) =− ∂

∂ z
F3(U)+S(U)

The vertical 1D flux derivative ∂F3(U)/∂ z can be discretized by any numerical method, including 1D DGM.

Evaluation of the integrals:

3D GLL Grid Box 

Ωe is mapped onto high-order quadrature element Q = [−1,1]d

Gauss-Lobatto-Legendre (GLL) quadrature is efficient

A tensor-product of Lagrange basis functions (hl(ξ ),ξ ∈ [−1,1])
of order N represents the approximate solution on Q. In 3D case:

Uh(ξ
1,ξ 2,ξ 3) =

N

∑
i=0

N

∑
j=0

N

∑
k=0

Ui jk hi(ξ
1)h j(ξ

2)hk(ξ
3)

Spatial discretization leads to the ODE

dUh

dt
= L (Uh)

For our implementation, SSP-RK3 explicit ODE solver is used.
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DGM 3D Advection

3D Advection Test: Smooth Solid-Body Rotation

To Solve:
∂ρ

∂ t
+

∂ρu
∂x

+
∂ρv
∂y

+
∂ρw
∂ z

= 0

x-z slice through simulation domain

Physical domain: [−π,π]3

Solid-body rotation with u =−(z− z0), v = 0
and w = (x− x0).

BC: Lateral - Periodic; Top/Bottom - Periodic

The Gaussian blob centered at the domain
center (x0,y0,z0),

ρ(x,y,z) = a exp[−r2/(2σ
2)]

with r2 = (x− x0)
2 +(y− y0)

2 +(z− z0)
2, a = 1,

σ = 0.35.

Period for one revolution t = 2π

DG simulations with full 3D and split 2D+1D. Starting with 8×8×8 elements, and 43 GLL
points on each element.
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DGM 3D Advection

3D Advection Test: Smooth Solid-Body Rotation

The full 3D and split 2D+1D results match expected h/p-convergence rate
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DGM 3D Advection

3D Advection Test: Deformational Flow (multi-scale)

Initial fields (double Gaussian) stretched into thin filaments, the flow reverses and return to
the initial state (Nair & Lauritzen, JCP, 2010).

Domain : [0,2π]× [0,π]× [0,π]. Final time T = 5 units

Initial density ρ(x,y,z) centered at x1 = (5π/6,π/2,π/2), x2 = (7π/6,π/2,π/2)

ρ(x,y,z) = a
[

exp
(
−|x−x1|2

b

)
+ exp

(
−|x−x2|2

b

)]
, a = 0.95, b = 0.2

Initial fields ρ(x,y,z) in x-z plane

Time dependent non-divergent velocity
fields

u(x,y,z) =u0 sin2
[
2π

( x
2π
− t

T

)]
sin
[
2π

( z
π

)]
× cos

(
πt
T

)
+

2π

T

v(x,y,z) = 0

w(x,y,z) =w0 sin
[
4π

( x
2π
− t

T

)]
sin2

[
π

( z
π

)]
× cos

(
πt
T

)
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DGM 3D Advection

Deformational Flow: h Convergences
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DGM Flow over Mountain

Flow over a 3D mountain Test: (x,y,z)→ (x,y,ζ )

Terrain-following vertical coordinate transformation (Gal-Chen & Somerville, JCP 1975)

hs = hs(x,y) is the prescribed mountain profile and ztop is the top of the model domain

ζ = ztop
z−hs

ztop−hs
, z(ζ ) = hs(x,y)+ζ

ztop−hs

ztop
; hs ≤ z≤ ztop.

The Jacobian associated with the transform (x,y,z)→ (x,y,ζ ) is

√
G =

[
∂ z
∂ζ

]
(x,y)

= 1− hs(x,y)
ztop
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DGM Flow over Mountain

Transport Equation in the Transformed Coordinates (x,y,ζ )

The 3D transport equation (flux-from) for a density ρ in 3D (x,y,ζ ) coordinates can be
written as:

∂ρ

∂ t
+∇ ·F(ρ) = 0 ⇒ ∂ ρ̃

∂ t
+

∂

∂x
(ρ̃ u)+

∂

∂y
(ρ̃ v)+

∂

∂ζ
(ρ̃ w̃) = 0,

where ρ̃ =
√

Gρ, the Jacobian-weighted density, and w̃ the vertical velocity in transformed
coordinates:

w̃ =
dζ

dt
,
√

Gw̃ = w+
√

GG13 u+
√

GG23 v,

with the metric coefficients (Clark 1977, JCP)

√
GG13 ≡

[
∂hs

∂x

]
(z)

(
ζ

ztop
−1
)
,
√

GG23 ≡
[

∂hs

∂y

]
(z)

(
ζ

ztop
−1
)
.

For the ‘2D + 1D’ split case:

∂ ρ̃

∂ t
+

∂

∂x
(ρ̃ u)+

∂

∂y
(ρ̃ v) =− ∂

∂ζ
(ρ̃ w̃)

Ram Nair (rnair@ucar.edu) Dimensional Splitting in a 3D DG Model AGU-2016, 12/14/2016 10 / 18



DGM Flow over Mountain

Numerical Expt: Flow over a 3D Schär-type mountain

Mountain profile hs(x,y)

Physical domain: 120 km × 30 km × 30 km

Solid-body rotation in a channel with
u = 20 m/s, v = 0 and w = 0.

BC: Lateral - Periodic; Top/Bottom - No-flux

Mountain height h0 = 5 km

Mountain profile:

hs(x,y) = h0 exp(−(r/a0)
2) cos2(πr/b0),

radial distance r =
√

(x− x0)2 +(y− y0)2,
a0 = 10 km, b0 = 6 km;

Period for one revolution t = 6000 s.

Initial tracer value centered at x0 = (x0,y0,z0),
with d = |x−x0|

ρ(x) = a cos2(dπ/2), if d ≤ 1

= 0, otherwise

DG simulations with full 3D and split 2D+1D. Starting with 32×8×8 elements, and 43 GLL
points on each element.
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DGM Flow over Mountain

Flow over a Mountain Test

Virtually identical results with 3D and split 2D+1D tests

Figure: Positions of the cosine blob as a function of time
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DGM Flow over Mountain

Flow over a Mountain Test: h Convergences

3D and split DG results are very close

Reduced convergence rate may be due to evolving the Jacobian-weighted scalar (ρ
√

G).
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NH3D Euler System

Idealized Non-Hydrostatic Atmospheric Model: [3D Euler System]

The compressible Euler system can be written in 3D Cartesian (x,y,z) coordinates:

∂ρ

∂ t
+∇ · (ρu) = 0

∂ρu
∂ t

+∇ · (ρ u⊗u+ pI) = −ρgk

∂ρθ

∂ t
+∇ · (ρθ u) = 0

ρ is the air density, u = (u,v,w) the velocity
vector and is θ the potential temperature,
and p is the pressure.

The pressure p and θ are related through the
equation of state:

p = p0

(
ρθ Rd

p0

)cp/cv

; p0 = 105Pa,

Split the variables ψ = ψ +ψ ′,
ψ ∈ {ρ,θ ,ρθ , p}, about the mean hydrostatic
state.

Computational form: Removing the hydrostatically balanced (d p/dz =−ρg) reference state
from the Euler system yields the perturbation form:

∂

∂ t


ρ ′

ρu
ρv
ρw

(ρθ)′

+ ∂

∂x


ρu

ρu2 + p′

ρuv
ρuw
ρuθ

+ ∂

∂y


ρv

ρvu
ρv2 + p′

ρvw
ρvθ

+ ∂

∂ z


ρw

ρwu
ρwv

ρw2 + p′

ρwθ

=


0
0
0
−ρ ′ g

0

 .
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NH3D IGW

NH3D: 3D Non-hydrostatic Gravity Waves

3D extension of the Inertia-Gravity Wave (IGW) test (Skamarock & Klemp, 1994)

Potential temperature perturbation (θ ′) in x-z plane

Evolution of potential temperature
perturbation (θ ′) in a uniform mean flow with
a stratified atmosphere.

Physical domain: 320 km × 160 km × 10 km

u = 20 m/s, v = 0 and w = 0.

BC: Lateral - Periodic; Top/Bottom - No-flux

IGW is triggered by perturbing θ = θ0 +θ ′:

θ
′(x,y,z) =

a2 sin(πz/zt)

a2 +(x− xc)2 +(y− yc)2

where θ0 = 300K, a = 5 km, zt = 10 km,
xc = 100 km, yc = 80 km.

Period of simulation t = 3000 s.
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NH3D Steady-State

IGW θ ′ Convergence: Split vs. Full 3D

Difference (Full3D – Split 2D+1D) field (θ ′)

Reference solution is computed with 10th-order DG scheme on 64×32×8 elements
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NH3D Steady-State

NH3d: Steady-State Test

A modified version of the steady-state test
(Ullrich & Jablonowski (MWR, 2012))

Geostrophically balanced initial conditions,
f -plane approximation. t = 3600s

Physical domain: Lx×Ly×Lz channel,
Lx = 40,000 km, Ly = 6,000 km, Lz = 30 km.

Initial velocity v = w = 0,

u(x,y,η) =−35sin2
(

πy
Ly

)
lnη exp

[
− (lnη)2

25

]
η = p/ps, u(x,y,η)⇒ u(x,y,z)

The “analytic solution” is the initial
condition.

The error characteristics of 3D and the split
2D+1D models are very close.
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NH3D Summary

Summary

To assess the Dimensional Splitting errors in 3D-DG Atmospheric Model

Non-Hydrostatic DG models based on full-3D and dimension-split (2D+1D) spatial discretization have
been developed in Cartesian geometry.

Time integration is performed with explicit SSP RK method

Both models recover expected convergence rate for smooth 3D advection problems

In terms of accuracy and convergence, both models found to be virtually identical for several test cases.

The 2D+1D split approach is promising in 3D atmospheric modeling, also it is slightly more
computationally efficient (≈ 10%) than full-3D.

Future Research:

Compare full-3D and split cases with practical IMEX or semi-implicit time integration methods

Compare the accuracy of the vertical discretization for split 2D+1D case and 2D + VLC (Vertical
Lagrangian Coordinates)

Thank You!
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