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The central-upwind finite-volume method for atmospheric
numerical modeling

Ramachandran D. Nair and Kiran K. Katta

Abstract. A semi-discretized central-upwind finite-volume (CFV) scheme
has been developed for atmospheric modeling applications. The non-oscillatory
property of the scheme is achieved by employing high-order weighted essen-
tially non-oscillatory (WENO) reconstruction method, and time integration re-
lies on explicit Runge-Kutta method. The WENO reconstruction is fifth-order
accurate and implemented in a dimension-split manner, and a fully 2D fourth-
order reconstruction is also considered for comparison. The CFV scheme is
computationally efficient and employs a compact non-staggered computational
stencil with an optional positivity-preserving filter. The scheme has been val-
idated for benchmark advection tests on the cubed-sphere. A global shallow-
water model and a 2D non-hydrostatic Euler solver are also developed based
on the same central finite-volume scheme.

1. Introduction

Finite-volume (FV) discretization has become a method of choice for many
new generation atmospheric models, due to its inherent conservation properties and
geometric flexibility to adapt various grid structures. A large class of FV meth-
ods for solving hyperbolic conservation laws are based on high-order extensions of
the Godunov scheme [G], collectively known as the Godunov-type schemes. The
central-upwind finite-volume (CFV) schemes [KNP,KL] are a subset of Godunov-
type methods for solving hyperbolic conservation laws, and which combines the nice
features of the classical upwind and central FV [NT] methods. In contrast with the
upwind methods, the CFV schemes do not require characteristic decomposition of
the hyperbolic system or expensive Riemann solvers. Semi-discrete formulation of
CFV schemes avoid staggered grids and are relatively easy to implement, for prac-
tical applications. Our focus is on the application of CFV scheme for solving three
major building blocks of a complex 3D atmospheric model: global linear transport
equation with positivity preservation, shallow-water equations on the sphere which
mimics the horizontal aspect of atmospheric dynamics, and the compressible 2D
Euler equations in x-z plane for the vertical dynamics.
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2. Semi-Discrete CFV Schemes

In order to describe the 2D CFV scheme, we first consider the following con-
servation law on (x, y) Cartesian plane with a source term S, as follows:

(2.1)
∂ U

∂ t
+∇ · F(U) = S(U) in D × (0, T ],

where U = U(x, y, t) is a conservative quantity with initial value U0 = U(x, y, 0),
F(U) is a generic the flux function. The domain D is assumed to be rectangular
and doubly periodic with non-overlapping rectangular cells Iij = [xi−1/2, xi+1/2]⊗
[yi−1/2, yi+1/2], with the grid-spacings Δx and Δy. Following [KNP,KY], the
semi-discrete form on a rectangular cell Iij with boundary Γk can be written as
follows:

(2.2)
dŪij

dt
=

−1

ΔxΔy

[
4∑

k=1

∫
Γk

F̂ · n
]
+ S̄ij

where S̄ij is the the cell-averaged source term and, Ūij is the cell average which
evolves in time and is subject to the following conservation constraint,

(2.3) Ūij =
1

ΔxΔy

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

Pij(x, y) dxdy.

In (2.3), Pij(x, y) is the piecewise polynomial function on Iij , which is approximated
by a suitable reconstruction function of targeted order of accuracy. We consider a
fifth-order Weighted Essentially Non-Oscillatory (WENO5) 1D reconstruction [BL]
with a dimension-split approach, and a fully 2D fourth-order reconstruction [KY].
For CFV with WENO5 reconstruction one flux-point on each cell walls are used
(Fig. 1 left panel), resulting a simple FV discretization. However, with a fully 2D
reconstruction each cell wall requires three flux evaluation (Fig. 1, right panel). For
example, the flux integral in (2.2) on the east wall ΓE for the fully 2D reconstruction
is approximated by the Simpson’s rule,∫

ΓE

F̂ · n ≈ Δy

6

[
F̂i+1/2,j−1/2 + 4F̂i+1/2,j + F̂i+1/2,j+1/2

]
,

where F̂i+1/2,: is the one-sided central-upwind flux formula [KY] which is depen-
dent on the local speed αi+1/2,: as follows (for convenience dependence on j is
suppressed):

F̂i+1/2 =
α+
i+1/2F (U−

i+1/2)− α−
i+1/2F (U+

i+1/2)

α+
i+1/2 − α−

i+1/2

+
α+
i+1/2α

−
i+1/2

α+
i+1/2 − α−

i+1/2

[
U+
i+1/2 − U−

i+1/2

]

The local speed is given by the eigenvalues λ� of the flux Jacobian at the left (−)
and right (+) sides of the cell interface such that

α+
i+1/2 = max

[
λ�

(
∂F

∂U

)
, 0

]
, α−

i+1/2 = min

∣∣∣∣λ�

(
∂F

∂U

)
, 0

∣∣∣∣
The final form of the semi-discrete CFV scheme reduces to the following ODE:

(2.4)
dŪij

dt
= L(Ūij),

which can be solved using a high-order explicit strong stability-preserving Runge-
Kutta method [GS,KNK].
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Figure 1. Schematic of reconstruction on CFV cells, where
marked points on the cell walls denote the flux points on which
fluxes are evaluated. The left panel shows a cell requiring two 1D
reconstruction (WENO5) in each coordinate direction. The right
panel shows a cell requiring fully 2D reconstruction for which 3
flux points on each wall.

3. The shallow water model on the cubed-sphere

The physical domain is a sphere S, based on the cubed-sphere geometry [SA].
The cubed-sphere geometry consists of partitioning S into six identical regions
which are obtained by the equiangular central projection (gnomonic) projection
[N] of the faces of the inscribed cube onto the surface of S. Each of the local
coordinate systems is free of singularities, and creates a non-orthogonal curvilinear
coordinate system on S. However, the edges of the cubed-sphere faces are not
continuous. The local coordinates (or central angles of the projection) for each face
are x1 = x1(λ, θ), x2 = x2(λ, θ) such that x1, x2 ∈ [−π/4, π/4], where λ and θ
are the longitude and latitude, respectively, of a sphere with radius R. The metric
tensor, Gij associated with the transformation is

Gij =
R2

ρ4 cos2 x1 cos2 x2

[
1 + tan2 x1 − tanx1 tanx2

− tanx1 tanx2 1 + tan2 x2

]
,

where i, j ∈ {1, 2} and ρ2 = 1+ tan2 x1 +tan2 x2. The Jacobian of the transforma-

tion (the metric term) is
√
G = [det(Gij)]

1/2.
The flux-form shallow water (SW) model developed on the cubed-sphere relies

on non-orthogonal curvilinear coordinates [SA]. The SW equations are treated in
tensorial form with covariant (ui) and contravariant (ui) wind vectors, which are
related through ui = Giju

j , ui = Gijuj and Gij = G−1
ij ; where i, j ∈ {1, 2}.

The orthogonal components of the spherical wind vector v(λ, θ) = (u, v) can be
expressed in terms of contravariant vectors (u1, u2) as follows,[

u
v

]
= A

[
u1

u2

]
, ATA = Gij .

The details of the local transformation laws and A for each face of the cubed-sphere
can be found in [N].

The governing equations for inviscid shallow-water flow (on a rotating sphere) of
a thin layer of fluid (2D) are the horizontal momentum and the continuity equations
for the height h. Here, h is the depth of the fluid and it is related to the free surface
geopotential height (above sea level) Φ = g (hs + h), where hs denotes the height
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Figure 2. A cubed-sphere with 10 × 10 × 6 FV cells (volumes),
which span the entire surface of the sphere S. On the computa-
tional domain the grid cells are uniformly spaced (Δx1 = Δx2).
The halo regions required for CFV stencil at the cubed-sphere face
edges are created with 1D interpolation along the grid lines.

of the underlying mountains and g is the gravitational acceleration. Thus the
prognostic variables are u1, u2 and h, and the shallow-water equations on S can be
written in a compact form following the formulation [NTL]:

(3.1)
∂

∂t
U+

∂

∂x1
F1(U) +

∂

∂x2
F2(U) = S(U),

where the state vector U and the flux vectors F1,F2 are defined by

U =
[
u1, u2,

√
Gh

]T
, F1 =

[
E, 0,

√
Ghu1

]T
, F2 =

[
0, E,

√
Ghu2

]T
,

E = Φ + 1
2 (u1 u

1 + u2 u
2) is the energy term. The source terms S is a function of

relative vorticity ζ, Coriolis term f = 2ω sin θ, and the contravariant wind vectors
(u1, u2), defined as:

(3.2) S(U) =
[√

Gu2(f + ζ),−
√
Gu1(f + ζ), 0

]T
, ζ =

1√
G

[
∂u2

∂x1
− ∂u1

∂x2

]

3.1. Numerical Experiments.
3.1.1. Conservative transport on the cubed-sphere. The transport problem has

fundamental importance for atmospheric modeling. Therefore the first test we
consider is a linear transport problem, a solid-body rotation of cosine profile (cosine-
bell) on the sphere, which is a benchmark test suggested in [W]. The transport
equation on the cubed-sphere for a scalar h can be written as [N]:

(3.3)
∂ψ

∂t
+

∂u1ψ

∂x1
+

∂u2ψ

∂x2
= 0,

where ψ =
√
Gh. Note that Eq.(3.3) may be considered as a special case of (3.1)

with the prescribed velocity fields.
The non-divergent velocity filed is defined to be u = u0(cos θ+ sinλ sin θ)/

√
2,

v = −(u0 sinλ)/
√
2. The parameter u0 = 2πR/(12 days), for a sphere with radius

R, scaled in such a way that the wind field translates the initial cosine-bell in the
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Figure 3. Time traces of normalized l1, l2, l∞ errors for the solid-
body rotation on the sphere for a complete revolution (12 days).

north-east direction, with a period of 12 days for a complete revolution. Since
the exact solution is known, time tracers of the error measures (l1, l2, l∞) can be
computed. Initially the cosine-bell h(λ, θ, t) is centered at (λ = 3π/2, θ = 0) with
a base radius r0 = R/3

h(λ, θ, t = 0) =

{
500 [1 + cos(πrd/r0)] if rd < r0
0 if rd ≥ r0

,

where rd is the great-circle distance between (λ, θ) and the centre of the cosine-bell.
The CFV schemes employing a fully 2D fourth-order reconstruction and a di-

mension split fifth-order Weighted Essentially Non-Oscillatory (WENO5) recon-
struction methods are used for the transport equation (3.3). The height of the
cosine-bell upon initialization is h ∈ [984.2, 0], after a full revolution with the
positivity-preserving filter [KNK] the height h ∈ [978.6, 0]. The resolution is
45× 45× 6 (≈ 2◦) with CFL 0.25. Figure 3 shows the time evolution of l1, l2 and
l∞ errors. The fourth-order scheme scores slightly better than the split WENO5
in terms of accuracy. However, as far as the computational efficiency and ease of
implementation on the cubed-sphere are concerned, the WENO5 turned out to be a
better option. Hereafter, for the numerical experiments, we only report the results
with the CFV scheme employing WENO5 reconstruction.

3.1.2. Zonal flow over an isolated mountain. This test case is particularly use-
ful for studying the effectiveness of the numerical scheme in conserving integral
invariants such as mass and total energy. For this benchmark test, the flow filed
is highly nonlinear and no analytic solution is available, a complete description of
this test is given in [W]. The initial velocity (u, v) = (u0 cos θ, 0) and height field
is given by g h = g h0 − u0

2 (2 aω + u0) sin
2 θ, where R and ω are the earth’s radius

and angular velocity, respectively; u0 = 2πR/(12 days), and gh0 = 2.94× 104 m2/
s2. The mountain (circular cone) is centered at (λc = 3π/2, θc = π/6) with height
hs = 2000 (1− r/a) m, where a = π/9 and r2 = min[a2, (λ− λc)

2 + (θ− θc)
2]. The

mean equivalent depth of the atmosphere is set to be h0 = 5960 m. Figure 4 shows
simulated results (WENO5) after 2 and 15 days, where an approximate resolution
of 2◦, and CFL ≈ 0.5 were used.
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Figure 4. Height (top) and vorticity (bottom) fields after 2 and 15 days.

4. CFV Non-Hydrostatic 2D Model

Here we demonstrate the application of CFV for a non-hydrostatic (NH) at-
mospheric model, in a simple 2D (x-z) Cartesian setup. We have developed a
compressible Euler solver based on CFV, which employs the following atmospheric
adaptation of compressible Euler system [GR,NN]

(4.1)
∂

∂t
U+

∂

∂x
F(U) +

∂

∂z
G(U) = S(U)

where

U =

⎡
⎢⎢⎣

ρ′

ρu
ρw
ρΘ′

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρu
ρu2 + p′

ρuw
ρuΘ

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

ρw
ρwu

ρw2 + p′

ρwΘ

⎤
⎥⎥⎦ , S =

⎡
⎢⎢⎣

0
0

−ρ′g
0

⎤
⎥⎥⎦ .

In the above system, ρ is the density of fluid, u is the velocity component in the
x-direction (horizontal), w is the velocity component in the z-direction (vertical),
p is the pressure, Θ is the potential temperature and S is the source term. The
variables ρ, Θ and p are decomposed as the sum of mean state (̄.) and perturbation
(.)′; ρ = ρ̄ + ρ′, p = p̄ + p′ and Θ = Θ̄ + Θ′, such that the mean-state holds
hydrostatic relation dρ̄/dz = −ρ̄g.

The potential temperature Θ and the real temperature T follow the Exner
relation Θ = T (p0/p)

Rd/cp . The system (4.1) is closed by the equation of state,

p = C0(ρΘ)γ where C0 = Rγ
dp

−Rd/cv
0 . The reference surface pressure p0 = 105 Pa

and the other thermodynamic constants are: γ = cp/cv, Rd =287 J kg−1 K−1, cp =
1004 J kg−1 K−1, cv = 717 J kg−1 K−1.
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Figure 4 shows a rising bubble [WS,NN] in a convectively neutral atmosphere
simulated with the CFV scheme with WENO5 reconstruction procedure. The con-
vective thermal uses a hydrostatic balance based on a constant potential tempera-
ture with zero initial wind, and the bubble is triggered by perturbing the potential
temperature. The model domain is [0, 20] km ×[0, 10] km, and grid-spacing is uni-
formly set to Δx = Δz = 133 m such that CFL ≈ 0.65, with an explicit third-order
Ruge-Kutta integrator [GS]. Top panels in Fig. 4 shows the initial and final (1000s)
thermal bubble (Θ′), and lower panels show the horizontal and vertical wind fields.
The CFV Euler solver simulates bubble structure quite well as compared to other
high-order model results [WS,NN].

Figure 5. Convection in a neutral atmosphere simulated by the
CFV Euler solver. Initial potential temperature perturbation (Θ′)
is shown in the top left panel and top right panel shows the convec-
tive bubble after 1000 s of simulation, lower left and right panels
show the wind fields u and w at 1000 s, respectively.

5. Summary

We have developed a central-upwind finite volume (CFV) scheme for atmo-
spheric modeling applications. A novel feature of this method is its simplicity,
in terms of implementation. The CFV approach does not rely on characteristic
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decomposition or expensive Riemann solver. The CFV scheme combined with the
fifth-order WENO reconstruction employed in a dimension-split manner. The high-
order dimension-split approach on the cubed-sphere did not create any significant
accuracy issue as compared to a fourth-order fully 2D reconstruction. The tracer
transport with CFV has the positivity-preserving option. The nonlinear shallow-
water results are comparable to those with high-order conventional upwind based
Godunov-type FV schemes [CX,UJ]. The Euler solver based on CFV results are
promising. The 2D CFV schemes considered herein will be further extended to a
3D non-hydrostatic atmospheric model in future.
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