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ABSTRACT

The discontinuous Galerkin (DG) discretization relies on an integral (weak) formulation of the hyperbolic

conservation law, which leads to the evaluation of several surface and line integrals for multidimensional

problems. An alternative formulation of the DG method is possible under the flux reconstruction (FR)

framework, where the equations are solved in differential form and the discretization is free from quadrature

rules, resulting in computationally efficient algorithms. The author has implemented a quadrature-free form

of the nodal DG method based on the FR approach combined with spectral differencing (SD), in a shallow-

water (SW) model employing cubed-sphere geometry. The performance of the SD model is compared with

the regular nodal DG variant of the SWmodel using several benchmark tests, including a viscous test case. A

positivity-preserving local filter is tested for SD advection that removes spurious oscillations while being

conservative and accurate. In this implementation, the SD formulation is found to be 18% faster than the DG

method for inviscid SW tests cases and 24% faster for the viscous case. The results obtained by the SD

formulation are on par with the regular nodal DG formulation in terms of accuracy and convergence.

1. Introduction

Among the emerging numerical methods for spatial

discretization, the discontinuousGalerkin (DG)method

(Cockburn 1997) is considered to be a prominent can-

didate for atmospheric modeling (Nair et al. 2011) be-

cause of multiple computationally attractive features

such as conservation, high-order accuracy, and excellent

parallel efficiency. The DG methods employ an integral

(weak) formulation of the hyperbolic conservation law

in the solution process. This leads to the evaluation of

several surface and line integrals in the discretization of

multidimensional problems, and results in a robust but

computationally expensive scheme. In an effort to im-

prove the computational efficiency of the DG method,

Atkins and Shu (1998) introduced a quadrature-free

form. Another method, the spectral difference scheme

(Kopriva and Kolias 1996; Liang et al. 2013), employs

the differential form of the conservation law and avoids

surface and line integrals altogether in the discretiza-

tion, while being accurate.

Recently, Huynh (2007) introduced a new approach to

high-order accuracy called flux reconstruction (FR), where

equations are solved in differential form. An interesting

feature of the FR approach is that it unifies several existing

element-based high-order methods such as DG, spectral

difference, and spectral volume methods into a common

framework. The discontinuous fluxes at the element edges

are corrected by correction functions, which maintain flux

continuity across the element edges. Individual schemes in

the framework can be recovered by choosing the appro-

priate correction function (Huynh 2007). The FR frame-

work further can be extended for diffusion problemswhere

several existing schemes, including those used for the DG

method, are reformulated or simplified (Huynh 2009). The

subtle difference among the various schemes is dependent

only on the choice of these correction functions. This is an

active area of research, in which new variants of FR

scheme such as the ‘‘energy stable FR’’ (Allaneau and

Jameson 2011), and more sophisticated reconstruction

functions (Huynh 2014) with computationally attractive

properties have been recently introduced.

A nonstaggered version of spectral difference method

using the FR approach renamed as the correction
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procedure via reconstruction (CPR) approach in-

troduced for the Navier–Stokes equations (Gao et al.

2013). The quadrature-free nodal DG method can be

obtained by the FR procedure (see Gao et al. 2013),

a potential advantage of this approach being the com-

putational efficiency, which stems from the differential

formulation of the governing equations. May (2011)

showed that the quadrature-free nodal DG method and

the collocation-based (unstaggered) spectral difference

method are equivalent under certain conditions. Re-

cently, De Grazia et al. (2014) demonstrated the connec-

tion between a nodal DG scheme and the corresponding

FR formulation using the two-dimensional (2D) advection

equation, and compared the computational efficiency.

In this paper we describe the implementation of the

quadrature-free DG based on the FRmethod [hereafter

this is referred to as the FR based spectral differencing

(SD) method] for the shallow-water (SW) equations on

the cubed sphere, and compare its performance with

a regular nodal DG method employing the integral

(weak) formulation (Bao et al. 2014). The SW test case

also includes a viscous flow test where the viscous fluxes

(diffusion terms) are discretized with the SD approach.

In addition, a positivity-preserving filter is tested for the

SD advection using a standard benchmark test.

The remainder of the paper is organized as follows.

The SW model, nodal DG, and SD approaches are

presented in section 2. Section 3 describes numerical

experiments, followed by a summary in section 4.

2. Shallow-water model on the cubed sphere

Various formulations of the SW equations on the

cubed sphere using the nodal DG discretization can be

found in Bao et al. (2014), Nair (2009), Nair et al. (2005),

and Giraldo et al. (2002). The cubed-sphere formulation

consists of mapping a cube onto a sphere by the central

(gnomonic) projection, which results in nonorthogonal

curvilinear spherical domain (Sadourny 1972). The

computational domain D can be expressed in terms of

local coordinates [x(l, u), y(l, u)] on each face of the

cube such that 2p/4# x, y#p/4, and (l, u) are the reg-

ular spherical longitude–latitude coordinates of a sphere

with radius R. The metric tensor Gıȷ associated with the

transformation is

G
ıȷ5

R2

r4 cos2x cos2y

�
11 tan2x 2tanx tany

2tanx tany 11 tan2y

�
, (1)

where ı, ȷ 2 f1, 2g and r2 5 11 tan2x1 tan2y. The

Jacobian of the central mapping (the metric term) isffiffiffiffiffi
G

p
5 [det(Gıȷ)]

1/2. For brevity, we only outline the SW

equations here. Details of the cubed-sphere mapping

and SW formulation can be found in Nair et al. (2005).

The SW equations are treated in tensor form with

covariant (uı) and contravariant (uı) wind vectors, which

are related through uı 5Gıȷu
ȷ, uı 5Gıȷuȷ, andGıȷ 5G21

ıȷ .

The inviscid SW equations can be written in terms of the

fluid depth h as

›

›t
U1

›

›x
F1(U)1

›

›y
F2(U)5 S(U) , (2)

where U5 ðu1,u2,
ffiffiffiffiffi
G

p
hÞT is the state vector combined

with Jacobian
ffiffiffiffiffi
G

p
. The terms F1 and F2 are flux vectors

and S is the source vector, defined as follows:

F15 (E, 0,
ffiffiffiffiffi
G

p
hu1)

T
, F2 5 (E, 0,

ffiffiffiffiffi
G

p
hu2)

T
,

S(U)5 [
ffiffiffiffiffi
G

p
u2(f 1 z),2

ffiffiffiffiffi
G

p
u1( f 1 z), 0]

T
,

where E5F1 (1/2)(u1u
1 1 u2u

2) is the energy term,

F5 g(h1hs) is the geopotential height, hs is the sur-

face topography, and g is the gravitational accelera-

tion. The source vector contains the relative vorticity

z5 (›u2/›x2 ›u1/›y)/
ffiffiffiffiffi
G

p
and the Coriolis parameter f.

A viscous SW model contains additional diffusive

fluxes on the right-hand side of (2). For simplicity, we

consider the viscous flux vector to be defined in terms of

a scalar viscosity combined with a constant diffusion

coefficient n, which may be written as (Nair 2009),

D(U)5 ðn ffiffiffiffiffi
G

p
=2
s u1, n

ffiffiffiffiffi
G

p
=2
s u2, 0ÞT, where =2

s denotes

the spherical Laplacian in cubed-sphere coordinates.

For an arbitrary variableU, the Laplacian terms inD(U)

can be written in the following explicit form:

ffiffiffiffiffi
G

p
=2
sU[

›

›x

� ffiffiffiffiffi
G

p
G11 ›U

›x
1

ffiffiffiffiffi
G

p
G12 ›U

›y

�

1
›

›y

� ffiffiffiffiffi
G

p
G21 ›U

›x
1

ffiffiffiffiffi
G

p
G22 ›U

›y

�
. (3)

a. Nodal DG discretization

For simplicity, we consider a scalar component of the

system in (2) on the computational domain D, which

consists of Ne 3Ne 3 6 elements, where Ne is the num-

ber of elements in x or y direction:

›U

›t
1

›F1(U)

›x
1

›F2(U)

›y
[

›U

›t
1$ � F(U)

5 S(U) in D3 (0,T], (4)

where F5 (F1, F2), $5 (›/›x, ›/›y), and T is a pre-

scribed time. Without loss of generality, we may de-

scribe the DG discretization on a generic element Vij in

D with the boundary Gij. Let Vh be a vector space of

polynomials of degree up to N, and let Uh be the
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approximate solution for U in Vh. Then the weak

Galerkin formulation of the problem can be obtained by

multiplying (4) by a test function uh 2 Vh, and in-

tegrating by parts over Vij (Cockburn 1997):

d

dt

ð
V

ij

Uhuh dV2

ð
V

ij

F(Uh) � $uh dV1

ð
G
ij

F̂ � nuh dG

5

ð
V

ij

S(Uh)uh dV, " Vij 2 D ,

(5)

where n is the outward-drawn unit normal vector on Gij,

and F̂ is the numerical flux. We use the local Lax–

Friedrichs (Rusanov) numerical flux,

F̂(Uh)5
1

2
f[F(U2

h )1F(U1
h )]2amax(U

1
h 2U2

h )ng , (6)

whereamax is themaximumof the eigenvalues of the flux

Jacobian for the SW system, which are defined in x and y

direction as (Nair et al. 2005)

amaxjx5max(ju1j1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11gh

q
),

amaxjy5max(ju2j1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G22gh

q
) ,

where U2
h and U1

h are values of Uh, respectively, at the

interface (Fig. 1a) along the boundary Gij.

Solving the weak form in (5) involves mapping the

nonoverlapping rectangular elements Vij in the com-

putational domainD to a standard element V̂5 (21, 1)2.

The grid spacings are defined to be Dxi 5 (xi11/2 2 xi21/2)

and Dyj 5 (yj11/2 2 yj21/2), such that jVijj5DxiDyj. Let
xi 5 (xi11/2 1 xi21/2)/2 and yj 5 (yj11/2 1 yj21/2)/2, then

the mapping Vij / V̂ can be established through the

local coordinates j, h 2 [21, 1] as follows:

j5
2(x2xi)

Dxi
0

›

›x
5

2

Dxi

›

›j
; h5

2(y2yj)

Dyj
0

›

›y
5

2

Dyj

›

›h
.

(7)

To evaluate the integrals in (5) efficiently, an orthogonal

polynomial-based basis set is usually employed. Here we

adopt the nodal DG discretization, which employs the La-

grange polynomials hk(j), 0# k#N (with N1 15Ny

solution points), as the basis functions with roots at the

Gauss–Lobatto–Legendre (GLL)quadraturepointsfjkgNk50

(Deville et al. 2002). The basis functions are defined by

hk(j)5
(j2 1)(j1 1)P0

N(j)

N(N1 1)PN(jk)(j2 jk)
, (8)

where PN(j) is the Legendre polynomial of degree N,

and the derivative of the basis function h0k(j) at the nodal
points constructs the derivative matrix:

h0k(jl)5

8>>>>>>>>>>>><
>>>>>>>>>>>>:

PN(jk)

PN(jl)

1

(jk2 jl)
if k 6¼ l ,

2
(N1 1)N

4
if k5 l5 0,

(N1 1)N

4
if k5 l5N ,

0 otherwise,

(9)

required for the collocation differentiation.

The approximate solutionUh and test function uh can

be expanded in terms of a tensor product of the La-

grange basis functions, and in the case of Uh:

Uh(j,h)5 �
N

k50
�
N

l50

Uh(jk,hl)hk(j)hl(h) . (10)

FIG. 1. A schematic diagram showing the flux reconstruction (FR) procedure where squares indicate solution points. (a) Discontinuous

state of the solutions U2 and U1 on the left and right of the element interface xi21/2, respectively, are marked as open circles. Piecewise

polynomialsFi21(x) andFi(x) represent the discontinuous flux functions, which belong to the adjacent elements from the left and right side

of xi21/2, respectively. (b) ~Fi(x) is the reconstructed continuous flux function by FR procedure, which has the upwind flux value (black dot)

at the element interface.
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Figure 2 shows a GLL quadrature grid with 43 4 points.

Substitution ofUh and uh in (5) simplifies to an ordinary

differential equation (ODE) in time dUh/dt5L(Uh),

where L denotes the nodal DG spatial discretization.

The details of the solution procedure are given in Nair

et al. (2011), and will not be further discussed herein.

b. The flux reconstruction (correction) procedure

The differential form of (4) can be directly solved by

employing a collocation-based spectral difference method

in the FR framework (Gao et al. 2013), without consider-

ing the integral form in (5). In particular, we are interested

in the flux-reconstructed spectral difference (SD) scheme

(i.e., quadrature-free nodalDGmethod), referred to as the

SD method. A nice feature of the SD scheme is that, for

a given number of solution points (ji, hj), it employs the

same GLL grid as that used for the nodal DG discretiza-

tion (see Fig. 2). This makes the SD implementation rel-

atively easy in the existing nodal DG model, by avoiding

the need to change the grid or data structure.Nevertheless,

the numerical operations for the DG and SD schemes

on the GLL grid are different. Themajor difference is that

the SD scheme directly discretizes the differential form of

the partial differential equation (PDE) and does not rely

on integrals, which leads to efficient implementation and

computational savings.

Since the flux correction is done in a 1D manner,

it is convenient to explain the basic properties of

the SD method using a simple 1D conservation law

given by ›Ui/›t1 ›Fi(x)/›x5 0, on the ith element

I5 [xi21/2, xi11/2], where Ui is represented as a polynomial

of degreeN, withNy 5N1 1 solution points on I. The flux

correction procedure (Huynh 2007) consists of introducing

a new flux function, ~Fi(x), which is a degreeNy polynomial

(i.e., one degree higher than the solution polynomial Ui).

Furthermore, ~Fi(x) approximates Fi(x) on the element

and takes the common value F̂i [i.e., the upwind flux in (6)]

at the element edges xi61/2 (see Fig. 1). Thus, the re-

constructed flux function ~Fi(x) can be expressed as follows:

~Fi(x)5Fi(x)1 [F̂i21/22F(xi21/2)]GL(x)
1 [F̂i11/2 2F(xi11/2)]GR(x) , (11)

where GL and GR are the left and right correction func-

tions, respectively, defined by Ny-degree polynomials.

At the element edges these functions are designed to satisfy

the following properties: GL(xi21/2)5 1, GL(xi11/2)5 0; for

the right correction function GR(xi21/2)5 0, GR(xi11/2)5 1.

Note that the reconstruction functions essentially maintain

the continuity of the fluxes at the element edges. Now the

1D conservation lawwith the reconstructed flux in (11) can

be written as follows:

›Ui,k

›t
1

›Fi,k

›x
1 [F̂i21/22F(xi21/2)]G0L(xi,k)

1 [F̂i11/22F(xi11/2)]G0R(xi,k)5 0, (12)

where k5 0, 1, . . . , N. The choice of correction func-

tions is very crucial, for the SD method these functions

FIG. 2. TheGLLquadrature stencils used for (a) theDGand (b) SDmodels on the reference element [21, 1]2, with

43 4 points. The solution points are marked by black dots on both stencils. Squares with black dots on the edges of

the DG stencil indicate flux points on which flux (line) integrals are computed. Circles with black dots on the SD

stencil indicate the flux points, which coincide with the solution points, where the flux derivatives are computed.
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are written in terms of Radau polynomials [for details

see Huynh (2007)].

c. FR versus DG formulation

Although the FR and DG methods are formulated in

differential and integral forms respectively, they are

closely related. Huynh (2007) showed that the FR ap-

proach using the ‘‘gDG’’ correction function is identical

to the standard DG weak formulation in the 1D case. A

more rigorous proof is given in Gao et al. (2013), based

on the classical ‘‘lifting operator’’ concept as used in

Bassi and Rebay (1997). If we combine the second and

third integral terms on the left-hand side of the weak

form in (5), and apply Green’s method, we obtain

2

ð
V

ij

F(Uh) � $uh dV1

ð
G
ij

F̂ � nuh dG

5

ð
V

ij

$ � F(Uh)uh dV1

ð
V

ij

(F̂2F) � nuh dG (13)

5

ð
V

ij

[$ � F(Uh)1 dh]uh dV , (14)

where dh is the so-called lifting function, such thatð
V

ij

dhuh dV5

ð
V

ij

(F̂2F) � nuh dV . (15)

Substituting (14) in (5) and simplifying yields the fol-

lowing differential form (see Gao et al. 2013):

›Uh

›t
1$ � F(Uh)1 dh 5 S(Uh) , (16)

which is formally equivalent to the integral form, subject to

the choice of the lifting function dh. A judicious choice for

dh together with consistent polynomial approximation for

the flux derivative leads to the conservative formulation of

(16). For example, in the 1Dcase, the quantities (correction

terms) in the square brackets of (12) represent dh. A direct

derivation for establishing the relation between the DG

and FR methods, in the context of the 2D advection

equation, can be found in De Grazia et al. (2014). The

connections and the subtle differences between FR and

DG schemes are a new topic of research in high-order

methods and details can be found inAllaneau and Jameson

(2011), De Grazia et al. (2014), and the references therein.

The SD discretization of the differential form in (16)

does not involve integral evaluation of the terms and

construction of amassmatrix as in theDG formulation in

(5). For practical implementation, the SD scheme seems

to be particularly attractive, as there are no surface or

volume integrals to be computed in multidimensional

cases. This is desirable for computationally intensive ap-

plication such as climate modeling.

d. Extension to 2D cases

Extending the SD scheme to the 2D case is straight-

forward. We consider a general rectangular element V
with area Dx3Dy, where the elemental indices are

suppressed for clarity. Using the local coordinates in (7),

the differential form in (4) can be written as follows:

›U(j,h)

›t
1

2

Dx

›F1(j,h)

›j
1

2

Dy

›F2(j,h)

›h
5S(j,h) . (17)

We are particularly interested in solving (17) on the

GLL grid [21, 1]2 withNy 3Ny points (jk, hl), as shown

in Fig. 2. By introducing corrected fluxes for F1 and F2 in

(17) using the relation in (11), we get the following semi-

discretized 2D SD scheme:

dU(jk,hl)

dt
1

2

Dx

›F1

›j
1

2

Dy

›F2

›h
1

2

Dx

(
[F̂1(21,hl)2F1(21,hl)]G0L(jk)
1[F̂1(1,hl)2F1(1,hl)]G0

R(jk)

)
1

2

Dy
f[F̂2(jk,21)

2F2(jk,21)]G0L(hl)1 [F̂2(jk, 1)2F2(jk, 1)]G0R(hl)g5 S(jk,hl) . (18)

For the SD scheme, the flux functions are expressed in

terms of Lagrange basis functions hk(j) and hl(h). The

derivatives ›F1/›j and ›F2/›h in (18) can be computed by

the collocation differentiation using h0k(j) and h0k(h) in

(9) as follows:

›F1

›j
5 �

N

k50
�
N

l50

F1(jk,hl)h
0
k(j)hl(h),

›F2

›h
5 �

N

k50
�
N

l50

F2(jk,hl)hk(j)h
0
l(h) . (19)

For the current application we consider the correction

function g2 or gLump,Lo as defined in Huynh (2007). The

explicit form of g2 at the left interface can be defined

as a weighted sum of the right Radau polynomials

RR,Ny
5 (21)Ny (PNy

2PNy21)/2 as follows:

g25
Ny 2 1

2Ny 2 1
RR,N

y
1

Ny

2Ny 2 1
RR,N

y
21 .

An interesting property of this function is that its de-

rivative vanishes at all solution points except at the left
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boundary of the GLL grid when evaluating G0
L, or at the

right boundary when evaluating G0
R [for details see Huynh

(2007)]. The derivatives g2 at the edges of the GLL grid

[21, 1] are given by G0
L(21)52Ny(Ny 2 1)/2, G0

L(1)5 0

and G0
R(1)5 0, G0

R(1)5Ny(Ny 2 1)/2.

For the SW system, (18) leads to a system of ODEs,

dU/dt5L(U), which can be solved with explicit Runge–

Kutta methods (Gottlieb et al. 2001; Nair 2009).

e. FR for diffusive fluxes

Bassi and Rebay (1997) introduced explicit diffusion

(viscous flux) in theDGdiscretization, and later Cockburn

and Shu (1998) laid a rigorous mathematical background

to this approach and generalized it to the so-called local

DG or LDG method. A wide body of literature is avail-

able for addressing the diffusion process in DG dis-

cretization (see Arnold et al. 2002). In this section, our

focus is the implementation of the FR scheme for diffu-

sive fluxes developed in Huynh (2009). This is based on

an improved version of the Bassi and Rebay (1997) ap-

proach, known as the ‘‘BR2’’ scheme (a special case of

the LDG method), which employs a compact computa-

tional stencil. TheDGdiscretization of diffusive fluxes on

the cubed-sphere grids introduces additional challenges

due to the metric terms involved in the curvilinear Lap-

lacian in (3). Nair (2009) implemented a version of the

LDG scheme for the viscous SW model on the cubed

sphere, but here we only outline the procedure.

For the viscous SW model, we consider a generic

component of the momentum equation by extending (4)

as follows:

›U

›t
1$ � F(U)5 n

ffiffiffiffiffi
G

p
=2
sU1 S(U) . (20)

The LDG discretization on the cubed sphere involves

introduction of an auxiliary variable q5$U, together

with following notation to represent the curvilinear

Laplacian =2
sU (Nair 2009; Bao et al. 2014):

q5

�
›U

›x
,
›U

›y

�
, M5

� ffiffiffiffiffi
G

p
G11

ffiffiffiffiffi
G

p
G12ffiffiffiffiffi

G
p

G21
ffiffiffiffiffi
G

p
G22

�
, and ~q5qMT.

The LDG discretization for (20) can be rewritten as

a first-order system:

q2$U5 0, (21)

~q5 qMT, and (22)

›U

›t
1$ � F(U)2 n$ � ~q5 S(U) . (23)

A weak formulation corresponding to the system in

(21)–(23) is then constructed for approximating the

diffusive fluxes [see Nair (2009) for details]. However,

the FR-based discretization of diffusive fluxes employs

a direct approach, which is free from integral formula-

tion (Huynh 2009; Gao et al. 2013). To illustrate the

procedure, we first use the above notation to represent

the curvilinear Laplacian in (3) in the following form:ffiffiffiffiffi
G

p
=2
sU5$ � ~q . (24)

TheFRapproach corrects the first (q) and second derivative

($ � ~q) involved in theLaplacian in a sequentialmanner.We

summarize the algorithm in the following steps:

d Step 1: Compute the gradient term q5 (›U/›x, ›U/›y)

using collocation differentiation on GLL nodes. Com-

pute the common solution Ucom 5 (U2 1U1)/2 at the

cell interfaces, where U2 and U1 denote the left and

right values of U at the interface, respectively.
d Step 2: Correct the gradient term q component-wise

using the FR procedure used in the SD discretization in

(12). For instance, the derivative ›U/›x is corrected as

2

Dx

�
›U

›j
1 [Ucom(21,h)2U(21,h)]G0L(j)

1 [Ucom(1,h)2U(1,h)]G0R(j)
�
.

Similarly correct the ›U/›y term and obtain the

corrected gradient qc. Denote qc together with metric

term as $Q5 qcMT.
d Step 3: Compute the common gradient $Qcom 5
($Q2 1$Q1)/2 at the interface, using the left and

right interface values of $Q. Using $Qcom, the second

derivative corresponding to the viscous flux is corrected

as described in step 2.

Note that for parallel implementation, the above algorithm

requires only one communication (nearest neighbor) for

each Laplacian evaluation, because of the compact com-

putational stencil. Thus, the SD approach for diffusion can

be significantly cheaper for incorporating hyperdiffusion

(=4) in practical models.

3. Numerical experiments

We consider three benchmark tests suggested by

Williamson et al. (1992, hereafter W92), for evaluating

numerical schemes used in spherical SWmodels.We use

these test cases to compare the performance of both SD

and DG methods.

a. Solid-body rotation (advection) test

The first test case is the solid-body rotation test, where

the initial scalar distribution is a cosine-bell profile,

which makes a complete revolution on the sphere in
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a 12-day period (W92). Although this is a linear trans-

port problem (not involving the full SW equations), it

provides a challenging test to evaluate the numerical

scheme on a complex domain such as the cubed sphere.

Since the exact solution is known at all times, time traces

of the standard errors can be computed. The cosine-bell

(U) is defined in spherical coordinates (l, u) as

U(l, u)5

(
(h0/2)[11 cos(prd/r0)] if rd , r0
0 if rd $ r0

, (25)

where rd is the great-circle distance between (l, u) and

the center of the cosine bell (lc, uc), h0 5 1000m is the

height of the bell. The radius of the sphere (the earth) is

R5 6:371 223 106 m and the base radius of the cosine

bell is r0 5R/3. The center of the cosine bell is initially

positioned on the equator at (lc, uc)5 (3p/2, 0). The

spherical velocity components (u, y) of the non-

divergent wind field are defined to be

u5 u0(cosa cosu1 sina cosl sinu) , (26)

y52u0 sina sinl , (27)

where u0 5 2pR/(12 days), and a is the flow orientation

parameter (W92). When a5p/4, the flow is along the

northeast direction; as a result the cosine bell passes

through four vertices and two edges of the cubed sphere

to complete one revolution.

We compare the SD results with that of the multi-

moment finite-volume (FV) results given in Chen and

Xiao (2008), which uses a method that has certain fea-

tures similar to SD methods. To make a rigorous com-

parison, we consider a relatively low-order SD grid

configuration with 32 3 32 3 6 elements (Ne 5 32) on

the cubed sphere such that each element employs 3 3 3

GLL points or nine degrees of freedom (dof). Note that

the FV computational stencil used by Chen and Xiao

(2008) is very similar to the 3 3 3 GLL grid, moreover,

both methods have the same dof per cell (element). For

this test we used a standard fourth-order Runge–Kutta

time integration scheme with time step Dt5 2025 s, so

that 512 iterations (12 days) are required for a complete

revolution. The numerical solution with the SD scheme

is shown in Fig. 3a, where the height of the cosine bell

has the range [210:1, 997:9]m. Zero-contour lines are

included in the plot, which clearly show the oscillatory

nature of the solution, which is typical of any high-order

advection scheme without a limiter. The absolute error

is shown in Fig. 3c. After a complete revolution, these

values are ‘1 5 2:2653 1022, ‘2 5 1:3813 1022, and

‘‘ 5 1:0803 1022, which are smaller than the corre-

sponding values shown in Table 4 of Chen and Xiao

(2008). The corresponding DG results are virtually

identical to that of the SD results; however, the SD

simulation is faster because of the reduced number of

inter-element (quadrature free) computations.

b. A positivity-preserving filter for SD advection

For atmospheric tracer transport models, the positiv-

ity preservation is considered to be a basic requirement.

FIG. 3. Orthographic projection for the SD results with the cosine-bell advection test on a 323 323 6 (Ne 5 32) element grid where each

element has 3 3 3 GLL quadrature points (Ny 5 3). (a) Numerical solution after 12 model days (or one revolution) where the contours

are ranging from 0 to 1000m with an increment of 100m. (b) As in (a), but with the bound-preserving (BP) filter. (c) Absolute error

(numerical 2 exact solution) after 12 model days, the contour ranges from 210 to 6 with an increment of 4.
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For passive tracers such as water vapor, and certain

chemical species, the global maximum and minimum

mixing-ratio values are known in advance. To preserve

the initial bounds of the numerical solutions and elimi-

nate negative concentrations we can apply a bound-

preserving (BP) filter as an additional option for the SD

advection scheme. The BP filter was introduced by

Zhang and Shu (2010) for DG methods, which is a local

scheme with attractive features such as conservation,

computational economy, and ease of implementation

(Zhang and Nair 2012). Since the nodal DG and SD

schemes employ the same type of stencils (Fig. 2), we

extend the filter to the SD case.

Let pij(x, y) be the SD solution polynomial on the cell

Vij with known (computed) cell-average uij. The BP

filter essentially replaces the oscillatory polynomial

pij(x, y) with a modified polynomial ~pij(x, y) such that

~pij(x, y)5 ûpij(x, y)1 (12 û)uij,

û5min

 					
M2 uij

Mij 2 uij

					,
					
m*2 uij

mij
*2 uij

					, 1
!
, (28)

where the local extrema are Mij 5max[pij(x, y)] and

mij* 5min[pij(x, y)]. In (28) M and m* are the global

maximum and minimum values of the initial condition,

respectively, which are usually known in the context of

the transport of certain atmospheric tracers. From (28) it

is clear that ~pij(x, y) preserves the cell-average uij, im-

plying local conservation when û 2 [0, 1]. Note that the

positivity-preserving option is a special case of the BP

filter, and can be achieved by setting m*5 0.

We tested the BP filter for SD advection using the

cosine-bell test with the same configuration considered

above. Figure 2b shows the SD numerical results with the

BP filter after one revolution, where the solution is free of

negative values, and the height of the bell is in the range

of [0, 996:6] m. The mass error for this case is found to be

within the order of machine precision, as expected.

c. Steady-state geostrophic flow

This is the steady-state test known as test case 2 in

W92. Since the exact solution is known, this test pro-

vides an excellent tool for studying the convergence of

the numerical solution. The wind field is uniform (non-

divergent) and is the same as (26)–(27), defined for the

solid-body rotation test. Here the nonlinear shallow-

water equations are geostrophically balanced during the

time evolution. The initial height field is defined as

gh5 gh02

�
Rvu01

u20
2

�
3 (sinu cosa2 cosl cosu sina)2,

(29)

where gh0 5 2:943 104 m2 s22, v is the angular velocity

of the earth, and other parameters are as defined for the

previous test case. The SW model is integrated for

5 model days as recommended in W92. Convergence of

the ‘1 and ‘‘ height errors with the SD version of the SW

model is shown in Fig. 4. Figure 4a shows the so-called

p errors, obtained by keeping the total number of ele-

ments the same (Ne 5 3), but varying the polynomial

degree N(5Ny 2 1) from 4 to 10. We employ the third-

order strong-stability-preserving Runge–Kutta (SSP-

RK) time integration scheme (Gottlieb et al. 2001) for

both variants of the SW model. The time step used for

this test was Dt5 180 s, except for the case whenN5 10,

for which Dt5 90 s. Figure 4b shows the h errors ob-

tained by fixing the degree of the polynomialN5 3 (i.e.,

using a 43 4 GLL grid and gradually varying the num-

ber of elements Ne 5 5, 7, . . . , 15). The convergence

results with SD discretization is identical to that of the

DG results (not shown), and consistent with the results

reported in Bao et al. (2014). The p errors (Fig. 4a) show

spectral convergence with the SD discretization while

h errors indicate more than fourth-order convergence,

which is consistent with the spatial order of accuracy of

the SD discretization. The SD version of the SW model

is found to be about 18% faster than the nodal DG

model for this test.

d. Zonal flow over an isolated mountain

The last SW test we consider deals with a zonal flow

over an isolatedmountain, also known as the SW test case

5 in W92. Zonal flow is the same as in the steady-state

flow described above [initial conditions in (26)–(29)];

however, a new set of parameters are chosen: a5 0, u05
20ms21, and the mean equivalent depth of the atmo-

sphere is set to be h0 5 5960m. Themountain is centered

at (lc, uc)5 (3p/2, p/6) with height hs 5 2000(12 r/a)m,

where a5p/9 and r2 5min[a2, (l2 lc)
2 1 (u2 uc)

2].

For the SW test case 5, the flow field is highly nonlinear

and no analytic solution is available. We use both DG and

SD discretization of the SW equations with the same grid

configurations (Fig. 2), and the time integration is per-

formed with a third-order explicit SSP-RK method as in

the previous test case. Figure 5a shows the numerical

results for the height (m) field with SD after 15 days of

model integration, with a time step of Dt5 240 s. A

cubed-sphere grid with 12 3 12 3 6 elements and the

fourth-order SD scheme employing 43 4 GLL points on

each element (Fig. 2a) are used for the simulation.

Figure 5b shows the difference between the SD and DG

solutions, which is negligibly small [O(10210) m]. For this

test case, high-order methods such as the spectral-

element method without spatial filtering introduce spu-

rious oscillations (spectral ringing). However, as in the
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case of theDGmethod (Nair et al. 2005), the SD solution

is found to be smooth and free of spurious oscillation.

Next we consider the influence of the diffusion mech-

anism in the evolution of the relative vorticity (z) fields

for the SD viscous SWmodel. A high-order version of the

SD model is integrated for 10 model days with Ne 5 18

and 6 3 6 GLL points on each element, which corre-

sponds to 18 horizontal resolution at the equator. The

diffusion coefficient n5 2:53 105 m2 s21 is used for the

viscous SWmodel. Vorticity fields are initially generated

near the mountain and are well developed after a few

days, spreading to the entire domain. Figures 6a and 6b

show the SD results with n5 0 at model days 2 and 10,

respectively. The inviscid solution at day 10 (Fig. 6b)

shows some spurious oscillations and small-scale features.

This noise is completely removed, as expected, for the

viscous model results shown in Fig. 6c. The DG SW

model discretizes the diffusion operator using the ‘‘BR2’’

scheme, which is a special case of LDG method (Nair

2009). For reference, the DG results with the same ex-

perimental setup are shown in Fig. 6d, which is visually

identical to the corresponding SD results (Fig. 6c). Note

that while the choice of diffusion coefficient n is some-

what arbitrary, technically, it should be a resolution-

(problem) dependent parameter. Nevertheless, our

choice of n is just for making a comparison of the SD

viscous results as opposed to the DG results.

One of the motivating factors for considering the SD

method is its inherent computational efficiency. In our

implementation, we found that the quadrature-free

version of the SW model is about 18% more efficient

(faster) than the nodal DG version, for the same quality

results. In addition, it is found that the SD viscous SW

model is about 24% more efficient than the DG coun-

terpart. For parallel implementation, the quadrature-free

SD diffusion operator requires only one MPI communi-

cation per Laplacian evaluation because of the compact

nature of the computational stencil. This is very promising

for practical atmospheric models, which usually employ

fourth-order (=4) hyperdiffusion, and the SD diffusion

process can be seamlessly extended for this purpose.

4. Summary

Standard DG discretization relies on the integral

(weak) form of the partial differential equations (PDE).

This invariably introduces several surface and line in-

tegrals on each element in the discretization, which are

evaluated by means of Gauss quadrature rules. The DG

schemes are known to be very accurate at a high com-

putational cost, partially due to the multiple integral

evaluations in the discretization. The flux reconstruction

(FR) approach of Huynh (2007) is a framework for high-

order schemes including the quadrature-free DGmethod,

FIG. 4. Convergence of the ‘1 (solid line) and ‘‘ (dashed line) height errors for the SW test case 2 (geostrophic flow) after 5 days of

simulation. (a) The p convergence where total number of elements fixed (Ne 5 3) and the degree of the polynomial is gradually increased.

(b) The h convergence where the degree of the polynomial is fixed (N5Ny 2 15 3) and the number of elements (Ne) is increased.
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and solves the equations in differential form by means of

spectral differencing. A potential computational advan-

tage of FR schemes is that the PDEs are directly dis-

cretized without volume or surface integrals. The flux

correction functions in the FR approach correct fluxes at

the element edges to maintain the continuity across ele-

ment edges.

We have implemented the quadrature-free form of

the DG method using the FR approach combined with

spectral differencing (the SD method) for the shallow-

water (SW) equations (both inviscid and viscous) on the

cubed sphere, and its performance is compared with the

regular nodal DG method. A bound (positivity) pre-

serving local limiter is tested for the SD advection

problem, which maintains the positivity of the solution

without degrading the accuracy or conservation prop-

erties of the SD scheme. The error norms show that the

results with both formulations are virtually identical;

however, the quadrature-free formulation is about 18%

more computationally efficient (faster) and is easy to

implement. For the viscous SWmodel employing second-

order diffusion, the SD model produces a visually

FIG. 5. (a) The simulated height field (m) with SD model for the SW test case 5 (flow over

a mountain) at day 15. The model is integrated at an approximate resolution 2.58
(Ne 5 12, Ny 5 4) with a time step Dt5 240 s. (b) The difference of height filed (SDminus DG)

from the results with the DG model, using the same model configuration.
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indistinguishable solution compared to the regular DG

counterpart. Moreover, for the viscous case, the SD

formulation is found be 24% more efficient. For a 3D

atmospheric model (Nair et al. 2009), we anticipate the

quadrature-free formulation will greatly improve effi-

ciency, which is an ongoing research project.
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