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Abstract A two-dimensional conservative nonhydrostatic (NH) model based on the compressible Euler
system has been developed in the Cartesian (x, z) domain. The spatial discretization is based on a Godunov-
type finite-volume (FV) method employing dimensionally split fifth-order reconstructions. The model uses
the explicit strong stability-preserving Runge-Kutta scheme and a split-explicit method. The time-split
approach is generally based on the split-explicit method, where the acoustic modes in the Euler system are
solved using small time steps, and the advective modes are treated with larger time steps. However, for the
Godunov-type FV method this traditional approach is not trivial for the Euler system of equations. In the
present study, a new strategy is proposed by which the Euler system is split into three modes, and a
multirate time integration is performed. The computational efficiency of the split scheme is compared with
the explicit one using the FV model with various NH benchmark test cases.

1. Introduction

Due to the availability of petascale supercomputing resources, there is a new trend in developing global
atmospheric models based on computationally intense nonhydrostatic (NH) dynamics. The finite-volume
(FV) approach emerged as a method of choice for discretization in such models [e.g., Tomita et al., 2008; Ska-
marock et al., 2012]. FV is one of the most popular approaches for solving atmospheric equations of motion
at all scales because of its inherent conservation, computational economy, and geometric flexibility; in addi-
tion, being a local method, it offers excellent parallel efficiency. Traditionally, FV models rely on staggered
grid system with at least a second-order spatial accuracy. Extending this approach to higher-order accuracy
with grid staggering is cumbersome, especially on curvilinear or unstructured grids. Recently, high-order
unstaggered FV schemes are introduced for solving NH equations as described in Ullrich and Jablonowski
[2012] and Li et al. [2013], which are based on so-called ‘‘Godunov-type’’ methods.

A large class of FV methods for solving hyperbolic conservation laws are based on high-order extensions of
the classical Godunov scheme [Godunov, 1959], often referred to as the Godunov-type schemes [van Leer,
1979; Collela and Woodward, 1984]. Although upwind-based Godunov-type FV methods are very popular in
computational fluid dynamics, they have been used for atmospheric NH modeling only recently [e.g.,
Ahmad and Linedman, 2007; Norman et al., 2011; Ullrich and Jablonowski, 2012; Li et al., 2013; Yang and Cai,
2014]. A Godunov-type method typically does not rely on staggered grids, and the cell-averaged solution is
not assumed to be continuous across the cell (control volume) edges. The discontinuity of the fluxes at the
cell interface is resolved by a Riemann solver (numerical flux). This mechanism provides an efficient way to
apply FV method for complex grid system including grid adaptivity [Toro, 1999]. For the present study, we
consider an upwind-based Godunov-type FV method (hereafter referred to as FV method) for solving fully
compressible Euler system of equations on a rectangular 2-D (x, z)-domain. The fluxes at the cell interface
are reconstructed by fifth-order accurate schemes based on the PQM (piecewise quartic method) [White
and Adcroft, 2008]. The AUSM1-up (advection upstream splitting method) [Liou, 2006] numerical flux is used
for the FV model, which is particularly effective for low Mach number problems such as NH atmospheric
modeling [Ullrich and Jablonowski, 2012; Chen et al., 2013; Yang and Cai, 2014].

A major challenge for NH modeling is to develop a practical time stepping method. This is because of the
wider spectrum of spatial and temporal scales present in the atmosphere, encompassing fast sound and
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gravity wave propagation as well as the slower advection. The high-aspect ratio between horizontal and
vertical grid-spacing combined with fast-moving acoustic waves impose a stringent stability constraint on
explicit time stepping. This makes the problem computationally very challenging. Although the explicit
Runge-Kutta scheme is robust and accurate, it is not an efficient choice for NH modeling because the strin-
gent CFL (Courant-Friedrichs-Lewy) stability restriction associated with acoustic waves and relatively tiny
grid-spacing (Dz) in the vertical direction force very small time steps. There are several ways to circumvent
this difficulty by employing implicit or semi-implicit type time integration procedures as described in Durran
[1999]. Specifically, horizontally explicit and vertically implicit (HEVI) time integration strategy [Weller et al.,
2013] is a practical option, and adopted for high-order FV [Ullrich and Jablonowski, 2012] and discontinuous
Galerkin methods [Bao et al., 2015]. Implicit-explicit (IMEX) temporal integration is another choice as recent-
ly tested in Kopera and Giraldo [2014], Durran and Blossey [2012], and Bourchtein and Bourchtein [2009].

However, an important advantage of explicit time stepping schemes is their simplicity and high parallel effi-
ciency due to locality with minimal communications between processors when solving the equations of
motion. A common strategy to take the advantages of explicit schemes with enhanced computational effi-
ciency is a splitting approach in which the equations of motion are split into fast-slow components. The
time step size is then restricted by the CFL number of the low-frequency modes since smaller time steps
are applied for the integration of the high-frequency modes. The classical split-explicit method [Skamarock
and Klemp, 1994; Wicker and Skamarock, 2002] is based on this philosophy, which is used for operational NH
models [Tomita et al., 2008; Skamarock et al., 2012]. A class of multirate split-explicit time integration meth-
ods can be found in Wensch et al. [2009]. They further developed these split-explicit methods in terms of
stability and accuracy in Knoth and Wensch [2014] through optimization algorithms.

In general, the split-explicit time integration methods are based on splitting the equations into fast and
slow modes [see e.g., Wicker and Skamarock, 2002].

However, for a Godunov-type FV method, it is not obvious to separate each component of the Euler system
and perform split-explicit time integration. In this study, a three-way splitting approach is proposed based
on the scale analysis in the atmosphere [Klein, 2010]. The atmospheric NH system of equations is split into
slow, fast-forward, and fast-backward equations. The forward-backward treatment is very popular in atmo-
spheric models, either in split-explicit [Wicker and Skamarock, 2002; Klemp et al., 2007] or IMEX [Weller et al.,
2013; Lock et al., 2014] schemes. Generally, in a sequential computation of the model variables, the updated
velocity will be available for use in pressure calculation.

The model is then evaluated by some well-known NH test cases and the results are compared with the ref-
erence solution using the strong stability-preserving third-order Runge-Kutta (SSP-RK3) [Gottlieb et al., 2001]
scheme. Computational efficiency of the model is also discussed. Note that for a split-explicit method, the
issue with small vertical grid-spacing is handled by an implicit approach as used in HEVI methods [Tomita
et al., 2008]. We do not address this in the present work.

The remainder of the paper is organized as follows. In section 2, the NH FV model is described, section 3
deals with various time integration methods. Results with numerical experiments are provided in section 4,
followed by summary and conclusions in section 5.

2. The Nonhydrostatic FV Model

2.1. 2-D Euler System
The model is designed to simulate the two-dimensional (2-D) airflow over a rectangular (x, z) domain. The com-
pressible nonhydrostatic Euler system of equations can be written in the following vector form [Bao et al., 2015]:

@q
@t

1r " ðquÞ50

@qu
@t

1r " ðq u% u1p IÞ52qg k;

@qh
@t

1r " ðqh uÞ50

(1)

where q is the air density, u5ðu;wÞT the velocity vector with the vertical component w5u " k, and p is the
pressure, g is the acceleration due to gravity, and I represents the 2 3 2 identity matrix. The potential
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temperature h is related to the real temperature T by h5Tðp0=pÞRd=cp . The above system is closed by
the equation of state, p5C0ðqhÞc where C05Rc

d p2Rd=cv
0 . The reference surface pressure p05105 Pa, and

the other thermodynamic constants are given by c5cp=cv ; Rd5 287 J kg21 K21, cp5 1004 J kg21 K21, cv5
717 J kg21 K21.

For NH atmospheric modeling, it is customary to write the thermodynamic variables (w) as the sum of the
mean-state or reference state !w and the perturbation w0,

wðx; z; tÞ5!wðzÞ1w0ðx; z; tÞ; w 2 fq; h; p; qhg; (2)

such that the mean-state satisfies the hydrostatic balance,

d!p
dz

52!qg: (3)

The mean-state part of the thermodynamic variables makes no contribution to the dynamics, and the
dynamic processes are triggered and influenced by the perturbation part [see Clark, 1977]. When the hydro-
statically balanced mean-state is removed from the Euler system of equations, the resulting perturbed sys-
tem can be written in the following vector form as a hyperbolic conservation law:

@U
@t

1
@FðUÞ
@x

1
@GðUÞ
@z

5SðUÞ ) @U
@t

1r " FðUÞ5SðUÞ; (4)

where

U5

q0

qu

qw

ðqhÞ0

2

666666664

3

777777775

; F5

qu

qu21p0

quw

quh

2

666666664

3

777777775

; G5

qw

qwu

qw21p0

qwh

2

666666664

3

777777775

; S5

0

0

2q0g

0

2

666666664

3

777777775

; (5)

where U is the state vector of conserved quantities, F5ðF;GÞ is the flux vector with components F and G
along x and z directions, respectively, and S is the source term.

2.2. Finite-Volume Discretization
Consider the two-dimensional conservation law (4) on a rectangular domain D, with initial condition
Uðx; z; t50Þ5U0ðx; zÞ, and with appropriate boundary conditions. The domain is partitioned into nonover-
lapping Nx3Nz cells Iij5½xi21=2; xi11=2' % ½zj21=2; zj11=2', where i51; 2; . . . ;Nx and j51; 2; . . . Nz . Let Dx and D
z be uniform grid-spacings along the x and z directions, respectively, such that jIijj5Dx Dz. For a cell-
centered FV approach, the prognostic variables are treated as cell averages (!U), which are constants within
each cell and discontinuous at the cell interfaces in general. To advance the cell averages at the new time
level, FV methods require a reconstruction procedure for fluxes at the cell interfaces from the neighboring
cell averages. The cell-averaged conserved quantity !Uij on a cell Iij is defined to be

!Uij5
1

Dx Dz

ðxi11=2

xi21=2

ðzj11=2

zj21=2

Pijðx; zÞ dx dz; (6)

where Pijðx; zÞ is a piecewise polynomial function that approximates the solution Uðx; z; tÞ on Iij, for a tar-
geted order of accuracy at a given time. Pijðx; zÞ is also known as the reconstruction function and provides
the subgrid scale distribution for U on each cell Iij. Integrating (4) on Iij, and employing the divergence theo-
rem and the conservation constraint (6) leads to the following semidiscretized form:

d
dt

!Uij5
21

Dx Dz

X4

e51

ð

Ce

F " n
" #

1!Sij; (7)

where Ce is the boundary wall for the cell Iij, n is the unit outward normal vector on Ce, F is the flux function,
and !Sij is the cell-averaged source term.
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The formal order of accuracy of a FV scheme obtained from (7) is tied up with that of the reconstruction
function Pij and the flux integral. High-order multidimensional FV schemes can be rigorously derived by
using a high-order polynomial approximation for U, combined with a consistent Gauss quadrature for the
flux integrals along the cell boundaries [Shu, 1997]. However, such FV schemes are computationally prohibi-
tive for many practical applications including 3-D NH modeling. For the sake of computational efficiency
and algorithmic simplicity, we consider a relatively simple FV formulation of (7). The complexity of a fully 2-
D reconstruction can be significantly reduced by a ‘‘dimension-by-dimension’’ approach involving 1-D
reconstruction in each coordinate direction as described in Katta et al. [2015]. An advantage of this
approach is that only one numerical flux evaluation is required per cell wall, resulting in a significant com-
putational saving. Nevertheless, a major drawback is that the formal order of accuracy of FV scheme
degrades to second-order in certain cases even though high-order 1-D reconstructions are employed.

The semidiscretized form (7) can be further simplified as follows:

d
dt

!Uij52
F̂ i11=2;j2F̂ i21=2;j

Dx
1

Ĝi;j11=22Ĝi;j21=2

Dz

" #

1!Sij; (8)

where F̂ i61=2;j and Ĝi;j61=2 are the numerical fluxes evaluated at the cell interfaces as shown in Figure 1.
Since the reconstructed solution is discontinuous across the cell interface, the flux is not uniquely defined.
The discontinuity is resolved by replacing normal flux F with a numerical flux F̂5F̂ðU2;U1Þ, by means of a
Riemann solver [Toro, 1999]; which combines the fluxes corresponding to the left (U–) and right (U1) states
of the discontinuous solution (U) at the cell interface. For example, the Rusanov (or local Lax-Friedrichs) flux
at the cell interface can be written as:

F̂ðU2;U1Þ " n5
1
2

FðU2Þ " n1FðU1Þ " n2amax ðU12U2Þ
" #

; (9)

where amax is the maximum absolute value of eigenvalues of the flux Jacobian F0ðUÞ. For the Euler system
(1), amax 5max fjv2j1cs; jv1j1csg, where cs5

ffiffiffiffiffiffiffiffiffiffi
cRd T
p

is the speed of sound and v5u " n. A wide variety of
Riemann solvers are available with varying computational complexity such as Roe, HLLC, etc. [Toro, 1999],
which are traditionally developed for the gas dynamics applications.

The Rusanov flux (9) is simple to implement and popular in discontinuous Galerkin methods, however,
for FV cases it is too diffusive and rarely used for practical applications. Since the Mach number associated
with NH dynamics is relatively small, an upwind-based flux recipe designed for low Mach number is more
appropriate. The Riemann solver AUSM1-up [Liou, 2006] developed for all Mach numbers gaining promi-
nence for NH modeling. We adopt the AUSM1-up flux for the FV solver and the details are given in the
Appendix A.

2.3. 1-D Reconstruction Schemes
The reconstruction process is one of the most important ingredients of a FV discretization because it dic-
tates the accuracy, efficiency, and nonoscillatory properties of the scheme. As described above, we are inter-
ested in high-order 1-D reconstruction scheme cast in a dimension-by-dimension approach for the 2-D
Euler solver. The fifth-order accurate Piecewise Quartic Method (PQM) introduced in White and Adcroft
[2008] has several computationally attractive features including simplicity, flexibility with variable grid-
spacing and optional monotonicity. We consider the PQM approach for reconstructing fluxes at the cell
edges.

Figure 1. The five-point compact computation stencil used for 1-D reconstructions, where cell ‘‘i’’ is located at the center. The cell centers
are marked by dots and indices i; i61; i62; and the cell interfaces (edges) are marked with indices i61=2; i63=2.
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The reconstructing polynomial PiðxÞ has the following generic form for a cell ‘‘i’’:

PiðxÞ5a01a1 x1a2 x21a3 x31a4 x4;
1
Dx

ðxi11=2

xi21=2

PiðxÞ dx5!Ui ; (10)

where the coefficients ak ; k50; . . . ; 4, are uniquely determined using five constraints involving the left and
right edge values Ui21=25Uðxi21=2Þ and Ui11=25Uðxi11=2Þ, respectively, and the derivatives (for details see
White and Adcroft [2008]). The edge value estimates of the approximate solution for a cell i can be comput-
ed from the neighboring cell averages, using the five-point stencil schematically shown in Figure 1, as
below

Ui21=25
1

60
ð23!Ui22127!Ui21147!Ui213!Ui1112!Ui12Þ; (11)

Ui11=25
1

60
ð2!Ui22213!U i21147!Ui127!Ui1123!U i12Þ: (12)

To compute the numerical flux F̂ i11=2;j in (8) requires the left (U–) and right (U1) edge values at the interface
xi11=2, and can be obtained from equations (11) and (12). Similarly the numerical flux in z direction Ĝi;j11=2

can be computed.

3. Time Integration

The semidiscretized Euler system (8) leads to a system of ordinary differential equations (ODE) and can be
written in the following general form,

d
dt

UðtÞ5LðUÞ in ð0; TÞ; (13)

where U is the approximate solution and L is the operator associated with FV spatial discretization. The
above ODE can be solved by a variety of solvers. We consider the SSP-RK3 scheme [Gottlieb et al., 2001] as a
basic explicit time stepping method for the reference solution and the third-order Runge-Kutta (RK3)
scheme [Wicker and Skamarock, 2002] as a basis for split-explicit time stepping method as follows:

SSP-RK3:

Uð1Þ5Un1DtLðUnÞ; (14)

Uð2Þ5
3
4

Un1
1
4

Uð1Þ1
1
4

DtLðUð1ÞÞ; (15)

Un115
1
3

Un1
2
3

Uð2Þ1
2
3

DtLðUð2ÞÞ; (16)

RK3:

Uð1Þ5Un1
1
3

DtLðUnÞ; (17)

Uð2Þ5Un1
1
2

DtLðUð1ÞÞ; (18)

Un115Un1DtLðUð2ÞÞ; (19)

where n and n 1 1 indicate time level at tn and tn115tn1Dt. The CFL limit for the explicit time stepping is
C Dt=h ( 1, where h5min fDx;Dzg, and C is the maximum speed of the system.

3.1. Scale Separation Overview
Scale separation is inherently featured in the atmosphere both in time and space [Klein, 2010]. Time scales
in atmospheric flows range significantly from microseconds to weeks or more. Effective and efficient
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modeling needs to consider this fact. According to the scale study on the atmospheric flows by Klein [2010],
different ratios can be observed for different variables. Regarding the velocity, the atmosphere can be
decoupled into three wave speed regimes: sound speed (cs), internal wave speed (cint), and convective wind
velocity (uw) with the typical following ratios:

cint=cs ) 1=3 ) e1=2; uw=cint ) 1=9 ) e; and uw=cs ) e3=2;

where e is a dimensionless parameter. These ratios show that the atmospheric flow equations are stiff
because of the large ratios between the waves propagation speeds, which are used in the following stability
analysis (section 3.2.2).

3.2. Time-Splitting Approach
In this study, fully compressible nonhydrostatic Euler equations are solved through a split-explicit time inte-
gration method. Following the RK3, split-explicit method in Wicker and Skamarock [2002], the same time
integration method with some modifications is used in the proposed splitting framework.
3.2.1. Time-Splitting ODE
Based on the multiple scales discussed above, we consider an ordinary differential equation with three
terms:

_y5sðyÞ1ff ðyÞ1fbðyÞ (20)

in which s, ff, and fb represent the slow (nonstiff), fast-forward, and fast-backward terms, respectively. The
time-split method is based on RK3 scheme (17)–(19) with ns number of micro-time steps; i.e., Ds5Dt=ns . In
other words, the large time step Dt, is divided to ns smaller micro-time steps, Ds. The slow terms are calcu-
lated using the large time step at each RK stage, while the fast terms are calculated using the number of
micro-time steps in each RK stage in the forward-backward framework. It means that the slow term is first
calculated using the last RK stage y value. Then the small steps start with the slow term frozen at its last
updated value. In the small step loop, the fast-forward and fast-backward terms are updated sequentially
until the loop is completed.

The split-explicit scheme is applied to (20) as follows:

~y s1Ds
ðstageÞ5ys

ðstageÞ1½sðyðstageÞ21Þ1ff ðys
ðstageÞÞ'Ds

ys1Ds
ðstageÞ5~y s1Ds

ðstageÞ1fbð~y s1Ds
ðstageÞÞDs;

(21)

where yðstageÞ denotes the value of y at the RK3 stages and is used as a loop inside each RK3 stage. Note that
ys5tn
ðstageÞ5yn and yn115yð3Þ. There are ns=3; ns=2, and ns loops for the first, second, and third RK3 stage,

respectively.

Our implementation of the three-way splitting is described as follows:

Stage 1:
The loop at the first RK3 stage is

~y s1Ds
ð1Þ 5ys

ð1Þ1½sðynÞ1ff ðys
ð1ÞÞ'Ds

ys1Ds
ð1Þ 5~y s1Ds

ð1Þ 1fbð~y s1Ds
ð1Þ ÞDs;

(22)

for ns=3 micro-time steps. Thus at the end of the loop, yð1Þ is obtained at time tn1Dt=3.
Stage 2:
In the RK3 method, the advance from the first-stage (tn1Dt=3) to the second stage (tn1Dt=2) is Dt=6, with
ns=6 microsteps. This means that when ns 5 6, the advance equals Ds (which is the case in this study).
Hence, we advance yð1Þ only by one microstep (Ds) at the second stage:

~y ð2Þ5yð1Þ1½sðyð1ÞÞ1ff ðyð1ÞÞ'Ds

yð2Þ5~y ð2Þ1fbð~y ð2ÞÞDs:
(23)

Note that there is no superscript for yð1Þ; ~y ð2Þ, and yð2Þ, which indicates (23) is a one-time calculation reduc-
ing the computational effort.
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Stage 3:
Finally, at the third RK3 stage, we will have

~y s1Ds
ð3Þ 5ys

ð3Þ1½sðyð2ÞÞ1ff ðys
ð3ÞÞ'Ds

ys1Ds
ð3Þ 5~y s1Ds

ð3Þ 1fbð~y s1Ds
ð3Þ ÞDs:

(24)

At the end of this loop, yn11 is obtained.

Still, one can use the full split-explicit with ns=2 number of microsteps at the second stage in a similar way
to the other stages.
3.2.2. Stability and Accuracy Analysis
For stability analysis of the time integration methods, the standard ordinary differential equation _y5ky is
considered [see Butcher, 2008] but with three terms as in (20):

_y5ðs1ff 1fbÞky; (25)

where k is the complex variable. Plots of the related stability regions are shown in Figure 2 for the ratios of
wave speeds in the atmosphere (see section 3.1) with s 5 1, ff 5 10, and fb 5 30 with the step size 0.01. The
dark area shows the region of stability. It is clearly observed that the proposed split-explicit scheme has much
larger stability region, which suggests the stability preservation for larger time steps when the equation is stiff.
The atmospheric system of equations is a totally nonlinear problem with both real and imaginary eigenvalues.
The eigenvalue analysis of the resulting equations shows that the eigenvalues consist of both real and imagi-
nary parts with large values [see Klemp et al., 2007]. So a scheme with a larger stability region along the real
axis is certainly desirable, especially when it is shown that the imaginary stability is considerably increasing as it
gets farther from the imaginary axis. This is also proved in the benchmark tests in section 4.

As an alternative, one can use the full split-explicit scheme where we get at least the same imaginary stabili-
ty as SSP-RK3 (Figure 2, middle plot).

Similar discussion exists for the order of accuracy. As can be seen in Figure 3, the order of accuracy for the
full split-explicit scheme is as the same as RK3 when there is no fast terms (ff 5fb50), while the proposed
scheme is second-order accurate. As soon as the fast terms appear in the problem, there is no difference in
the order of accuracy between the modified and full split schemes; both are first-order accurate. Similarly in
the tests in section 4, we hardly see any difference in the stability and accuracy of the results using the two
schemes. However, using the full split scheme results in approximately 10% computational saving, while
the modified scheme gives about 25%.

Figure 2. Stability (dark) regions of the SSP-RK3, the full split-explicit and the proposed split-explicit schemes for s 5 1, ff 5 10, and fb 5 30.
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3.2.3. Implementation to the 2-D Euler System
As discussed in section 3.2.1, the 2-D Euler system (5) can be split into three subsystems of slow (nonstiff),
fast-forward, and fast-backward equations.

Us5

0

qu

qw

0

2

666666664

3

777777775

; Fs5

0

qu2

quw

0

2

666666664

3

777777775

; Gs5

0

qwu

qw2

0

2

666666664

3

777777775

; Ss5

0

0

0

0

2

666666664

3

777777775

; (26)

Uf 5

q0

0

0

ðqhÞ0

2

666666664

3

777777775

; Ff 5

qu

0

0

quh

2

666666664

3

777777775

; Gf 5

qw

0

0

qwh

2

666666664

3

777777775

; Sf 5

0

0

0

0

2

666666664

3

777777775

; (27)

Ub5

0

qu

qw

0

2

666666664

3

777777775

; Fb5

0

p0

0

0

2

666666664

3

777777775

; Gb5

0

0

p0

0

2

666666664

3

777777775

; Sb5

0

0

2q0g

0

2

666666664

3

777777775

: (28)

Using the notations introduced in section 3.2.1, we replace y by U, s by the slow (Fs, Gs, and Ss) terms, ff by
the fast-forward (Ff, Gf, and Sf) terms, and fb by the fast-backward (Fb, Gb, and Sb) terms. Analogous to the
split scheme (21), the Euler system (26)–(28) is integrated as follows:

~U
s1Ds
ðstageÞ5Us

ðstageÞ1½F
x
s ðUðstageÞ21Þ1Gz

sðUðstageÞ21Þ1SsðUðstageÞ21Þ

1Fx
f ðUs

ðstageÞÞ1Gz
f ðUs
ðstageÞÞ1Sf ðUs

ðstageÞÞ'Ds

Us1Ds
ðstageÞ5

~U
s1Ds
ðstageÞ1½Fx

bðUs
ðstageÞÞ1Gz

bðUs
ðstageÞÞ1SbðUs

ðstageÞÞ'Ds:

(29)

As in (21), this is the loop inside each RK3 stage. Superscripts ‘‘x’’ and ‘‘z’’ represent discrete partial derivatives in
‘‘x’’ and ‘‘z’’ directions, respectively. Since the U vector has always two components zero, we only need to use

Figure 3. Order of accuracy comparison among the same schemes as in Figure 2 for (left) s 5 1, ff 5 0, and fb 5 0 and (right) s 5 1, ff 5 10,
and fb 5 30.
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the edge value reconstruction (with PQM) for those components that have been updated immediately before
the current calculations. In other words, the edge value reconstruction is implemented for two components of
U instead of four. In each loop, reconstructed values of the conservative variables can be reused in the solution
process. In (27) only Uf is updated, so the PQM is only used for the Uf nonzero components before calculating
the fluxes in (27). Similarly, when Ub is updated in (28), the PQM is used only for the Ub nonzero components. In
this way, the total number of the reconstruction which is the most expensive part in the computations is four.

Besides, before calculating the fluxes in the slow equation, which is only calculated once at each RK3 stage,
the edge value reconstruction is used only for the Ub nonzero components. The reason is that the Uf nonze-
ro components have already been updated before calculating the fast-backward fluxes.

It is worth mentioning that one can swap (27) and (28) without significant differences in the results, which
means calculating (28) forward and (27) backward.

4. Numerical Experiments

For setting up the initial and boundary conditions for the FV solver with various NH benchmark tests, we fol-
low the strategy used in Bao et al. [2015] and Li et al. [2013], and the details are omitted.

4.1. Rising Warm Bubble
The rising convective thermal bubble test case is widely used for evaluating time stepping methods for NH
models [Wicker and Skamarock, 2002; Ahmad and Linedman, 2007]. The thermal bubble is warmer than the

Figure 4. Potential temperature perturbation for the rising thermal bubble test at time t 5 1000 s with the resolutions of Dz5Dx5200; 100, and 50 m from the top to bottom. The results
with SSP-RK3 and proposed split-explicit schemes are shown in the left and the right columns, respectively. The time step used in the split-explicit is 5 times that of the SSP-RK3 which is
Dt50:4 s, at the coarsest resolution and is inversely proportional to the grid-spacing to keep the CFL number constant.
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ambient air therefore, it rises while deforming as a result of the shearing motion caused by the wind gradients.
Larger gradients occur at the upper part of the bubble and eventually it reshapes into a mushroom cloud. The
convective thermal bubble test uses a hydrostatic balance with a uniform potential temperature, !hðzÞ5300 K.
The following perturbation is added to hydrostatic background !h to trigger the vertical motion:

h05h0c max ð0; 12d=rcÞ; (30)

where h0c5 2 K, rc5 2 km, and d5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2xcÞ21ðz2zcÞ2

q
in which xc5 10 km and zc5 2 km. The domain is

20 km 3 10 km with no-flux boundary conditions. No artificial diffusion is applied, and no analytic solution
is available for this test.

The comparison of the two schemes is shown in Figure 4. The results are very similar although the time
step in the proposed split scheme is 5 times the SSP-RK3’s. The split scheme, hence, shows good perfor-
mance with increased computational efficiency of )25%. Likewise, the vertical velocity in Figure 5 shows
the same behavior. The results are comparable with that shown in Li et al. [2013] with a high-order FV mod-
el, but the FV-PQM evolution is smoother.

In order to examine the mass conservation of the proposed splitting scheme, time history of the normalized
mass error is shown in Figure 6. As can be seen, the model conserves mass to the machine precision
ðOð10215ÞÞ for both SSP-RK3 and split schemes.

4.2. Inertia-Gravity Wave Test
The NH inertia-gravity wave test introduced by Skamarock and Klemp [1994] is an effective tool to verify the
accuracy of various time stepping schemes in a more realistic NH setting. The test consists of a channel

Figure 5. Same as in Figure 4 but for the vertical velocity (w).
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with a uniform advection velocity where a perturbation in potential temperature is applied in the middle.
This perturbation then propagates through the channel, both left and right, but is influenced by the mean
advection velocity. The test parameters and initial condition are the same as Skamarock and Klemp [1994].
The Brunt-V€ais€al€a frequency is Nf 51022 s21, the upper boundary is placed at zT 5 10 km, the perturbation
half-width is am5 5 km, and the initial horizontal velocity is u5 20 m s21. The inertia-gravity waves are
excited by an initial potential temperature perturbation (h0) of the following form:

h05h0c
a2

msin ðpz=hcÞ
a2

m1ðx2xcÞ2
; (31)

where h0c 5 0.01 K, hc 5 10 km, and xc 5 100 km. The domain is [0, 300] 3 [0, 10] km2, with the periodic later-
al boundary condition and no-flux at the top and bottom boundaries. The simulation time is tT 5 3000 s.
The results are compared for the two schemes in Figure 7, with the aspect ratio of Dx=Dz510 for Dz5100
and 200 m.

The time step for the SSP-RK3 scheme is Dt5 0.4 s. The results again admit that the split scheme performs
satisfactorily in comparison with the SSP-RK3. It shows almost no difference between the results, while we
obtain about 25% saving in computational cost with the split-explicit scheme. This is again corroborated by
the comparison between the two schemes in Figure 8, where the potential temperature perturbation (h0) is
plotted at z5 5 km through the channel. The values of h0 are symmetric about x5 160 km, and they are
very similar that the differences are hardly distinguishable.

Furthermore, the error comparison between the two schemes is implemented for h0 and vertical velocity in
Figure 9. Both schemes are approaching second-order convergence as the resolution increases. Negligible
differences exist between the convergence rates so the results are barely distinguishable.

Figure 6. The time traces of normalized mass error for SSP-RK3 and the proposed split schemes for the warm bubble test with
Dx5Dz5200 m.
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4.3. Density Current (Straka) Test
The density current test by Straka et al. [1993] is another benchmark to evaluate the performance of numer-
ical schemes in NH atmospheric models. Contrary to the thermal bubble test, a cold bubble drops into a
neutrally stratified atmosphere and starts to propagate forward. The forward motion of the cold flow results
in shear at the top that produces Kelvin-Helmholtz instability rotors. The atmosphere has the uniform
potential temperature of !h5300 K at the hydrostatic balance initially, where the following perturbation is
introduced:

hðx; zÞ5
!hðzÞ if r > 1

!hðzÞ1h0c ½11cos ðprÞ'; otherwise
:

(

where h0c5 215 K, r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðx2xcÞ=xr '21½ðz2zcÞ=zr '2

q
; ðxc; zcÞ5ð0; 3Þ km, ðxr ; zrÞ5ð4; 2Þ km. A dynamic viscosi-

ty of m5 75 m2 s21, is applied at all resolutions as recommended in Straka et al. [1993]. The model is inte-
grated for 900 s on a domain ½226:5; 26:5'3½0; 6:4' km2 with no-flux boundary conditions.

First, we show the advantage of using AUSM1-up flux as opposed to Rusanov (9) flux with the density cur-
rent simulations. In Figure 10, the results with AUSM1-up and Rusanov numerical fluxes are shown in the
top and bottom plots, after 900 s at a resolution of Dz5Dx5100 m. Because of the excessive diffusion

Figure 7. Potential temperature perturbation for the Inertia Gravity Wave test at time t 5 3000 s with the resolutions of (top) Dz5200 m and (bottom) Dz5100 m. Dx510Dz. The results
with SSP-RK3 and the proposed split-explicit are shown in the left and right plots, respectively. The time step used in the split-explicit is 4.6 times the time step used in SSP-RK3, which is
Dt50:4 s.

Figure 8. Potential temperature perturbation comparison as in Figure 7 at the height of z 5 5 km. (left) Dz5100 m and (right) Dz5200 m.
The reference solution time step is Dt50:04 s with Dz550 m.
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inherent with the Rusanov flux, the solution appears more smooth and failed to capture the fine features
Kelvin-Helmholtz rotors. The solution with AUSM1-up at the same resolution shows more details of the
rotors, and comparable to other published results [Bao et al., 2015]. Computational cost for these two
schemes is comparable.

The results for the proposed time-split method and SSP-RK3 at three different resolutions of Dz5Dx5 200,
100, and 50 m are presented in Figure 11. They are similar qualitatively capturing the three Kelvin-
Helmholtz rotors for all the resolutions. Still, the split scheme seems better resolving the flow features for
the coarsest resolution with 5 times larger time step. The results are qualitatively comparable with other
published high-order models results [Li et al., 2013; Ullrich and Jablonowski, 2012].

Figure 9. L2-error comparison of SSP-RK3 and the proposed split-explicit for the Inertia Gravity Wave test. For the reference solution, Dz5
25 m and Dt50:02 s with Dx510Dz. The grid size and the time step double up to 400 m. The dotted lines are first and second-order con-
vergence rates.

Figure 10. The simulated results for the Straka density current test at time 900 s with the FV model. The top plot shows potential tempera-
ture perturbation (h0) with the Rusunov flux (9), and the bottom plot shows the same but with the AUSM1-up numerical flux. The model is
configured with a resolution Dz5Dx5100 m, and explicit time step Dt50:25 s.

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000888

NAZARI AND NAIR ADVANCES IN MODELING EARTH SYSTEMS 13



To compare the two schemes quantitatively, Table 1 includes different run details and the results at the
maximum possible time step for each scheme. It is shown that )25% computational saving is obtained
using the split scheme. The longitudinal profile of the potential temperature perturbation at the height of z
51:2 km is shown in Figure 12, where the three Kelvin-Helmholtz rotors are represented by the three val-
leys. The results of the split and SSP-RK3 schemes are in close agreement. As the resolution increases, finer
features of the current are resolved, which reflects the multiscale nature of the flow. This is obvious in Figure
11 as well.

5. Summary and Conclusions

A Godunov-type finite-volume (FV) atmospheric model with a new time-splitting method has been devel-
oped. The model solves the fully compressible nonhydrostatic (NH) Euler system. The FV solver takes the
advantages of fifth-order piecewise quartic method (PQM) reconstructions in the spatial discretization. For
computational economy, the reconstruction scheme is implemented in a dimensionally split way. The
numerical flux (Riemann solver) recipe used for the FV solver is based on the AUSM1-up (advection
upstream splitting method) flux, which is particularly effective for low Mach number problems as is in the
NH modeling.

Figure 11. Potential temperature perturbation for the density current test at time t5 900 s with the resolutions of Dz5Dx5 200, 100, and 50 m from top to bottom. The time step used
in the proposed split-explicit is 5 times the time step used in SSP-RK3 which is Dt50:5 s, at the coarsest resolution and is inversely proportional to the grid-spacing to keep the CFL num-
ber constant. SSP-RK3 in the left and the split-explicit in the right.

Table 1. Comparison of SSP-RK3 and the Time-Splitting Method for the Straka Density Current Test at the Maximum Possible Time Step

Scheme Dz5Dx (m) Dt (s) min ðh0Þ (K) max ðh0Þ (K) CPU Time (s)

SSP-RK3 50 0.125 28:82 1:2731022 1524.87
Split-explicit 50 0.625 28:87 4:1031022 1155.98
SSP-RK3 100 0.25 28:78 8:8231022 169.90
Split-explicit 100 1.25 29:01 1:5631021 134.16
SSP-RK3 200 0.5 28:39 1:5331021 20.41
Split-explicit 200 2.5 29:31 2:0031021 15.17
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Traditionally for a split-explicit method, the acoustic modes in the Euler system are solved using small time
steps while the advective modes are treated with larger time steps. However, for the Godunov-type FV
method this traditional approach is not trivial for the Euler system of equations, because each component
of the system is coupled through the Riemann solver. The proposed time-split approach consists of three
modes and the Euler system is split into slow, fast-forward, and fast-backward equations to represent these
modes. The ODE stability analysis confirms much larger stability region for the split scheme, which suggests
using of noticeably larger time steps without facing instability issues. It is numerically shown that the new
splitting scheme does not violate conservation properties. The computational efficiency of the split scheme
is compared with the explicit method, using the FV model with various NH benchmark test cases. The pro-
posed split scheme is about 25% more efficient. The FV model performs well under the standard bench-
mark tests, and the results are qualitatively comparable with other published high-order FV results. The
small vertical grid-spacing and vertically propagating acoustic mode results in stringent CFL restriction with
explicit time stepping. This issue is circumvented by an implicit approach in the vertical direction so that
the overall CFL restriction is limited by horizontal grid-spacing. For the present study, we do not include the
implicit part, although the work in this direction is in progress. Our goal is to extend the 2-D FV model to a
3-D framework including topography.

Appendix A: AUSM1-Up Flux

Since we consider the FV discretization in orthogonal (x, z) coordinates, the implementation of AUSM1-up
flux [Liou, 2006] can be directly described in terms of the Euler system (5) in x direction, where the state vec-
tor U5ðq0; qu;qw; ðqhÞ0ÞT and the flux F5ðqu; qu21p0;quw;quhÞT . As introduced in section 2.2, the left and
right states of a variable w at the cell interface is indicated by w2 and w1, respectively. In order to describe
the algorithm briefly, we employ the notations as used in Yang and Cai [2014]. The AUSM-family of fluxes
requires a decomposition of the inviscid flux into convective (advective) and pressure fluxes:

F̂ðU2;U1Þ5F̂ conðU2;U1Þ1F̂ prsðU2;U1Þ; (A1)

and the averaged quantities at the interface such as the density _q5ðq21q1Þ=2, and sound speed
_c5ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp2=q2

p
Þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp1=q1

p
Þ=2. The local Mach numbers at the interface are m65u6= _c , such that the aver-

age Mach number _m satisfies _m25ððm2Þ21ðm1Þ2Þ=2. Then the interface Mach number can be defined as

_m5M1
4 ðm

2Þ1M2
4 ðm

1Þ2 Kp

fa
max ð12r _m2; 0Þ ðp

1Þ02ðp2Þ0

_q _c2 ; (A2)

where

Figure 12. Potential temperature perturbation as in Figure 11 at the height of z 5 1.2 km for the two resolutions of Dz5Dx5 100 (asterisk)
and 50 (no marker) m. The proposed split-explicit is the solid line and SSP-RK3 is the dashed line.
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M6
4 ðmÞ5

1
2
ðm6jmjÞ if jmj * 1

M6
2 ðmÞ 1716 bM7

2 ðmÞ
" #

; otherwise
;

8
<

: (A3)

whereM6
2 ðmÞ5ðm61Þ2=4. Note that split Mach numbersM6

k are polynomial functions of degree k 5 2, 4
[Liou, 2006]. Now the convective component of the flux in (A1) is defined as:

F̂ conðU2;U1Þ5
_c _m ð1; u2;w2; h2ÞT if _m > 0

_c _m ð1; u1;w1; h1ÞT ; otherwise
:

(

(A4)

In order to find the pressure component in (A1), the pressure perturbation at the interface _p0 is required
which is defined by

_p05P1
5 ðm

2Þ ðp2Þ01P2
5 ðm

1Þ ðp1Þ02Ku fa P1
5 ðm

2ÞP2
5 ðm

1Þðq21q1Þ _c ðu12u2Þ; (A5)

where

P6
5 ðmÞ5

1
2
½16signðmÞ' if jmj * 1

M6
2 ðmÞ ½ð622mÞ716a mM7

2 ðmÞ'; otherwise
:

8
<

: (A6)

The pressure component of (A1) is obtained from the following relation,

F̂ prsðU2;U1Þ5Fð0; _p0; 0; 0Þ: (A7)

Following Liou [2006], the free parameters used in (A2) and (A5) are set to be Kp51=4; Ku53=4; fa5r5
1; a53=16, and b51=8. Thus, (A4) and (A7) together constitute the AUSM1-up numerical flux F̂ðU2;U1Þ in
x direction, similarly ĜðU2;U1Þ in z direction can be computed.
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